纳米科学与技术大全5:自组装与纳米化学(导读版)图书
人气:10

纳米科学与技术大全5:自组装与纳米化学(导读版)

纳米科学与技术大全5:自组装与纳米化学(导读版)作者将生态学不同领域的理论和实验进展与新方法相结合,在个体层次与群落结构、生态系统功能间,微观世界与宏观生态间的融合做了很好的尝试,为我们理解生态现象、...
  • 所属分类:图书 >工业技术>一般工业技术  
  • 作者:(英)[安德鲁斯]
  • 产品参数:
  • 丛书名:纳米科学与技术大全:5
  • 国际刊号:9787030346605
  • 出版社:科学出版社
  • 出版时间:2012-07
  • 印刷时间:2012-07-01
  • 版次:1
  • 开本:12开
  • 页数:--
  • 纸张:胶版纸
  • 包装:精装
  • 套装:

内容简介

纳米科学与技术大全5:自组装与纳米化学(导读版)作者将生态学不同领域的理论和实验进展与新方法相结合,在个体层次与群落结构、生态系统功能间,微观世界与宏观生态间的融合做了很好的尝试,为我们理解生态现象、生态过程以及生态功能展示了一个很好的途径。

纳米科学与技术大全5:自组装与纳米化学(导读版)可作为研究生生态课程的参考书,对于从事生态学教学和研究的教师和科研人员及生态学者有非常高的参考价值。

作者简介

Gregory D.Scholes、Frank Caruso

目录

5.01 多孔金属有机骨架

5.01.1 Introduction

5.01.2 Inorganic SBUs and Organic Linkers

5.01.3 Architecture of the Networks

5.01.4 Porous Structures

5.01.4.1 0D Cage

5.01.4.2 1D Channels

5.01.4.3 2D Layers

5.01.4.4 3D Channels

5.01.5 Synthesis of MOFs

5.01.5.1 Influencing Factors

5.01.5.2 Solvent-Evaporation Synthesis

5.01.5.3 Diffusion Synthesis

5.01.5.4 Hydrothermal (or Solvothermal) Synthesis

5.01.5.5 Microwave-Reaction Synthesis

5.01.5.6 Ionothermal Synthesis

5.01.5.7 Electrochemical Synthesis

5.01.5.8 High-Throughput Synthesis

5.01.6 Functions of MOFs

5.01.6.1 Gas Storage

5.01.6.1.1 Hydrogen Storage

5.01.6.1.2 Methane Storage

5.01.6.1.3 Carbon Dioxide Storage

5.01.6.2 Selective Gas Adsorptions and Separations

5.01.6.3 Catalysis

5.01.6.4 Magnetism

5.01.6.5 Optics

5.01.6.6 Sensor

5.01.6.7 Drug Delivery

5.01.7 Summary and Outlook

References

5.02 纳米粒子配体

5.02.1 Introduction

5.02.2 Ligands, Chief Cook, and Bottle Washer

5.02.2.1 Ligands Control the Synthesis of NPs

5.02.2.2 A Brief Introduction to Classical Nucleation Theory

5.02.2.3 Ligands Stabilize NP Suspensions

5.02.2.4 Ligands and the Shape of NPs

5.02.2.5 Ligands Give NPs Physicochemical Functionality

5.02.3 What to Expect,Ab Initio Calculations

5.02.4 Experimental Observation of NP Ligands

5.02.4.1 Indirect Probing of Ligand Exchange

5.02.4.2 Direct Probing of Ligands

5.02.5 Observing NP Ligands with Solution NMR Spectroscopy

5.02.5.1 Solution NMR Techniques for Observing QD Ligands

5.02.5.1.1 A brief introduction in solution NMR spectroscopy

5.02.5.1.2 Pulsed field gradient NMR spectroscopy

5.02.5.1.3 Nuclear Overhauser effect NMR spectroscopy

5.02.5.2 The Tightly Bound Ligand

5.02.5.2.1 What to expect?

5.02.5.2.2 The basic experiment:1D 1H NMR

5.02.5.2.3 Tracing down the ligand resonances by diffusion NMR

5.02.5.2.4 Identifying ligands, proton-carbon correlations

5.02.5.2.5 A note on relaxation rates and peak broadening

5.02.5.3 Adsorption-Desorption Equilibria,1H NMR as a Quantitative Technique

5.02.5.3.1 Quantitative NMR

5.02.5.3.2 Observing adsorption-desorption equilibria by NMR

