欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

微波技术论文实用13篇

微波技术论文
微波技术论文篇1

微波是指频率为300MHz~300GHz、波长为lmm~lm的电磁波。它的干燥原理是:微波发生器将微波辐射到待干燥的物料上,当微波射人物料内部时,使物料内的水等极性分子按微波频率作同步旋转和摆动;水等极性分子高速旋转的结果,使物料内部瞬时产生摩擦热,导致物料内部和表面同时升温,使大量的水分子从物料中蒸发逸出,从而达到干燥的目的。

微波真空干燥是随微波干燥技术发展起来的一项新的组合干燥技术。它不仅具有干燥速度快、时问短、物料温度低、色香味及营养成分保留好等优点,而且参数容易控制,能干燥多种不同类型的物料。目前我国虽有一些单位正在进行研究,但其技术性能还需要完善,在机理和工艺方面也还有很多问题需要深化和研究。

2.国内外研究现状

早在上世纪80年代,美国、加拿大、英国和德国就开始研究微波真空干燥技术,主要集中在美国的威斯康辛大学、加利福尼亚大学,加拿大的BritisC0lumbia大学,德国的Karlsruhe大学,英国的QueenUniversity,希腊的国立科技大学,法国的Albi研究所等。研究的内容涉及微波真空干燥机理、传热传质微波真空干燥模拟、微波真空干燥能耗与工艺以及各种不同类型物料(香蕉,萝卜片,果胶,土豆,浆果等)的微波真空干燥操作等。

国内目前的研究单位有江南大学食品学院、东北大学、大连水产大学、中国农业大学、浙江大学、上海工程技术大学、华南理工大学、华南农业大学、天津轻工大学、上海辰灿轻工机械公司、四川大学食品学院食品科学与工程系、南京三乐微波技术有限公司等。

江南大学食品学院进行了甘蓝的微波真空和热风联合干燥试验。试验结果表明:微波真空联合干燥缩短干燥时问48%,提高了营养成分和叶绿素的保存率,改善了干燥品质。

大连水产大学张国琛进行了扇贝柱的微波-真空-联合干燥,试验研究了微波功率、真空度,微波炉启闭比、预处理盐水浓度和扇贝大小对干燥效果的影响,建立了扇贝微波真空干燥的动力学模型。

3.微波组合干燥技术

组合干燥是一种具有广阔发展前景的干燥技术,它可以发挥各种干燥工艺的长处,克服各自缺点,借长补短,达到高效率、低能耗、优品质的干燥目的。由于微波干燥是一种完全不同于其它干燥方式的干燥技术,所以它也是与其它干燥方式组合最多的一种干燥技术,同时也是当前国际上研究最多的一种干燥技术。以下是几种较常见的组合方式。

3.1微波热风组合干燥(也称微波对流干燥)

在与微波组合的干燥方法中,微波热风组合干燥是研究最多的一种。由于热风干燥时间长、质量差,故不适合干燥热敏性物料;采用热风微波组合干燥可以克服上述缺点。此外,微波干燥的成本与热风干燥相比还是很高,单纯微波干燥是不经济的。热风干燥对物料来说是从表面向内干燥,温度梯度与水分转移的方向相反,而微波干燥是从内部加热,温度梯度与水分转移的方向相同,二者结合,可以达到既缩短干燥时间又降低成本的目的。微波与热风干燥可以有三种结合方式。

3.1.1.在临界含水率处加入微波

当干燥从恒速段进入降速段(即物料含水率达到临界水分)时将微波能引入干燥器,使物料内部产生热量和蒸汽压,使水分扩散至物料的表面并被排除,这时利用微波会非常显著地提高干燥速度。

3.1.2.在干燥器的终端加入微波

单一的干燥系统在接近干燥终了时效率最低去除几个百分点的水分往往需要很长的时间,利用微波可以显著减少干燥时间。

3.1.3.在最初预热阶段加入微波

在干燥前物料含水率较高,可以先用微波将物料加热到蒸发温度,然后用普通热风干燥,去除表面水分,干燥时间可以缩短。

3.2.微波真空组合干燥

微波虽然具有加热速度快、干燥时间短、选择性好、能源利用率高和便于控制等优点,但单纯使用微波进行食品干燥,容易产生由于过热引起的烧伤现象和食品边缘焦化、结壳和硬化等现象;上述现象多半是由于温度过高和干燥过快引起的。采用真空可以降低水的蒸发温度,使物料在较低的温度下快速蒸发,同时还可避免氧化,因而改善了干燥品质。在医药、食品和化工领域有很多热敏性物料需要低温快速干燥,因此,将微波技术与真空技术相结合就成为一项极具发展前景和实用价值的新技术。从国内外有关微波干燥的研究现状来看,微波真空组合干燥也是目前发展较快的一种组合干燥技术。

