欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

卫星通信论文实用13篇

卫星通信论文
卫星通信论文篇1

1.1.2地面段地面段包括所有的地球站,这些地球站通常通过一个地面网络连接到终端用户设备,或直接连接终端用户设备。地球站的主要功能是将发射的信号传送到卫星,再从卫星接收信号。地球站根据服务类型,大致可分为用户站、关口站和服务站3类。

1.2卫星通信系统的工作过程卫星通信系统地球站中各个已调载波的发射或接收通路经过卫星转发器转发,可以组成多条单跳或双跳的双工或单工卫星通信线路,整个通信系统的通信任务就是分别利用这些线路来实现的。单跳单工的卫星通信系统进行通信时,地面用户发出的基带信号经过地面通信网络传送到地球站。在地球站,通信设备对基带信号进行处理使其成为已调射频载波后发送到卫星。卫星作为中继站,接收此系统中所有地球站用上行频率发来的已调射频载波,然后进行放大和变频,用下行频率发送到接收地球站。接收地球站对接收到的已调射频载波进行处理,解调出基带信号,再通过地面网络传送给用户。为了避免上下行信号互相干扰,上下行频率一般使用不同的频谱,尽量保持足够大的间隔,以增加收发信号的隔离度。

2卫星通信所使用的频率

卫星通信所用的频率大多是C频段和Ku频段,但是由于业务量急剧增加,这两个频段乃至1—10GHz的频段都显得过于拥挤,所以必须开发更高的频段。现已开发出Ka(26—40GHz)频段,其带宽是3—4GHz,远大于上述两个频段。

3卫星通信的基本参数

3.1有效全向辐射功率:也称等效全向辐射功率,其定义为发射机发出的功率与天线增益的乘积。

3.2噪声系数和等效噪声温度:噪声系数,定义为接收机的输入信噪比与输出信噪比的比值,它用来表示接收机噪声性能的好坏。根据噪声理论,电子元器件内部的电子热运动和电子不规则的运动都将产生噪声,而且温度越高,噪声越大。所以接收机的噪声可用等效噪声温度来衡量。等效噪声温度是假设接收机输入端接一等效电阻,该电阻在一定温度下与该系统实际产生的噪声温度相同的热噪声。

3.3载噪比:卫星通信线路中的载波功率与噪声功率之比,是决定卫星通信线路性能的最基本的参数之一。

3.4地球站的品质因数,定义为接收机天线增益与接收端系统噪声温度之比。

3.5卫星转发器饱和通量密度:表示卫星转发器的灵敏度,其基本含义是,为使卫星转发器单载波饱和工作,在其接收天线的单位面积上应输入的功率。

3.6门限载噪比:为保证用户接收到的话音、图像和数据的质量达到一定要求,接收机所必须得到的最低载噪比,也是门限载噪比的含义。

4卫星通信与互联网

互联网是全球最大的多媒体商用网络、信息库和数字媒体。互联网和数字技术的发展使得所有信息内容都在网上实现,特别是数字音视频技术使得可以在互联网上看电视听广播[3]。由于卫星通信具有三维无缝覆盖能力、远程通信、广播特性、按需分配带宽,以及支持移动性的能力,成为互联网摆脱自身诸多问题的一个重要途径,也是向全球用户提供宽带综合互联网业务的最佳选择[4]。基于卫星的互联网是卫星直播、数字音视频、互联网的有机结合,作为一个开放、宽频、实时广播的网络平台,可以提供以下服务。

4.1宽带互联网接入,可根据使用者的需求,通过地面网络和卫星线路回传。

4.2多媒体服务,比如网页内容投递、内容镜像、缓存、数字电视、商务电视、流式音视频、软件分发(更新)、远程教学、信息商亭等。

4.3交互式应用,如视频点播、网上学习、网上游戏等。卫星通信与互联网结合能够带来很多益处,同时也应注意到,卫星系统和现有互联网地面基础设施之间的结合存在着互操作性问题,再设计和实现基于卫星的互联网时还存在许多技术挑战。

5卫星通信与导航定位系统

该系统是以人造卫星为导航台的星基无线定位系统,其基本作用是向各类用户和运动平台实时提供准确、连续的位置、速度和时间信息。目前该技术已基本取代无线电导航、天文测量和大地测量,成为普遍采用的导航定位技术。拥有此技术及能力,国家就会在政治、军事和经济等诸多领域占据主导地位,因此世界各大国不惜花巨资发展这一技术。1958年美国为解决北极星核潜艇在深海航行和执行任务中的精确定位问题,开始研究军用导航卫星,命名为“子午仪计划”,从1960年起就取消了无线电导航,第二代导航系统即———GPS(GlobalPositioningSyitem)便应运而生。俄罗斯的GLONASS(GlobalNavigationSatelliteSystem)是继GPS之后又一全球卫星导航系统,欧盟与欧空局也开发了新一代卫星导航系统———伽利略(Galileo)系统,习惯上称其为3G(GPSGLONASSGalileo)系统。我国的导航定位技术始于GPS,从2000年10月开始,我国发射了多颗导航卫星,命名为北斗卫星导航系统,现已覆盖我国及周边地区,预计2020年前后覆盖全球。

6卫星与激光通信

卫星与激光通信是利用激光光束作为信息载体在卫星间或卫星与地面间进行通信。经过多年探索,卫星激光通信已取得突破性进展,逐步成为开发太空、利用广阔的宇宙空间资源提供大容量、高数据率、低功耗通信的最佳方案,对于国防及商业应用都具有极大的价值。其原理是信息电信号通过调制加载在光波上,通信双方通过初定位和调整以及光束的捕获、瞄准和跟踪建立起光通信链路,然后在真空和大气中传播信息。其组成有激光光源子系统、光发射/接收子系统、APT子系统和其他一些辅助系统,其工作过程如下:

6.1发射过程。使用不同的激光器,产生信号光和信标光。经准直系统对激光进行光束准直后,具备了合适的发射角,2束光由合束器合成1束光,然后经分光片、精对准机构和天线发射出去。

6.2接收过程。接收到的光经过天线和分光片后,信标光一部分到达粗对准探测器,由粗对准控制器控制和驱动电路控制粗对准机构,完成粗对准和捕获;信标光另一部分经精对准机构、分光片、分束片到达精跟中踪探测器,由精对准控制器控制精对准机构,完成双方的精确对准和跟踪。信号光由信号光探测器检测。

7卫星与量子通信

卫星搭载量子通信技术,能够使人们借助外太空的卫星平台,建立星地高效自由空间量子信道,实现量子保密通信、星地量子纠缠分发、量子隐形传态实验。我国拟在近期发射量子通信卫星,在卫星平台应用量子技术的能力将达到世界领先水平。

7.1星地量子通信通过自动跟踪瞄准系统在高速相对运动的地面站和卫星终端之间建立高效稳定的量子信道,地面站随机发送H/V和+/-四种偏振状态的单光子信号;接收端接收量子信号,并随机选择H/V或+/-基矢对单光子信号进行测量;测量到足够的量子比特后,接收端将通过经典信道通知发射端其每次测量所用的基矢,抛弃所用基矢不一致的测量结果;接收端再将基矢选择一致的测量结果取一部分在经典信道公布出来供发射端校验。通过这一过程就可以在星地之间建立安全的量子密钥。