5.02.5.3.3 Understanding the adsorption isotherm

5.02.5.4 Adsorption-Desorption Kinetics,Exploiting the NOE

5.02.5.4.1 Dodecylamine stabilized Q-CdTe,does the tightly bound ligand model work?

5.02.5.4.2 Observed NMR resonances,a story of timescales

5.02.5.4.3 Tightly bound ligands have strongly negative NOEs

5.02.5.4.4 Rapidly exchanging ligands show strongly negative transfer NoEs

5.02.5.5 In Situ Monitoring of NP Synthesis

References

5.03 纳米粒子组装

5.03.1 Introduction

5.03.2 Assembly Methods for 1D NPs

5.03.2.1 Assembly of NPs for Nanorod and Nanowire Formation

5.03.2.2 Assembly of 1D NPs on Polymer Templates

5.03.3 Assembly of NPs to Form 2D Nanocomposites

5.03.4 Biomolecules as Templates for Assembling NPs in 1D and 2D Architectures

5.03.5 Modulation of the Properties of 1D and 2D Structures

5.03.5.1 Optical Response

5.03.5.2 Electronic Behavior

5.03.5.3 Magnetic Properties

5.03.6 Summary and Outlook

References

5.04 周期的介孔材料:充满机遇的孔道

5.04.1 Introduction

5.04.2 Hierarchical Organization of Mesoporous Materials

5.04.2.1 Self-Assembly of Sol-Gel Precursors and Templates-From Micro to Meso

5.04.2.2 Growing Complexity:Powder,Films,and the Importance of Form

5.04.3 Bringing Function into Voids

5.04.3.1 Grafting

5.04.3.2 Co-Condensation

5.04.3.3 Periodic Mesoporous Organosilicates

5.04.4 Nonsiliceous Mesoporous Materials

5.04.4.1 Mesoporous Metal Oxides and Phosphates

5.04.4.1.1 Synthesis strategies and objectives

5.04.4.1.2 Realized compositions

5.04.4.1.3 Perspectives I:Toward crystallized mesoporous oxides

5.04.4.1.4 Perspectives II:Form and function

5.04.4.2 Mesoporous Metals and Semiconductors

5.04.4.2.1 Mesoporous semiconductors

5.04.4.2.2 Mesoporous metals

5.04.4.3 Mesoporous Carbon

5.04.4.3.1 OMCs obtained by hard templating

5.04.4.3.2 OMCs obtained by soft templating

5.04.4.4 Mesoporous Ceramic Materials

5.04.4.4.1 Silicon-based mesoporous ceramics

5.04.4.4.2 Mesoporous carbon and boron-based ceramics

5.04.5 Mesoscience to Mesotechnology-Why Meso?

5.04.5.1 Sorbents and Separation Science

5.04.5.2 Catalysis

5.04.5.3 Drug Delivery

5.04.5.4 Sensing

5.04.5.5 Low-k Materials

5.04.5.6 Photovoltaics

5.04.6 Conclusion and Outlook

References

5.05 单层自组装

5.05.1 Molecular Self-Assembly and Nanoscience

5.05.2 Driving Forces for Molecular Assembly:Molecular Interactions in Self-Assembled Monolayers

5.05.3 Overview of Previous Studies of Molecular Self-Assembled Monolayers

5.05.4 Brief Summary of Synthetic Methods of 2D Self-Assembled Monolayers and the Main Techniques to Study them

5.05.5 Molecular Self-Assembly on Au(111

5.05.5.1 CH3(CH2)nSH

5.05.5.2 CH3(CH2)nCS2H

5.05.5.3 C6H5(CH2)nSH

5.05.5.4 CH3-(C6H4)2-(CH2)n-SH

5.05.5.5 CF3(CH2)nSH

5.05.5.6 Diamidothiol