3.2.1.脉冲间歇式微波真空干燥

微波干燥虽有许多优点,但经常会发生局部过热、表面硬化、颜色不正和加热不均匀等现象;此外,能量效率不高也是一个缺点。产生这些现象的原因之一就是热质传递控制不当,解决的方法之一是采用脉冲方式输入微波能,即短时间的微波加热和较长时间的间断。试验证明:当物料干燥到临界水分以后,连续施加微波能并不能加速水分的蒸发;采用间歇干燥的方法,不仅可以节省能量、提高干燥效率,还可以改善干后物料的品质。脉冲间歇式微波真空干燥技术是Edh0lm于1933年提出的。采用这种技术的特点是使物料中的水分和温度在间歇阶段能够均衡再分配,减少水分梯度,这将有利于提高下阶段的干燥速率。

试验还表明,脉冲微波干燥时,微波接通时间越长、断开时间越短,物料温度越高。因此,通过调节脉冲比或真空度可以改变物料的温度。

3.2.2.变功率微波真空干燥

加拿大食品工程研究所ChristeneH.等进行了萝卜片的变功率微波真空干燥,微波的频率为2450MHz,微波功率4kW可调,真空度为13.3kPa,萝卜片的终水分为10%,微波谐振腔为圆筒形,直径350mm,长度500mm,采用的干燥工艺为:干燥开始后的最初19min微波功率为3kW,中间4min为1kW,最后10min为0.5kW。试验过程研究了颜色、复水性、密度和胡萝卜素、维生素含量等质量指标。结果表明:如果综合考虑,微波真空干燥的性能甚至优于真空冷冻干燥。美国加利福尼亚大学研制的微波真空干燥设备谐振腔是一个长12.2m的不锈钢圆筒,中间有输送带,沿长度方向分为三个干燥区,第一干燥区的微波功率较大,真空度为1.33~3.99kPa,第二、第三干燥区的微波功率递减。说明变功率微波真空干燥是一个研究方向。

3.2.3.微波热风和真空组合干燥技术

Maskan利用微波和热风组合方式干燥猕猴桃,发现干后猕猴桃的收缩率(76%)小于单纯的微波干燥(85%),而且颜色也有很大改善。Szab0利用热风+微波+热风的组合方式进行蘑菇的干燥试验,发现能改善干后蘑菇的品质。大连水产大学的研究表明,热风干燥扇贝具有较小的收缩率Durance利用微波真空与热风组合干燥西红柿,发现西红柿的复水率有所改善。由此可见,微波真空干燥与热风干燥具有一定的互补性。近些年,在高含水率和热敏性物料的干燥中,微波真空和热风的组合干燥也逐步得到了应用。

4.几个值得探讨的问题

4.1.关于物料的尺寸和形状

微波干燥的物料种类繁多,成分和状态也各不相同,按形状分有液状、糊状、浆状、粒状、片状、粉状;按类型分有蔬菜、水果、谷物、药品、水产品和农副产品;就尺寸而言可以小到菜籽,大到人参、蘑菇。微波干燥的研究表明,物料的大小、形状、数量、水分和在微波炉谐振腔中的位置对干燥效果均有一定影响。Dr0uzas用微波进行干燥果胶试验时,用五个料盘放在炉内五个不同的位置,发现干燥速率有明显区别。因此微波干燥应根据物料的特性(介电特性热物理特性、含水率和形状、大小)选择干燥工艺和参数,其原则如下:

①微波功率应与干燥的物料量相匹配。

②待干燥的物料其大小和含水率应尽可能均匀一致。

③考虑微波的穿透深度,大块物料最好先处理成小的粒状或片状。

④粉状物料如果堆积在一起时应看成是一个整体。

⑤小粒物料所用的微波功率(w/g)可以适当减小。

⑥对于热敏性物料可以适当加大真空度或减小微波功率。

4.2.关于真空度

从蒸汽特性表可知,真空度越高,水的沸点温度越低,水分越容易蒸发。但是在微波真空干燥时,并不是真空度越高越好,真空度增高,能耗加大,干燥成本加,而且会产生击穿放电现象。当微波频率为2450MHz时,真空度2~7kPa已经足够了,其相应的水分汽化温度是20℃和40℃。对于热敏性物料,要求物料的温度低,所以真空度就要高一些。法国Pere教授进行了不同真空条件下的微波真空干燥试验,试验表明,在相同的条件下真空度从1kPa增加到7kPa时,各单位采用的真空度数值有很大的差别,说明对于微波真空干燥中真空度的合理选择尚需进一步研究探讨。

5.注意事项

采用微波真空干燥时,有一些问题需要注意:

①微波能被金属反射,干燥物料和测试传感器中不可混入金属。

②待干燥物料的大小和形状应基本接近。

③微波干燥设备不可空载运行。

④微波可以穿透玻璃和聚合物而不损失能量。

⑤微波炉内的物料应分散布置而不要堆积。

⑥干燥过程中物料最好能够运动。

参考文献:

[l]徐艳阳,张憨,等.热风和微波真空联合干燥甘蓝试验[J].无锡轻工大学学报,2003(6).

[2]张国琛,毛志怀,等.微波真空干燥扇贝柱的物理特性研究[J].农工学报,2004(6).

微波技术论文篇2

摘 要 对微波扩频技术进行了简要的介绍,同时结合交通行业的具体特征和本人在实践中的运用进行具体介绍。关键词 微波扩频技术 特性 交通 应用 1 微波扩展频谱技术简介微波扩展频谱技术,简称微波扩频(SS)技术。是90年代以来在美国发展起来的一种新型民用计算机无线网络技术。其主要技术特点是:用900MHz、2.45GHz或3.5GHz微波频段作为传输媒介,以先进的扩展频谱方式发射信号的传输技术。扩频技术的基本特征是:使用比发送的信息数据速率高许多倍的伪随机码,把载有信息数据的基带信号的频谱进行扩展,形成宽带的低功率谱密度的信号来发射。美国人香农(Claude Elwood Shannon)在信息论的研究中得出了如下的信道容量公式:C=Wlog2(1+P/N)这个公式指出:如果信息传输速率C不变,则带宽W和信噪比P/N可以进行互换,就是说:增加带宽W就可以在较低信噪比P/N的情况下以相同的信息速率C来可靠地传输信息,甚至在信号被噪声淹没的情况下,只要相应的增加信号带宽W,仍然保持可靠的通信,也就是可以用扩频的方法以宽带传输信息来换取信噪比。这便是扩频通信的基本思想和理论依据。其具体工作原理为:信息数据D经过常规的数据调制,变成了带宽为B1的基带(窄带)信号,再用扩频编码发生器产生的伪随机码(PN码,Pseudo Noise Code)对基带信号作扩频调制,形成带宽B2(B2远大于B1)功率谱密度极低的扩频信号,这相当于把窄带B1的信号以PN码所规定的规律分散到宽带B2上,再发射出去。接收端用与发射时相同的伪随机编码PN做扩频解调,把宽带信号恢复成常规的基带信号,即以PN码的规律从宽带中提取与发射对应的成份积分起来,形成普通的基带信号,然后,可再用常规的通信处理解调发送来的信息数据D,从而实现了住处数据D的传输。微波扩频技术最常用的方式有两种:一种是跳跃(Frequency Hopping,FH)扩频技术,FHSS以随机模式传输信号,信号传送过程中要经过多次握手和同步,效率较低。另一种是直接序列(Direct Sequence,DS)扩频技术(简称直扩)。直序扩频(DSSS)是宽带调制发射,与传统的无线电窄带调制发射方式不同,它以固定模式传输本频段内信号,因而可以更加充分地利用带宽;它具有传输速率高(可为2M-11Mbps或更高)、发射功率小(一般<100mw)、保密性好、抗干扰能力强的特点。故易于多点通信,其通信距离和覆盖范围视所选用的天线不同而异:定向传送可达5~50公里,室外的全向天线可覆盖15~20公里的半径范围,室内全向可覆盖最大半径250米的5000平方米范围,并能穿透几层墙甚至两层楼的混凝土楼板。微波扩频无线网络/通信技术在组网链路中所采用的是载波侦听多路访问/冲突避免(CSMA/CA)媒介访问协议,遵从IEEE802.3以太网协议(EtherNet Protocol),同时也支持TCP/IP协议,并与目前的几种主流网络操作系统完全兼容。它的运行环境是MS-DOS3.1以上的操作系统、UNIX操作系统以及Windows环境。目前微波DS扩频设备主要分为两类:一类属于无线Modem,具有RS232接口或T或E接口;另一类属于无线连网设备,包括无线网桥和无线IP路由器,一般都具有网络接口,如:BNC、AUI、10/100Base-T、RJ-45等。扩频微波组网可完成高速率的无线通信:实现点到点、点到多点的通信及连网;能够较好地传送图形、文字、话音、动态图象等信息;因信号弱,所以隐蔽保密性好,误码率低;具有网桥、路由器等功能,可实现局域网互连或远程接入,也可以组合在高速移动无线网。由此可见,微波扩频技术为计算机无线网络提供了良好的通讯信道。2 微波扩频技术的特性微波扩频技术在发射端以扩频编码进行扩频调制,在接收端以相关解调技术收信,和传