7.2星地纠缠分发将纠缠光源放在卫星上,通过搭载在卫星平台上的望远镜系统和自动跟瞄系统同时与两个地面站之间建立量子信道。将纠缠光子对的两个光子分别发送给两个地面站,两站在满足类空间隔条件下分别对纠缠光子对进行独立测量,观测量子纠缠现象。

卫星通信论文篇2

战略与基础设施模块垂直过程分为战略和基础设施生命周期管理两个垂直过程分组,如图3所示。战略指出了为开发和实现某个特定市场战略所需的资源建设重点任务,基础设施生存期管理过程驱动和支持为客户提品。它们的重点是满足客户对商务的期望,包括为客户提供的产品或服务、支持运营服务的基础设施,或者在企业为客户提品的过程中涉及的供应商或合作伙伴。(1)战略。该过程负责制定支持产品服务和基础设施的战略,还负责在企业内为实现这些战略而建立的规划方案的落实实施。它覆盖了市场、客户、产品服务和资源各种层次的运营,通过所基于的服务和资源及涉及到的供应商/合作伙伴来满足客户需求。战略高度重视分析研究,其给出企业内专门的业务战略和业务购入策略的侧重点,战略实现的成功与否需要进行有效性跟踪,并且在必要时做相应的调整。(2)基础设施生命周期管理。基础设施生命周期管理负责对基础设施的性能进行评估,并确定新的基础设施或新服务引进开发和建设部署,从而为满足市场和客户需求的运营服务提供支撑。因此,基础设施生命周期管理对客户需求响应和提供企业竞争力具有重要的意义。

3战略与基础设施模块水平过程分组细化设计

与运营和服务模块的四个水平分组相对应,战略与基础设施模块也有四个水平的功能过程分组:营销和定价、业务规划和建设、资源规划和建设、供应链开发和管理。这四个水平的功能过程分组为战略与基础设施模块的垂直过程分组提供支持。如图4所示。(1)营销和定价。该部分包含制定和实施营销和定价策略、开发新的服务和产品、管理已有的产品等所有必须的功能。在竞争越来越激烈的卫星运营市场,革新的速度和品牌的认同决定了企业的成功,因此营销和定价管理是很重要的业务过程。(2)业务规划和建设。为运营过程提供支持,强调业务的计划、开发和交付。它包括制定业务生成和设计的策略;管理和评估现有业务的性能、确保有相应的能力以满足未来业务发展的需要。(3)资源规划和建设。为运营过程提供支持,强调卫星资源等基础设施的规划、建造和交付。主要包括卫星资源建造、知识共享库建设和基础设施配套互联互通,管理和评估现有资源的性能,确保拥有可满足未来业务发展需要的资源能力。(4)供应链开发和管理。强调企业与供应商及合作伙伴的交互,负责建立和维护企业与供应商及合作伙伴之间的所有信息流和资金流,确保企业能够选择最好的供应商和合作伙伴;确保企业有相应的能力与它的供应商和合作伙伴进行交互;确保供应商和合作伙伴能够及时地交付所需要的产品,并且供应商和合作伙伴对企业的整体的性能和贡献优于垂直集成的企业。

4企业管理模块分组细化设计

企业管理模块是为完成卫星通信企业所进行的任何商业运行所必须的基本的业务过程,我们将卫星运营企业管理划分为若干功能部分,主要包括企业发展规划,品牌管理、市场调研和广告,财务和资产管理,人力资源管理、利益相关者和外部关系管理,企业质量管理、流程、IT规划和架构,知识管理和党群纪检管理,如图5所示。

5卫星通信业务基本框架的系统集成

卫星通信业务基本框架通过自顶向下和分层分级分解方法,描述了整个卫星通信业务运行过程,涵盖了卫星通信企业的完整业务链,包括卫星基础设施、运营服务、卫星建造商、卫星应用供应商和合作伙伴等部分,形成了一个全方位的卫星通信业务框架模型,如图6所示。同时,我们可通过分层分级分解方法,根据任务需要,对卫星通信业务基础框架模型各个过程开展更进一步细化和发展,形成更为详细的卫星通信业务基本框架第二层级视图,如图7所示。此外,在基础框架的一、二级视图基础上,我们可以进一步细化和描述业务关键环节,很简便的绘制出各关键环节的直观流程图。综合以上研究成果,我们认为,卫星通信业务基本框架提供了一个企业内部整体活动图景的全方位描述,可结合运用钱学森综合集成思想,以基本框架为指导,利用信息网络技术,以人机集合的方式,开展卫星通信业务的运营管理平台建设、企业知识共享库建设、流程重组、机构优化调整等现实工作,助力企业实现运营管理的流程化和智能化,进一步提高运营效益和服务水平。本文所建立的卫星通信业务基本框架强调以客户为中心,面向外部客户提供业务交付。可为卫星通信企业的高层决策者提供了一个便利的评估工具,可以用于评估、指导整个企业的业务活动,使得企业中的所有组织都能够识别企业职责范围内的重要生产管理过程;为卫星通信运营服务的规范标准化、流程化、高效化服务提供思路;并能够以一种低成本高效率的方式实现企业自动化,增强服务提供商的企业管理能力,为企业提质增效打下坚实的基础。卫星通信业务基本框架的主要优点和功能还体现在:一是在战略方面体现了对卫星和其他软硬件基础设施资源的全生命周期管理和一体化管理的理念。二是在运营方面体现了面向客户关系管理、对客户提供端到端的快速的服务交付和营销理念。三是在企业管理流程方面明确标识了企业管理流程,把企业管理流程和运营、战略作为一个整体,以便企业中的每个人都能够确定其关键流程,从而使整个企业在流程框架中高效运行。

卫星通信论文篇3

不同辐射源对CTE的影响

空间环境中存在的可能对CCDCTE造成影响的粒子主要包括质子、电子、中子、x射线、γ射线以及各种重离子。x射线和γ射线主要造成CCD器件的电离损伤效应,对CTE影响较大的有质子、中子、电子等高能粒子。Norbert等人选取质子和中子作为辐射源,对XMM系统中工作于深耗尽状态的PN结CCD进行了空间辐射特性测量,测量结果如图8所示[13]。从图中可以看出,CCD的CTI特性具有较强的温度依赖性,并且在120K左右出现了CTI的极大值点,这对应着CCD的一个典型体缺陷,即A中心(或者叫氧空位缺陷),其对应的缺陷能级距离导带约0.17eV;CTI的量级较地面实验要小得多,这主要是因为空间中的粒子注量比实验中要小得多,并且在轨运行中的CCD器件增加了屏蔽层,大大提高了CCD的抗辐射性能;电子较质子对CCD造成了更大的位移损伤,其CTI较质子高约一个量级左右。由此可见,不同的辐射源可以对CCD的电荷转移效率造成不同的影响。