5.05.6 Organic Monolayers on Ag(111

5.05.7 Self-assembly of Organic Molecules on Cu,Al,Hg,Al2O3,and SiOx/Si Substrates

5.05.8 Molecular Self-Assembly on Highly Oriented Pyrolytic Graphite

5.05.8.1 Single-Component Long-Chain Molecules:Linear Packing and Molecular Distortion

5.05.8.1.1 Molecular parallel packing

5.05.8.1.2 Molecular distortion

5.05.8.2 Multicomponent Self-Assembly and Formation of Nanostructures

5.05.8.3 Molecular Chirality upon Self-Assembly

5.05.9 Summary

References

5.06 纳米晶体合成

5.06.1 Introduction

5.06.1.1 Milestones of Progress in Nanocrystal Synthesis

5.06.1.2 Synthetic Methods

5.06.1.2.1 High-temperature organo-metallic method

5.06.1.2.2 Single-source molecular precursor method

5.06.1.2.3 Solvothermal/hydrothermal method

5.06.1.2.4 Water-phase synthesis

5.06.1.2.5 Template-assisted growth methods

5.06.1.2.6 Synthesis of semiconductor nanocrystals in microfluidic reactors

5.06.2 Size Tuneability of Nanocrystals

5.06.2.1 Introduction

5.06.2.2 Mechanisms of Size Control

5.06.2.2.1 Nucleation and growth of nanocrystal

5.06.2.2.2 Concepts in size control

5.06.3 Shape,Phase,and Composition Control of Nanocrystals

5.06.3.1 Shape Control of Nanocrystals

5.06.3.1.1 Dynamic-induced anisotropic growth

5.06.3.1.2 Seed-mediated growth

5.06.3.1.3 The Oriented attached method

5.06.3.2 Composition Control

5.06.4 Overview of the Nanocrystal Synthesis by Material

5.06.4.1 II-VI Semiconductor Nanocrystals

5.06.4.2 III-V Semiconductor Nanocrystals

5.06.4.3 IV-VI Semiconductor Nanocrystals

5.06.4.4 IV Semiconductor Nanocrystals

5.06.4.5 III-VI and I-III-V Nanocrystals

5.06.4.6 Metal Oxides

5.06.4.6.1 Sol-gel method

5.06.4.6.2 Nonhydrolytic route

5.06.5 New-Generation Semiconductor Nanocrystals

5.06.5.1 Nanocrystal Heterostructures

5.06.5.1.1 Synthetic techniques for the preparation of nanocrystal heterostructures

5.06.5.1.2 Synthesis of 0D core-shell Nanocrystal heterostructures

5.06.5.1.3 Synthesis of anisotropic and more complex nanocrystal heterostructures

5.06.5.2 Doped Nanocrystals

5.06.5.2.1 Synthesis of doped nanocrystals

5.06.6 Summary

References

5.07 纳米粒子自组装基元

5.07.1 Introduction

5.07.1.1 Self-Assembly Principle

5.07.1.2 NBB Classification

5.07.2 NBB Self-Assembly Approaches

5.07.2.1 Self-Assembly on a Substrate

5.07.2.2 Interfacial Assembly

5.07.2.3 Template-Assisted Assembly

5.07.3 Self-Assembly of Complex-Shaped NBBs:Tetrapods

5.07.4 Computational Approach to Nanoparticle Self-Assembly

5.07.4.1 Computational Framework for Nanoparticle Self-Assembly

5.07.4.2 Computational Studies on the Self-Assembly of NBBs on a Substrate

5.07.4.3 Computational Studies on the Interfacial Assembly of NBBs

5.07.4.4 Computational Studies on NBB Self-Assembly on a Templated Surface

5.07.4.5 A Proposed Approach for Modeling Tetrapod Self-Assembly

5.07.5 Summary

References

5.08 组装嵌段共聚物的化学过程

5.08.1 Introduction

5.08.2 Work Prior to 1992 on Chemical Processing of Self-Assembled Block Copolymers

5.08.3 Our Research Program and Activities

5.08.4 Architectures from Chemically Processing Assembled Block Copolymers

5.08.4.1 Cyclic Polymers

5.08.4.2 Thin Films Containing Nanochannels

5.08.4.3 Cell-Like Microspheres

5.08.5 Block Copolymer Nanofibers and Nanotubes

5.08.5.1 Nanofiber Preparation

5.08.5.2 Nanotube Preparation

5.08.5.3 Dilute Solution Properties

5.08.5.4 Chemical Reactions

5.08.5.4.1 Backbone modification

5.08.5.4.2 Surface grafting

5.08.5.4.3 End functionalization

5.08.6 Concluding Remarks

References

5.09 生物模版制备半导体纳米晶体

5.09.1 Introduction

5.09.2 Living Cells as Semiconductor Nanocrystal Factories

5.09.3 Peptides and Proteins as Templates for Semiconductor-Based Nanomaterials

5.09.4 Nucleic Acids as Templates for Semiconductor-Based Nanomaterials

5.09.4.1 Monomeric Nucleotides as Semiconductor Nanocrystal Ligands:Roles of Base and Backbone

5.09.4.2 Oligomeric Nucleotides as Semiconductor Nanocrystal Ligands:Roles of Length and Sequence

5.09.4.3 Studies of Nucleic Acids with 3D Structure as Semiconductor Nanocrys

在线预览

5.01 Porous Metal-Organic Frameworks

Q Fang, J Sculley, and H-C J Zhou, Texas A&M University, College Station, TX, USA G Zhu, Jilin University, Changchun, P.R. China a 2011 Elsevier B.V. All rights reserved.

5.01.1 Introduction 1 5.01.2 Inorganic SBUs and Organic Linkers 2 5.01.3 Architecture of the Networks 2 5.01.4 Porous Structures 3 5.01.4.1 0D Cage 3 5.01.4.2 1D Channels 3 5.01.4.3 2D Layers 4 5.01.4.4 3D Channels 5 5.01.5 Synthesis of MOFs 5 5.01.5.1 Influencing Factors 5 5.01.5.2 Solvent-Evaporation Synthesis 5 5.01.5.3 Diffusion Synthesis 5 5.01.5.4 Hydrothermal (or Solvothermal) Synthesis 6 5.01.5.5 Microwave-Reaction Synthesis 6 5.01.5.6 Ionothermal Synthesis 6 5.01.5.7 Electrochemical Synthesis 6 5.01.5.8 High-Throughput Synthesis 6 5.01.6 Functions of MOFs 7 5.01.6.1 Gas Storage 7 5.01.6.1.1 Hydrogen Storage 7 5.01.6.1.2 Methane Storage 8 5.01.6.1.3 Carbon Dioxide Storage 8 5.01.6.2 Selective Gas Adsorptions and Separations 10 5.01.6.3 Catalysis 11 5.01.6.4 Magnetism 13 5.01.6.5 Optics 13 5.01.6.6 Sensor 14 5.01.6.7 Drug Delivery 15 5.01.7 Summary and Outlook 15 References 16

5.01.1 Introduction

Porousmaterials,eithernaturalorartificial,havelongattractedtheattentionofchemists,physicists,andmate-rialsscientists,muchofthisinterestowingtothepotentialpropertiesoflargepores.Basedontheircom-position,theseporousmaterialscanbeclassifiedastwotypes:inorganicandcarbon-basedmaterials[1-5].