不同沟道CCD对CTE的影响

卫星通信论文篇4

查找表法是通过建立查找表来离散地描述功放的反向特性,传统的基于查找表法的预失真实现过程如下:1)测试功放的输入/输出信号,获取功放的即时非线性特性;2)找出功放的理想增益,即功放在线性区工作时的最大增益;3)将功放的输入特性/输出特性反转,由此生成查找表,为每一个输入信号提供一个相应的预失真信号。建立查找表之后,须考虑查找表的量化误差问题。由于查找表的表项是有限的,查找表输入端信号量化时,必然会引起误差,此时,采用不同的索引技术会对预失真性能产生不同的影响。作为查找表法的核心,查找表地址索引技术阐释了如何有效地从查找表中找到有用的补偿数据。查找表预失真的内部结构如图2所示,表示输入信号的幅度,Q模块为量化器。查找表的地址索引方法包括均匀量化法和非均匀量化法。均匀量化是以输入信号的幅度为指针,均匀分配其整个变化域以生成查找表。功率法是最常见的均匀量化手段,其把输入信号功率作为指针,在变化域内均匀量化。但对小信号而言,功率法表项分布稀疏,量化间隔较大,引起的误差和失真也很大,因此,该方法不适用于小信号较多的功放预失真系统。传统的查找表法仅根据输入信号幅度,找出表中最接近该幅度值的一项,该项对应的输出值即为相应预失真信号的输出值,不过此方法存在量化误差。采用插值技术可在一定程度上改善系统的量化误差,线性插值法是最简单常用的插值方法。均匀索引的实现过程比较简单,但存在2个重要问题:输入信号的统计特性和各区间信号的非线性程度。常见的非均匀索引有功率索引、最优法索引及μ率法索引等。这些方法虽考虑了信号各区间非线性程度的不同,但却忽视了输入信号的统计特性。由此可知,查找表建立简单,实现容易,但是也存在缺点:1)存在量化效应;2)精度要求越高,对查找表的尺寸要求越高,即表项越多,意味着速度性能会下降;3)不能补偿功放的记忆效应;4)自适应能力较差。为了尽可能减小这些问题对预失真器性能的影响,文献[2-3]对无记忆预失真器进行了改进,分别构造二维查找表和分段预均衡器。但当功放记忆效应较强时,二维查找表的线性化效果不太理想。另外,可根据信号的特性,制定相应的改进查找表法,文献[4]提出了一种改进查找表法,该算法根据OFDM(OrthogonalFrequencyDivisionMultiple-xing,正交频分复用)信号的分布特性,对出现概率较小的大幅值信号增加迭代次数,提高了查找表法的收敛速度。

1.2多项式法

由于查找表法结构简单、易实现,早期多采用该方法对功放进行预失真处理,但其预失真性能的优劣取决于表项的多少,性能改善越好,所需表项越多,相应地,所需的存储空间也就越大,查找表项的数据和更新表项所需时间、计算量也就越大,因此,对情况复杂的系统,该方法不可取。非线性函数法是常用的预失真方法,其将输出信号的采样值与输入信号一一对应起来,用非线性函数把输入和输出信号进行拟合,得到功放的工作函数曲线,由于预失真器的特性与功放特性相反,由功放的非线性函数可得预失真器的非线性工作函数。非线性函数预失真方法已成为近年研究的热点。功放的建模及模型参数的辨识是功放预失真技术的2个重要组成部分。对于功放的建模,常用的无记忆模型包括Saleh模型、Rapp模型和幂级数模型;有记忆模型包括Volterra级数模型、Winner模型、Hammerstein模型和MP(MemoryPolynomial,记忆多项式)模型。分数阶记忆多项式抑制了高阶交调分量,但对强记忆效应的功放预失真性能没有改善;广义记忆多项式明显提升了对强记忆效应的抑制能力,但计算量大,复杂度高。文献[8]在广义记忆多项式的基础上,去掉其滞后部分,降低模型系数数量,去掉偶数阶次,引入分数阶次,提出了一种改进型的广义分数阶记忆多项式模型。仿真表明这种改进模型在系数数量、计算复杂度和线性化能力等方面取得了良好的折中。除上述模型外,增强型Hammerstein模型、EMP(EnvelopeMemoryPolynomial,包络记忆多项式)模型及DDR(DynamicDeviationReduction,动态偏差)模型都是Volterra级数模型的简化形式,这些简化模型可在很大程度上降低计算复杂度。模型建立和模型辨识是记忆多项式预失真的2个重要内容,模型是否合适直接决定预失真方法性能的优劣,如果没有合适的模型,再好的算法也不会取得精确的预失真结果。模型确定之后,选择的模型辨识算法是否得当决定着预失真技术的计算复杂度、收敛速度和性能。系统学习结构很大程度上决定了预失真系统的复杂度,须根据具体情况折中选择学习结构。根据学习器训练方式的不同,可将学习结构分为直接学习结构和间接学习结构,如图3所示。从图3可以看出:直接学习结构简单,是一个完整的闭环,实时性好,且参数不受系统引入噪声的影响[7]。自适应算法得到的权值是否是全局最优值会受到初值的影响,可能不唯一[8]。不同于直接学习结构的逆,间接学习结构采用的是后逆,学习器在训练时,对信号参数的敏感度降低,对实时闭环系统和自适应算法要求不再苛刻,较易于工程实现[9]。预失真训练器的训练过程即预失真模型参数的提取过程,核心是自适应算法不断更新得到的权值最终达到收敛目标值。自适应算法的复杂度和参数提取准确度决定了预失真器的性能及系统实现难易程度。目前参数提取算法大致可分为3类:LS(Least-Squares,最小二乘)算法、LMS(LeastMeanSquare,最小均方)算法和RLS(RecursiveLeastSquares,递归最小二乘)算法。在LMS和RLS的基础上,相继出现了较多的改进算法,比如变步长LMS算法和QR-RLS算法[10-12]。相比查找表预失真,多项式预失真准确度更高、自适应性能更好,但是其计算复杂度却比查找表法高得多,线性化性能优劣也严重受功放模型描述功放特性精确程度的影响。

1.3神经网络法

随着生物仿真学的发展,神经网络算法日益得到人们的广泛关注,引起研究者的探索热情。由于该方法能对功放的非线性特性函数进行拟合,可将其引入预失真器的设计中[13]。神经网络是根据生物学神经元网络的原理建立的,它的自适应系统由许多神经元的简单处理单元组成,所有神经元通过回馈或前向方式相互作用、相互关联。文献[14]首先提出了采用神经网络的方法对功放进行预失真处理。目前最为常用的神经网络是Minsky和Papert所提出的前向神经元网络。神经网络法被广泛应用在函数逼近和模式分类中,文献[15]证明了由任意多个隐层神经元组成的多层前向神经网络可逼近任意连续函数。因此,可利用神经网络来拟合预失真器的工作曲线,且可用改进的反向算法自适应地更新工作函数的系数。文献[16]提出一种单入/单出的神经网络方法,仿真结果表明:该方式能较好地改善三阶、五阶互调分量,与一般的多项式拟合技术相比,其收敛性能和硬件实现都有一定优势。文献[17]提出了一种基于动态神经网络的幅相分离的方法,核心是对卫星信号的幅度和相位进行分离。由于现有的神经网络预失真方法的延时效应较大,文中对网络的系数矩阵进行实时调整,有效减小了计算复杂度,较好地消除了功放非线性和记忆效应,具有较大的实用价值。文献[18-20]也对神经网络法做了相关研究,结果表明:与查找表法和记忆多项式法相比,神经网络有效地提升了功放的预失真精度。目前,在几种参数辨识方法中,神经网络法预失真性能最好,最具有研究价值。