Recently,anewclassofporousmaterials,metal-organicframeworks(MOFs,alsoreferredtoaspor-ouscoordinationpolymers(PCPs)),hasundergonerapiddevelopmentandbeguntobridgethegap

betweenthetwopreviouslymentionedclassesofporousmaterials[6-26].MOFsarebuiltupofmetalionsormetalionclustersconnectedtoorganicligandspossessingmultidentategroupsbystrongionocovalentordativebonds.ThereareexamplesofMOFscontainingmetalsrangingfromalkalineearthtotransitiontop-blockmetalsandlanthanides.MOFsattractedagreatdealofattentioninthe1990s,asisapparentfromtheremarkableincreaseinthenumberofpaperspublishedinthisareaduringthistime.TheattentionstemsfromthesynthesisofMOFs,whichcanexhibitcompletelyregularlarge

a) (b

Figure 1 View of the structures of (a) MOF-5 and (b) HKUST-1.

cavitiesand/oropenchannels.TopicalexamplesareHKUST-1andMOF-5,whichresultinlargeporesizesandBrunauer,Emmett,andTeller(BET)sur-faceareasof1800and3800m2 g 1 respectively(Figure1)[21,24].Theatomsthatcomposethewallsoftheseporescreateanastonishinglylargesurfaceareaonwhichinteractionsandreactionscanoccur.ThesynthesisofsuchMOFsoccursundermildconditionsandtheselectionofacertaincombi-nationofdiscretemolecularunitsleadstothedesiredextendednetwork.Asalreadymentioned,researchintoMOFsisgainingmomentumbecauseMOFspossesstheadvantagesofbothorganicandinorganicmaterialsincludingfunctionalgroupsandopen-metalsites[27].ThesefeaturesofMOFsgiverisetoagreatnumberofpotentialandrealizedapplica-tions,suchasgasseparationsandstorage,catalysis,drugdelivery,aswellasnewfunctionalmaterialsbasedonpost-syntheticmodification[28-33].

MOFshavegreatlyexpandedthescopeofporousmaterials,eventhoughtheyarelargelyrestrictedtothemicroporousdomain(poreslessthan2nm).Recently,somemesoporousMOFswithporesizesrangingfrom2to50nmhavebeenreported.ThesecompoundsexpandthepotentialapplicationsofMOFsintoareassuchasmacromolecularcatalysisandseparation[34-44].Forexample,Yaghietal.preparedthefirst(3D)mesoporousMOF,isoreticularmetal-organicframe-work(IRMOF)-16,bysuccessfullyusingalonglinker,[1,19:49,10-terphenyl]-4,40-dicarboxylate(TPDC)[34].ThisMOFhastheexpectedtopologyofCaB6adaptedbytheprototypeIRMOF-1(alsodesignatedasMOF-5)inwhichanoxide-centeredZn4Otetrahedronisedge-bridgedbysixcarboxylategroupstogivetheoctahedron-shapedsecondarybuildingunit(SBU)thatreticulatesintoa3Dcubicporousnetwork.Inthisstructure,thefree-andfixed-diametervaluesare19.1and28.8A. ,respectively.

5.01.2 Inorganic SBUs and Organic Linkers

Inadditiontothetwocentralcomponentswithwhichtheprincipalframeworkisconstructed,metalionsandligands,thereareauxiliarycomponents,suchascounteranions,nonbondingguests,andtemplatemolecules,whichmayallinfluencethefinalstructure.DuetothecomplexanddynamicconditionsunderwhichMOFsaresynthesized,itisdifficulttopredicttheresultingstructureofaMOFbasedsolelyonthestartingmaterialsandconditions.