1.4联合查找表和多项式法

在窄带通信系统中,不须考虑功放的记忆效应,但在进行宽带通信时,不可忽略功放的记忆效应,但此时基于查找表法的预失真不能补偿功放的记忆效应,基于记忆多项式的预失真方法可以补偿功放记忆效应。当功放的非线性程度较高时,记忆多项式的预失真性能会有所下降。为解决这个问题,联合使用查找表法和记忆多项式法来补偿功放的非线性和记忆效应。QualidHammi在文献[21]中提出TNTB(TwinNonlinearTwo-Box,双非线性两箱)模型。这种模型由1个MP单元和1个查找表单元构成,按照2个单元位置的不同可分为前向TNTB、后向TNTB和并联TNTB模型。这种方法的核心思想是:将有记忆效应功放引起的信号非线性失真分解为无记忆的非线性部分和记忆部分,根据查找表法和记忆多项式法各自的特点,采用查找表法补偿失真的无记忆非线性部分,采用记忆多项式法来解决失真的记忆效应。文献[22-28]对结合查找表法和记忆多项式法的应用方法做了实验验证,仿真结果证明该方法的预失真性能优于查找表法和多项式法,且并联TNTB模型预失真性能最好。文献[29]在上述联合算法的基础上,推导出最优分段方法,并将这种基于最优分段数的联合预失真算法同上述联合算法进行对比,结果证明最优分段方法能取得更优的效果。为降低TNTB模型的复杂度,MayadaYounes提出一种更精确,同时又能降低复杂度的PLUME(Parallel-LUT-MP-EMP)模型[30],它由LUT(Look-upTable,查找表法)、MP和EMP并联组成,实验证明PLUME模型精度高于TNTB模型,在保证和GMP同样精度的条件下,能减少45%的系数数量。

2信号处理技术结合预失真技术

为了在有限的频段内实现更多的数据传输,宽带、高峰值平均功率比信号〔如MCM(MultipleCar-rierModulation,多载波信号)〕得到越来越广泛的应用,FDMA(FrequencyDivisionMultipleAccess,频分复用)信号就是多载波传输信号的一种。多载波调制的原理是把高速传输的数据流转换为N路速率较低的子数据流进行传输,符号周期为原来的N倍,远大于信道的最大时延扩展。此时,将1个频率选择性信道划分成N个窄带平坦衰落信道(均衡要求降低),使其具备很强的抗多径和抗干扰能力,适用于高速无线数据传输。但FDMA技术的缺陷在于它的峰均功率比高,因此放大器的非线性特性给通信传输带来的各种问题会更加突出。在数字预失真效果改善的基础上,为进一步提高线性化功放的线性度效率,可根据信号特性采取相应的信号处理技术与预失真项组合方案。针对高峰均比信号,文献[30-32]还提出了以下几种组合方案:DPD与CFR(CrestFactorReduc-tion,削峰技术)的结合,DPD、CFR与Doherty技术的结合,以及DPD、CFR与ET(EnvelopeTrack-ing,包络跟踪)技术的结合等。对CFR的研究已有20多年,随着最近十年现代移动通信的飞速发展,CFR的研究成为热点。相关文献著作中也给出了许多CFR实现方案,可归结如下:限幅滤波法、峰值加窗法及部分序列传输法等。相关的实验仿真已证明,对进入预失真器前的高峰均比信号进行削峰处理,可以提高系统的预失真性能。

卫星通信论文篇5

2CFDAMA-PRI

2.1CFDAMA-PR由于当前网络数据业务大多突发性较强并且业务类型呈现多样性,抽象出来这类数据业务流通常用ON-OFF信源模型来表示[5]。而在此信源模型的情况下,数据业务具有很强的突发特性,用户的预约时隙请求也带有很强的随机性和不确定性。基本的CFDAMA接入方式此时由于多次请求造成的再分配策略和预约请求的冲突概率增大,在信道负荷较高和接入用户数逐渐增大时,其性能受到明显的影响。CFDAMA-PR协议在用户时隙申请阶段对发送队列的堆积状况进行判断,比较当前时刻和上一时刻发送队列中数据分组的差值Δ,如果Δ>0表示当前发送队列有数据包的堆积,则通过加权的方式向星上调度器发送更多的预约时隙请求[6]。该协议的好处在于实际应用中可以根据用户发送队列的堆积情况获得更多的分配时隙,能在突发数据分组到来情况下实时的将新的数据分组发送出去。因此,本文在CFDAMA-PR的基础上提出了基于用户优先级排序的改进协议CFDAMA-PRI,优化星上调度算法,进一步保证接入的时延性能和接入的公平性。

2.2用户优先级排序在对CFDAMA-PRI优先级排序的详细描述过程中,设置如下的参数。在卫星收到上行链路帧之后,进入星上处理的优先级排序阶段。资源调度器的按需分配表如表1所示,每个预约用户都含有优先级条目,卫星在收到上行帧之后,首先获取每个用户的预约时隙数,按照从高到低的顺序对用户进行排序并设置优先级号prinumber_i,优先级号越小代表当前用户申请的预约时隙数越多,然后根据优先级号从小到大的顺序依次将用户ID填入按需分配表中,因为有预约时隙申请并且foreslots_i>0的用户排在按需分配表的前端,所以由表1可以看出,a≤k。如果frame_slotsremain>0,代表当前还有剩余时隙可供自由分配,此时资源调度器实施按需分配方式,将已经分配过的用户从按需分配表中删除,同时在自由分配表中将该用户移到表的尾端,按需分配完成之后,资源调度器为自由分配表中的用户轮询分配剩余时隙,直到将剩余时隙分配完。由于按需分配中用户的优先级设置,有预约时隙申请的用户在自由分配表的尾端仍然是按照优先级号从小到大的顺序进行排列,这样可以保证在轮询的过程中时隙需求量大的用户仍然可以得到更高的时隙分配权。CFDAMA-PRI的下行帧同样分为控制部分和数据部分,如图3所示,资源调度器根据按需分配表中各个用户优先级号从小到大的顺序将响应信息填入相应的时隙中。当用户收到下行链路帧时,时隙请求量越大的用户就能越快的获取卫星的分配时隙。

3仿真分析

本文采用OPNET仿真平台[7],将基本的CF-DAMA-PA、CFDAMA-PR和改进的CFDAMA-PRI进行对比仿真。具体的仿真参数设置如表2所示。对信道负荷固定但用户数目变化条件下的仿真结果进行分析,目的是为了得出CFDAMA-PRI的时延性能和在用户接入公平性方面的优越性。选取信道负荷为0.8,用户数目依次为5、10、20、40、80,CFDAMA-PA的预约时隙数为20,得到的仿真结果如图5、图6所示。由仿真结果可以看出,当系统中用户数不断增大时,由于CFDAMA-PA在一个链路帧中仅使用了一部分时隙用作预约请求时隙点,那么更多有请求的用户就无法通过预约时隙点接入链路帧,加之信道负荷较大,突发数据强,用户申请时隙的不确定性也大。如果增大预约请求时隙数的比例也会以牺牲数据时隙为代价,平均时延和队列的分组累积同样会增加。CFDAMA-PRI则采用CFDAMA-PR对信源突发数据分组的计算方法,并使用优先级排序的方法对时隙需求量大的用户给予更高的时隙分配权,确保了用户的可接入次数,降低了时延,提高了接入公平性。

卫星通信论文篇6

1.3岸基服务器岸基服务器是整个系统的核心,由图1显示的岸基服务器与舰队终端之间的交互过程,可以看出整个系统是一个中心化的结构。岸基服务器共有3个主要功能:接收卫星通信网传输的数据和图像信息;根据接收到的信息融合并计算生成KML文件;通过HTTP协议栈[8]将KML传输给相应的GIS服务器。根据第1.1节的叙述,岸基服务器具有2种不同的数据接收接口,其中UDP协议栈负责接收舰队终端传输的数据信息,而“rsync”应用接口负责接收传输的图像信息。这2种接口与舰队终端接口类似,均可使用软件实现,并已得到广泛应用。岸基服务器中的KML文件产生模块是岸基服务器的关键功能,其能够根据实现定义的KML文件格式,和各种信息的内容,将信息嵌入KML文件模板中,产生正确可用的KML文件,进而通过HTTP协议,将其传输给绑定的GIS服务器。

2KML文件的格式与生成

KML文件时当前GIS系统广泛使用的地标文件,由于KML由XML发展而来,因而KML文件的格式和定义方法集成了XML的特点。

2.1KML文件的格式与一般基于XML的语言类似,其广泛采用标记定义各种数据块。其主要含有以下几个部分:位置数据、模型数据、航迹数据、图像数据和字节数据。各个部分的格式如下所示。通过以上的KML文件格式,可将不同类型的信息嵌入其中形成KML文件。

2.2KML文件的生成KML文件生成的过程,就是根据KML文件格式,不断分析与填充相应数据的过程[9]。KML文件生成的流程图如图3所示。KML文件的生成过程应遵循以下步骤:首先,KML文件产生模块需要根据信息来源判断和识别船舶的信息;然后根据导航信息生成基本的数据,之后再根据信息中包含的媒体信息和其他信息[10],对KML文件进行完善;最后形成完整的KML文件,并使用HTTP协议进行传输。

3系统实现与仿真

最后,本文在OPNET中构建模拟的卫星通信网,并仿真实现了舰队终端和岸基服务器,模拟了舰队终端与岸基服务器之间的交互过程,并利用GoogleEarth证明了生成KML文件的正确性。在OPNET中的实验拓扑图如图4所示。

3.1系统功能实现通过舰队终端产生的信息,仿真宽带卫星通信网络,UDP流量约为25~36kb/s,持续时间约为20s,丢包率小于1%。而传输图像数据的速率约为80~120kb/s,持续时间约为15s。根据以上仿真可知,本系统中采用的通信接口和链路,其带宽能够满足系统信息的传递以及更新需求。按照第2.2节中方法,生成KML文件,并在GoogleEarth中导入,生成的实时监视状态图,如图5所示。通过图5可看到,KML文件可以在通用的GIS系统中得到显示和应用,不仅包含了船舶的位置、航向等,还能够根据需求显示详细的航迹信息及其他信息。

3.2负载测试在系统的实际使用过程中,由于本系统结构采用中心化的结构,因而岸基服务器将承担较大的负载。本文将利用图4所示拓扑,继续对岸基服务器的工作负载进行测试,主要测试内容是KML文件产生时,对服务器资源的占用。在仿真中,采用通用X86计算机模拟服务器,采用Corei3双核处理器,4G内存,运行Win7(64bit)操作系统,采用软件实现KML产生模块,设计各个舰队终端的信息到达服从泊松分布,在第3.1节中研究的信息通信负载下进行测试,最终得到CPU的占用率如图6所示。通过以上测试结果可知,在实际使用过程中,当带宽满足系统传输要求时,CPU的占用率约为16%~22%,证明岸基服务器能够满足本系统用户的实际需求。

卫星通信论文篇7

1.2卫星移动通信在军事中的应用

由于现代局部战争的参战力量组成不断变化,作战范围规模日益扩大,作战形式也越来越多样化,再加上传统短波军事通信带宽小,传输信道不稳定,传统短波军事通信已经不能应用在现代作战行动中。当卫星移动通信受到地域条件和天气情况的影响时,还可以真正地使信息进行实时的传输,这就是卫星移动通信在军事作战中最大的优势。与传统的通信方式相比较,卫星移动通信在通信容量、覆盖范围和传输质量等方面有更大的优势。

2应用中出现的问题在应用中出现的问题主要表现在以下四个方面:

(1)卫星移动通信的技术规范标准还不健全不完善,管理还不严格不合理。

健全完善技术规范标准,不仅使通信设备的制造、安装测试和使用更加规范,还使卫星移动通信更加畅通,更加安全。

(2)卫星移动通信系统以市场为导向进行管理和经营,就是为了赢取最大的商业利润,其实它本身是国际性商业民用通信系统。

铱系统、全球星、ICO、ODYSSEY和APMT等卫星通信系统,依次进入全球卫星移动服务的市场,一场高投入高技术的全面市场竞争随之展开,先后淘汰了ODYSSEY和APMT,铱系统、全球星和ICO三大系统留下,但是铱系统破产失败,全球星系统命运未卜。

(3)抗截获与干扰技术有待于提高。

卫星移动通信应用在军事中时,因为通信卫星处于空间位置,敌我双方都能看见卫星,所以卫星通信系统有着一些突出的弱点,通信卫星转发器极易遭受到电子攻击是其主要的弱点。具体表现在极易受到敌方强大的电磁波干扰,使通信受到干扰而中断;有利的条件和机会使敌方极易进行定位截获。于是,由于军事通信的迅速发展,军事专家们一直重视敌我双方的通信侦察与反侦察,对抗与反对抗和截获与反截获技术。在频率域与功率域方面,由于移动卫星通信系统空间和信号发射作为现用的平台,因此,在地面信息进入信道传输之前,应该大力做好伪信息识别与抗干扰的工作,积极提高硬件和软件的加密技术,应该改造创新移动终端和关口站。

(4)电磁兼容性和接口技术有待于提高,软件的可移植性有待于增强。

应该提高系统接口技术(移动卫星通信系统信息终端、国防数据和关口站、便携式终端间等互联接口技术),以保证信息能够进行无缝传输,使其与另外的军事通信方式一体或者互联。同时,应该改善增强数传软件的纠错功能,以保证在信息化的恶劣战场中,部队能够进行畅通无阻的信息通信。

(5)闭合回路群设置和信道专用设置有待于提高。

部队在应用卫星移动通信系统进行通信的过程中,应该重视关口站网管软件的应用,应该对部队特殊用户进行合理的设置,进而形成一个闭合回路群,还要在该群中进行合理的信道专用设置,大力做好信道管理和密钥管理的工作,以避免内部泄密和外界揭秘的现象出现。