Theimportantcharacteristicsofmetalionsandligandsaretheircoordinationnumbersandcoordinationgeometries.Asmetalcentershavetoomanybindingsitesfortheorganicligandsandcontainlittledirectionalinformation,itisdifficulttopredictthestructuresthatwillresultfromanycombinationofsimplemetalsaltsandorganiclinkers.Recently,YaghiandcoworkershavedefinedmetalcentersofMOFsasSBUsandillustratedthepossibleinorganicSBUs(Figure2).ThedesignofMOFsbasedontheseinorganicSBUsfacilitatesframe-worksynthesis[13].Themostcommonlinkersaremultidentateorganicligandssuchascarboxylates,4,49-bipyridine,andimidazolederivatives.Theseorganiclinkersaffordawidevarietyoflinkingsiteswithtunedbindingstrengthanddirectionality.Theseligandscanbeselectedforthenodesinthetargetnetworkandtheycanbealsosynthesizedandmodifiedbyorganicsynthesis.

5.01.3 Architecture of the Networks

Figure3showssomesimplearchitecturesofthenet-worksassembledfrommetalionsandorganicligands[11].However,morecomplicated3Dframeworkscanbeobtainedbymimickingthetopologiesofthetradi-tionalinorganicsolids[25,26].Theapproachisbased

Inorganic units SBUs Inorganic units SBUs

a

b

c

Figure 2 Examples of inorganic SBUs: (a) triangle, (b) square planar, (c) tetrahedron, (d) octahedron, and (e) trigonal prism. Reprinted by permission from Macmillan Publishers Ltd: Nature (Yaghi OM, O`Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, and Kim J (2003) Reticular synthesis and the design of new materials. Nature 423: 705-714), Copyright (2003).

a) (b) (c) (d) (e) (f

Figure3Schematicrepresentationsofsomeofthesimplenetworkarchitectures:(a)2Dhoneycomb,(b)1Dladder,

c) 3Doctahedral,(d)3Dhexagonaldiamondoid,(e)2Dsquaregrid,and(f)1Dzigzagchain.ReproducedfromMoultonBandZaworotkoMJ(2001)Frommoleculestocrystalengineering:Supramolecularisomerismandpolymorphisminnetworksolids.

Chemical Reviews 101: 1629-1658.

ontheideaofnets,whicharetheabstractmathema-ticalentitiesincludingacollectionofpointsornodeswithdefinedconnectivity[45].Yaghietal.haveexplainedthetopologyoftheorderednetworksbysimplifyingthemathematicalexpressions[25].WhenallverticesarelinkedtoNneighbors,thetopologyisreferredtoasanN-connectednet.Whensomever-ticesareconnectedtoNneighborsandsometoMneighbors,itisa(N,M)-connectednet.Figure4showsexamplesoftopologicalnets.

5.01.4 Porous Structures

5.01.4.1 0D Cage

MOFswith(0D)cagesareframeworkswhicharetoosmalltopermittheguestmoleculestopassthroughandmaybedefinedaseithersolidswithoutwindowsorsolidswithnarrowwindows.Forinstance,Robsonetal.reportedaninterpenetrated3Dnetwork[Zn(CN)(NO3)(tpt)2/3]?(C2H2Cl4)3/4?(CH3OH)3/4(tpt.2,4,6-tri(4-pyridyl)-1,3,5-triazine)thatprovidesabarrierimpenetrabletoeventhesmallestmolecules,whicheffectivelyisolateseachporefromitsneighborsandfromtheoutsidespace[46].Inthisstructure,eachcageiswideopenandcanaccommodateapproximatelynine1,1,2,2-tetrachloroethanemoleculesandninemethanolmolecules,allofwhicharehighlydisordered.ThedistanceacrosstheinnershellofthecagefromoneZn4squaretotheoppositeandparallelZn4squareis23.448(4)A. . However, due to narrow windows, guest molecules are unable to pass out of these cages.