3卫星移动通信发展概述

在1976年,世界上的第一个专门提供电报与电话服务的卫星移动通信系统建立,海事卫星移动通信系统(Marist)投入商业运营。在1979年,国际海事卫星组织(INMARSAT)成立,从1982年,国际海事卫星组织连续对7颗卫星进行租用,第一代的INMARSAT卫星通信系统随之形成,该系统专门用以船只进行全球卫星移动通信服务。由于通信业务量的增加,在1990年至1994年的过程中,对4颗第二代的INMARSAT卫星进行发射。在1992年,澳大利亚开始运用AUSSAT-B卫星进行国内卫星移动通信的服务。美国与加拿大携手建立北美移动业务卫星通信系统(MAST),用以服务于陆地、海上与空中移动用户,随后在1994年与1995年期间,对2颗MAST卫星进行发射。从1990年开始,许多公司连续提出中轨道和低轨道的多星座卫星移动通信系统方案,铱系统、全球星系统和ICO系统就是其中主要的系统。

在1999年,铱系统开始投入商业运营,但是后来由于对该系统进行不合理的经营,导致其破产失败。同时,在2000年,全球星系统也开始投入商业运营。根据应用环境进行分类,主要分为AMSS(航空卫星移动通信系统)、MMSS(海事卫星移动通信系统)与LMSS(陆地卫星移动通信系统);根据提供的业务类型进行分类,主要分为数据与话音系统;根据轨道类型进行分类,主要分为GEO(对地静止轨道)与非GEO系统,其中LEO(低轨道)、MEO(中轨道)和HEO(高椭圆轨道)就是非GEO系统。在非GEO系统中,根据业务种类对其进行分类,主要分为小LEO、宽带LEO与大LEO。把能够运用LEO卫星提供非实时性业务的系统称之为小LEO系统,Orbcomm系统就是小LEO;把能够运用LEO进行宽带业务的系统称之为宽带LEO,Teledesic系统就是宽带LEO;把能够进行全球实时性个人通信业务的MEO与LEO卫星移动通信系统全部称为大LEO系统,Iridium、Globalstar和ICO系统就是大LEO系统。把能够利用GEO卫星进行宽带多媒体以及移动业务的系统称作宽带GEO系统,Astrolink、Cyberstar和V2stream系统就是宽带GEO系统。在航空、陆地与海事移动等领域中,Inmarsat系统已经对其进行了AMSS、LMSS与MMSS多种业务的提供。按照不同的技术发展水平、业务要求和使用环境,Inmarsat已经对多种移动站和系统进行了开发研究,都制定了每一种移动站和系统相应的系统规范标准,同时按照此规范标准,对各种移动站进行制造,以保证其在全世界任何地方都能够运用Inmarsat卫星进行及时通信。截止到1998年1月,在Inmarsat系统中,25000多个标准A站、5000多个标准B站、39000多个标准C站和1500多个航空站已经建立,再加上标准E站、寻呼终端和导航终端类型站,Inmarsat系统的总用户数已经达到115000多个。除能够进行全球卫星移动业务的Inmarsat系统,同时还建立了众多的能够提供卫星移动业务的国内和区域性卫星移动通信系统。Optus公司独立经营的MobileSat国内卫星移动通信系统以及美国AMSC公司和加拿大TMI公司携手共同经营的MSAT北美区域卫星移动通信系统就是其典型的代表。虽然通信GEO卫星的信道条件比较好,同时星体也比较固定,但是其应用在众多领域中时,还有较多的问题出现。因此,提出并采用了低和中轨道非GEO卫星移动通信系统来进行通信,以保证全球无缝覆盖的个人通信系统的实现。

4卫星移动通信的发展趋势

(1)卫星移动通信系统和另外通信系统的结合将越来越紧密。

由低和中轨道星座组成的卫星移动通信系统应该与地面网络、地面蜂窝系统和静止轨道卫星通信系统等另外通信系统紧密结合,以使用户费用降低,保证适合实际的使用需求。

(2)宽带卫星系统及其发展。

在现代的各种业务中,宽带业务处于重要的地位,无线通信中的移动,广播与远程特性都有助于宽带卫星系统的发展。因为卫星系统属于天基系统,同时它的成本很高,与传统卫星系统成本相比较,发展宽带卫星系统投入的成本达到其成本的215倍,这些预示着在缺乏地面宽带系统的市场中,宽带卫星系统和卫星移动通信系统一样极其发展。

(3)降低信道的误码率技术更高。

相关的专家不断对信道的误码率技术进行研究发展,利用更加先进更加高超的调制纠错与调制编码技术降低信道的误码率,以保证卫星信道的传输质量能够增加到光纤传输信道的水平。在卫星移动通信链路中,对TCP/IP协议进行应用时,还存在令人不满意的问题,但是这些问题并不说明卫星链路不能应用TCP/IP,通过实验可以证明,在卫星链路中,应用TCP/IP协议不仅能使卫星网和地面网互连,还能使其与因特网进行互连,实现了天和地之间的互通。

(4)卫星移动通信系统的通信频段向更加高端扩展。

对低端频段的应用,呈现过于拥挤的状态,因此,卫星移动通信系统的通信频段向更加高端扩展是相当必要的,同时,不断地对频率复用技术进行利用和创新,使原有通信频带上的潜力得以更深层的发挥。

(5)卫星移动通信系统的优势不仅表现在现代各种应用对卫星移动通信系统日益渐增的要求上,还表现在能够支持大量的和大范围的移动用户的数据通信方面。

再加上人们对能便携的卫星通信用户机和可搬动的小型卫星通信地面站的状态不完全满足,因此,建立实现拥有实用价值的卫星全球个人移动通信系统便成为了卫星移动通信发展的新目标。

卫星通信论文篇8

经过高斯信道传输后的卫星接收信号可表示为,本文设计的极化分集接收系统首先通过ADC将接收的两路圆极化信号(左旋极化、右旋极化)转换为数字信号,然后经过自动增益控制环路(Au-tomaticgaincontrol,AGC)、差模环(Differentialmodeloop,DML)、最大比合并(Maximumratiocombining,MRC)、共模环、定时同步环路,得到解调信号,整体框图如图2所示。

2.1自动增益控制环路卫星通信信道衰落使得接收信号的包络会产生起伏,幅度变化可以相差几十分贝,本文给出的MRC算法、载波恢复算法和时钟恢复算法都要求输入端的两路信号幅度保持恒定不变,可见AGC在系统中至关重要。因此需要通过AGC调节接收信号的增益,使接收机输出电压恒定或基本不变,提高系统性能。其数学模型如下A(n+1)=A(n)+βR-A(n)x(n[])(8)式中:A(n)为AGC的调节增益,R为增益门限,β为增益步长。经过当前时刻增益A(n)所得的信号A(n)x(n)与门限R作比较,若小于门限则会增大下一个时刻的增益A(n+1),同理若大于门限则减小下一时刻的增益,使输出信号基本维持在门限附近。增益步长β越小,幅度收敛越慢,捕获时间越长,误差越小,即波形失真越小;反之β越大,收敛越快,捕获时间越短,误差越大。

2.2差模环到达接收机的两路信号由于相位或本振频率不一致会引入一定的相位偏移和频率偏移,而MRC算法要求两路信号同频、同相后才能加权合并,取得增益,因此必须完成两路信号的同频同相处理。两路信号经过下变频、低通滤波后通过鉴相器将所得的误差信号分为两路,通过环路滤波器后以相反的极性调整数字控制振荡器(Numericalcontrolledoscillator,NCO),使两路信号以相反的方向被推到同一个公共频率上,实现两路信号的同频同相锁定。SOQPSK-TG信号的差模环算法模型推导如下,设经过AGC后的两路信号分别。