5.01.4.2 1D Channels

AccordingtotheInternationalUnionofPureandAppliedChemistry(IUPAC)definition,aporethatisinfinitelyextendedinonedimensionandislargeenoughtoallowguestspeciestodiffusealongitslengthiscalledachannel[47].SeveralMOFswithregular1Dchannelshavebeensynthesizedandcrystallographi-callycharacterized.Forexample,Qiuetal.describedthesynthesisandstructureofamesoporousMOF,JUC-48,fromarigidandlinearorganicO-donorligand,4,49-biphenyldicarboxylate(bpdc)[36].InthisMOF,Cd(II)centersarelinkedtogetherbycarboxylategroupsofbpdctoconstruct1DCd-O-Cchainsthatareinter-connectedthroughthebiphenylgroupsofbpdcto

Figure4Examplesoftopologicalnets:(a)SrSi2net,(b)ThSi2net,(c)diamondnet,(d)CdSO4net,(e)NbOnet,(f)PtS(cooperite)net,(g)Pt3O4net(filledcirclesarePt),(h)boracitenet,(i)BNnet,(j)BCTnet,(k)body-centeredcubicnet,and(l)ReO3arrangementofcorner-sharingoctahedral.ReproducedfromO`KeeffeM,EddaoudiM,LiHL,ReinekeT,andYaghiOM(2000)Frameworksforextendedsolids:Geometricaldesignprinciples.JournalofSolidStateChemistry152:3-20,withpermissionfromElsevier.

a) (b

Figure 5 Representation of a hexagonal nanotube-like channel of JUC-48 of dimensions 24.5 . 27.9A. 2 viewed along the (a

[001] and(b)[100]directions.ReprintedfromFangQR,ZhuGS,JinZ,etal.(2007)Mesoporousmetal-organicframeworkwithrareetbtopologyforhydrogenstorageanddyeassembly.AngewandteChemieInternationalEdition46:6638-6642.Copyright2007AmericanChemicalSociety.

generatea3Dnoninterpenetratingextendednetworkincorporatedbetweenthelayers.Kitagawaetal.havewith1Dhexagonalchannelsof24.527.9A. 2 viewedsynthesizedaseriesoflayeredintercalationMOFs,alongthe[001]direction(Figure5).Eachhexagonal[M(CA)(H2O)2](G)(M.Fe2t,Co2t,orMn2t; channel of JUC-48 can be viewed as a nanotube-like H2CA . chloranilic acid; G . H2Oorphenazine),architecture.whicharesupportedbyhydrogen-bondinginter-

actions[48].Thehostlayersareclassifiedintotwo

groups:thefirsttypeofsheetisformedbyzigzag

5.01.4.3 2D Layers

chains,andthesecondoneisconstructedfromWhilethereareseveralMOFswith2Dlayers,fewstraightchains.Inthisstructure,themolecularhavebeenreportedinwhichseveralguestscanbeassembliesofmetal(II)-CA2chainsandguestmoleculesrevealthreekeyfactorsthatcontrolthecrystalstructures.Thefirstfactoristheconstructionofahydrogen-bond-supported2Dsheet,whichisflexibleandamenabletointercalationofvariouskindsofmoleculesusingthehydrogen-bondinginteraction.Thesecondaspectisthattheintercalatedguestmoleculesaffectthesheetstructureanditsdynamics.Thehydrogenbondingincreasesthedimensionalityofthesystemandthusprovidesstruc-turalvarietiesinthecrystalstructure.Thethirdfeaturecontrollingthecrystalstructureistheselec-tionofthemetalthatmediatesthefine-tuningofthesheet`sstructureandthecon

网友评论(不代表本站观点)

来自章鱼宝**的评论:

这个商品不错~

2014-02-25 21:05:28
来自大黑鱼/**的评论:

挺好的,需要细看,价格厚道

2015-12-12 17:39:12
来自无昵称**的评论:

好书

2016-12-30 20:04:56
登录后即可发表评论

免责声明

更多相关图书
在线咨询