2.3最大比合并常用的极化分集接收合并方式有3种:等增益合并、选择合并和最大比合并。本文采用分集增益最佳的最大比合并算法[25],其原理是通过AGC所获得的加权系数对两路信号进行加权合并,使信噪比较大的一路获得较大的权值,信噪比较小的一路获得较小的权值。设so为合并输出信号电压,αi为各支路加权系数,si为各支路输入信号电压,N为支路个数。假设各支路噪声不相干,因此合并输出噪声功率n2o应为各支路输入噪声功率n2i之和,可得合并输出信噪比γo为当且仅当各支路信号电压与加权噪声功率之比相等时,输出达到最大值,此时分集增益为N。

2.4共模环卫星相对地面的高速运动会使信号载波产生多普勒频率分量,这就要求接收机有较强的频移捕获能力、较快的同步速度以及较高的同步精度。本文采用同相正交环算法对载波进行恢复。

3仿真验证

仿真条件:信号中频f0=32MHz,下变频后载波fR=fL=4MHz,每周期采样点数Nc=32,采样率fs=128MHz,码元个数Num=800,每个码元采样点数Ns=64,接收信号为正弦起伏包络,起伏范围为20dB,两路输入信号频差Δf=2.56kHz,相差Δφ=π/4,多普勒频移fd=6.4kHz,噪声为高斯噪声,信噪比SNR=15dB,各环路仿真结果见图3~10。上述仿真结果表明,自动增益控制环路能够较好地恒定输入电平,如图3,4所示;差模环、共模环能够准确跟踪两路输入信号频差、相差及多普勒频移,如图5~8所示;最大比合并模块能够使得信噪比较差的一路得到补偿,如图9所示;最后的解调结果如图10所示,在最大起伏为20dB条件下,通过分集接收实现了正确解调。为进一步验证本文所提算法性能,图11给出了分集接收SOQPSK-TG卫星通信系统与传统BPSK卫星通信系统的性能对比结果。对比结果表明,极化分集SOQPSK-TG传输系统明显优于传统BPSK系统,在最大起伏为20dB条件下,可获得5~10dB平均信噪比增益。

卫星通信论文篇9

1.3卫星通信的抗干扰技术卫星运行在外太空,电磁环境复杂,统一受到太阳风、强磁暴等空间环境影响,导致出现信息干扰和信息失真,卫星通信的抗干扰技术主要依靠卫星传输链路中不同的抗干扰设备和系统完成其功能,抗干扰设备和系统主要有DS/FH混合扩频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、自适应信号功率管理、自适应调零天线、多波束天线、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。在软硬件共同的作用下阻断电磁干扰、过滤杂波、屏蔽信号污染、实现程序监视等功能。

2卫星通信技术的发展趋势

2.1通信卫星体积的发展趋势通信卫星体积正在向大型化和微型化两个方向发展。其一,各国把通信卫星体积建造得越来越大,以便实现高灵敏和强处理能力。其二,各国推出小型通信卫星,用多颗小卫星组网构成卫星通信网络代替单颗大卫星,具有方便发射和成本低廉等优点。

2.2卫星移动通信技术方兴未艾卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现方便接入卫星移动通信网,进行卫星移动通信。

2.3卫星互联网技术兴起将卫星通信网络转化为互联网中数据上下交换的链路,可将电话拨号、局域网等其他通信链路作为上行数据链路,还可以将下载和传输作为下行数据链路,利用卫星的特点实现地面随时连接互联网络。

2.4卫星通信向宽带化发展为了满足卫星通信系统用户对大数据量和高负荷的需求,卫星通信技术已向拓展直EHF频段发展,扩大频段的容量,大大减轻现有频谱拥挤现象,减少受电磁现象影响引发的信号闪烁和衰落,提高了卫星的抗干扰能力。使卫星通信部件尺寸和重量大大缩小和减轻,方便卫星搭载更多的通信设备。

2.5卫星通信光通信化发展卫星光通信是利用激光进行卫星间通信,达到降低卫星通信系统设备质量和体积,提高卫星通信保密性等目的。

卫星通信论文篇10

3、2004—2012年的8年间,卫星直播增长最快,广播和电视年均增长分别为10.3和6.5个百分点。

4、卫星转发器租赁(转发协议)增长最慢,2004—2012年的8年间年均仅0.8个百分点,比重减少也最多,为4.5百分点,这也许是很多国家将卫星托管或合并给国际或洲际公司组织的原因所在。

5、全球卫星运营业发展很快,但区域差别仍较大,卫星转发器服务也不平衡。例如,美国每30万人有一个转发器,在欧洲是万人一个,而在亚洲,是600万人一个。近几年,后发国家发展较快,排名有所提前,但前四位的排名变化不大,营业收入仍占64%,可用转发器占60%,商业C波段和KU波段转发器容量占61%。前四名分别是国际通信卫星组织(Intelsat)、欧盟SES全球卫星通信公司、法国的欧洲通信卫星公司(Eutelsat)、加拿大电信卫星公司(Telesat)。

二、全球卫星电视用户市场分析

截止到2012年底,全球电视用户至少有11.72亿,家庭普及率53%,数字化率43%、付费用户率66%;卫星电视覆盖97个国家和地区;卫星直播用户(含政府付费)至少有2.88亿,用户率25%左右,少于有线电视。全球卫星电视直播市场大体可分为四个区域,亚太地区欧洲地区,美洲地区,中东和非洲地区。整个美洲是全球最成熟的市场,高清率最高,全球近60%的HDTV频道服务于美洲。欧洲是传统市场,高清率低于美国,卫星宽带有待发展。亚太地区是蓬勃发展的新兴市场,亚太地区日本技术上暂时领先,中国发展速度惊人,按照卫星转发器收入计算,中国卫通从名不见经传一跃排名第13位。全球卫星电视直播市场最大的是亚太地区,用户至少8500万,其中中国用户5430万、印度880万、韩国660万,日本天空用户超500万。但是,中国人口世界第一,占全球人口的19%多,家庭众多,卫星直播家庭普及率还很低。第二是欧洲地区,用户至少有8256万,卫视用户率34%。德国1807万、英国1205万、法国约500万。第三是中东和非洲,大部分属于免费,用户有6177万,卫星电视渗透率为67%。在海湾国家,用户大多是通过双天线或双高频头接收卫星信号。第四是美洲,付费用户占大部,用户至少有5845万,其中美国3403.4万,南美加美国外的北美有2100万。近年来,全球卫星电视直播市场呈现跨越式发展态势,亚太地区迅速崛起,成为耀眼的新秀。尤其是2006年以来,亚太卫视用户快速增加,成为全球最大的市场。2010年,全球新增近2500个卫星付费电视频道,其中超过四成来自亚太市场。由于亚太地区经济发展水平落后于欧美,卫星电视运营商多采用低价战略,迅速占领市场、扩展用户,以求后期获得利润。如印度卫星电视收费标准为每月5美元或更低,这促使数量迅速攀升,直追美国。中国“村通”工程定位于公益平台,免费接收。这些措施,成就了亚太卫星电视市场迅速发展。但是,亚洲卫星电视运营商还不能用更多的资本促进市场成熟,暂时还难与欧美匹敌。

三、卫星通信广播发展的趋势

1、拥有固定通信卫星国家(地区)在减少。

2005年有固定通信卫星公司的国家和地区有33个,现不到30个。近些年,美国和欧洲的一些卫星公司先后托管或合并于国际或洲际卫星公司组织,如美国泛美卫星和回声卫星公司(故据2012年固定通信卫星排行榜合并列出);欧洲国家多参与欧洲SES全球卫星公司,有荷兰的新天空卫星公司、挪威的电信卫星广播公司、瑞典的天狼星公司、土耳其欧亚卫星公司等。拥有自己卫星公司的国家和地区减少的主要原因,可能是发射和运营固定卫星成本,与收入相比,投入和产出比不高。

2、地面和空间运营结合的模式有扩展的趋势。

卫星通信运营商可分为三类:第一类是以卫星空间段为主的运营商,如国际通信卫星组织(IntelSat)、欧盟SES全球通信卫星公司等。第二类是空间和地域段结合的运营商,如美国DirecTV公司等。由于地面运营比空间运营经济效益高很多,第三类是以地面运营为主的公司,如康卡斯特(Comcast)有线通讯公司。以上三类公司的业务收入各相差一个等级。2012年收入,空间运营最大的国际通信卫星组织为26.99亿美元,空间和地面结合运营的DirecTV公司是前者的11倍,达297亿美元。有线电视运营为主的康卡斯特公司,世界2000强排56位,营业收入626亿美元,是第二类的2.11倍。所以,后发展国家和地区,主要采取租用卫星,重点发展地面业务。

3、天地网络不断融合。

即卫星通信与有线电视、宽带互联网、移动互联网等四业融合。目前,有线电视、宽带互联网、移动互联网在数字媒体、信息服务行业已经占主流地位,其主要原因是地面网络天然具有互动性和社交功能,而卫星通信则以单向广播见长。但是,它们之间具有明显的互补性。这为它们的相互融合提供了基础。毕竟,卫星通信、有线电视、宽带互联网、移动互联网都属于信息服务业,相互融合是共同的发展趋势,全网络、全终端、全内容是共同的发展战略。

卫星通信论文篇11

2.环境的预感知相关技术。卫星通信环境当中雨雪等对部分频段信号有一定的干扰作用,中心站与远端站对当地雨雪等信息进行预感,基于雨雪特性与通信轨道估计感知的信息,各类信息集中于中心站,再经中心站分配到各处,给各个站点分配功率与宽带相关资源。当业务建链以后,经远端站把感知信息报上来,再对链路的特性做综合评估,同一时间对初始建链数据库进行修正,资源分配自主学习功能就此达成,对系统频谱相关资源的利用率会有很好的提升作用。

二、认知无线网络技术在卫星通信中未来的发展前景

最近几年时间,认知无线网络技术与多媒体相关技术可以说是在卫星通信中的应用展开了一个新局面。卫星无线网络关键的技术研究包含对无线卫星网络的体系结构的支持,对无线运行网络的层协议、互联网规定协议与传输层相关协议卫星链路要求的支持等等。卫星无线网络可以说是地面无线技术处于卫星通信相关领域当中的演变及应用,把它视作卫星分组相关业务与减少系统的复杂性一种努力,旨在将大流量的分组数据廉价提供给用户。伴随通信技术与认知无线网络技术不断发展前行,认知无线网络技术拓展开来是必然的,卫星通信对认知无线网络技术的运用也是预期的。在我们国家军方卫星通信系统当中引用认知无线网络技术并做以相关研究,是有历史性的意义的。

卫星通信论文篇12

通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

3实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

卫星通信论文篇13

为降低系统实现的复杂程度,采用位置和速度的松组合模式,这种模式有两个优点:(1)动中通姿态估计系统工程实现容易,组合导航算法的计算量小、实时性好;(2)GPS和INS两个系统保持独立工作,当其中某个系统出现故障时,系统可继续保持工作,有效地保证了算法的连续性。选取惯性导航系统的基本方程和四元数随时间的更新方程作为系统方程。系统的可观性是考察卡尔曼滤波器性能的重要方法,对于一个完全可观测的系统,状态估计的效果取决于系统噪声和测量噪声;然而对于状态不可观测的系统,即使噪声的影响很小甚至可以忽略时,仍然得不到状态的精确估计。由组合导航姿态估计的速度误差方程可知,横滚角和俯仰角可以通过位置和速度信息间接可观,而航向角的可观性取决于载体的机动特性。因此,组合导航姿态估计航向角可观性弱,姿态角估计精度低、易发散,仅使用组合导航算法无法获得精确的姿态角估计值。单基线GPS在路况较好的情况下可以提供精确的航向信息[10],因此,当单基线GPS有效时,可以利用单基线GPS航向角作为外部观测量,改善航向角的可观性,提高航向角的估计精度。

3算法实现

3.1开关自适应UKF组合姿态估计算法单基线GPS对空视环境提出了严格要求,当移动卫星地球站在行驶过程中GPS信号受到遮挡时,单基线无法输出精确的航向角。若单基线GPS中的一个GPS天线可以输出速率信息,此时,可以利用单天线GPS的航迹角进行辅助。在载体直线行驶时,单天线GPS测量得到的航迹角与载体的航向角一致,但是当载体转弯时,侧滑角会对航向角估计值产生干扰,使得航迹角与真实航向角之间产生偏差,此时,不可以使用单基线GPS的航迹角作为辅助手段。当检测到载体转弯时,可以通过陀螺积分短时间维持姿态角的有效输出。综上所述,根据GPS的使用特点和移动卫星地球站载体的行驶路况,设计自适应组合导航算法,判断规则。当单基线GPS收星数目大于,即能够提供航向信息时,算法通过单基线GPS航向角辅助进行姿态估计;当单基线GPS收星数目小于,即单基线GPS不能提供航向信息时,利用GPS航迹角辅助观测;当单基线输出信息全部无效时,利用陀螺的短时精度保持系统的有效输出,系统的原理如图2所示。

3.2参数切换UKF组合姿态估计算法扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是姿态估计领域应用最为广泛、最为成熟的非线性滤波方法,但是其存在线性化误差,且当线性化假设不成立或初始误差较大时,滤波器性能会下降甚至发散。此外,EKF需要计算状态方程的雅可比矩阵,计算复杂、不易实现。无迹卡尔曼滤波(UnscensedKalmanFilter,UKF)是一个以最优高斯近似的卡尔曼滤波器架构为基础所发展的递归式最小均方根误差估计器,估计精度高,无需计算雅克比矩阵、计算量适中,满足动中通天线波束指向要求,因此选取UKF作为姿态估计算法。UKF滤波算法是基于UT变换的卡尔曼滤波算法,其基本思想是用一定数量的样本通过UT去近似系统的真实分布,由被估计量的先验均值和方差产生一批离散的与被估计量具有相同的概率统计的采样点,其经过非线性变换后,生成后验的均值和方差,基于参数切换的组合导航采用UKF算法步骤如下。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读