微波技术论文篇3

1材料与方法

1.1材料选取内窥镜活检标本100例,其中胃镜标本40例,肠镜标本40例,喉镜标本20例。要求组织块小米粒大小,便于固定脱水。

1.2仪器设备三星STG88型微波炉一台。输出功率800W,分六级调节(800W、600W、450W、300W、180W、100W)。

1.3所用药液①固定液:95%乙醇,无水乙醇。②透明液:按质量比3:1配制的硬脂酸-石蜡液态混合物。③Harris苏木精染液。

1.4微波制片①将组织放入盛有5ml95%乙醇的青霉素小瓶内,用两层纱布及布绳将瓶口封好,用450W功率微波辐射30秒,至乙醇沸腾。②取出小瓶,将剩余液体倒掉,换成5ml无水乙醇,用450W功率微波辐射30秒。③倒去无水乙醇剩余液体,用硬脂酸-石蜡液态混合物透明,用450W功率微波辐射4~5分钟。④用熔点为56~58℃的液态纯石蜡浸蜡,450W微波辐射5分钟。⑤组织包埋、切片:包埋时尽量用最小的模具,把所有组织包在一个平面上,切片时待多个组织充分暴露时再切,争取选择多个切面,切片厚4~5μm。⑥用微波烤片:450W微波辐射3分钟。

1.5微波HE染色①切片常规方法脱蜡、脱苯、水洗,经微波烤片后,脱蜡时间减少至5分钟,脱苯时间也相应减少,水洗时间正常。②吸Harris苏木精染液3~4滴滴于切片上,完全覆盖组织,用600W微波辐射30秒,水洗。③1%盐酸酒精分化1~3秒,碳酸锂饱和溶液蓝化至切片泛蓝后水洗1分钟。④伊红染色,梯度酒精脱色,中性树胶封片,镜下观察。

2讨论

微波技术论文篇4

射频(RF)和微波微电子的封装是高频电子封装技术的最新发展,它吸引了大量电子工程师投身于电子封装和高频电子领域的研究,也吸引了学术研究者了解最先进技术在商业界应用的兴趣。它覆盖了热量管理、电气、射频、散热的设计与模拟,封装技术与加工方法以及其它相关射频、微波封装的领域。近10年来无线电技术取得了巨大的进展,同时高频技术的应用方兴未艾。2008年9月16-18日,国际微电子和封装协会(IMAPS)在美国加利福尼亚洲的圣地亚哥举办第一届射频与微波封装的高级技术专题讨论会,邀请30多名业界的顶尖人士做了射频、微波、毫米波和宽带封装等高级主题演讲,会议取得的效应远远超乎预期。

该书是这次会议的论文集,共选论文12篇,每篇论文独立成章。1.微波和毫米波频率封装的基本理论,介绍微波和毫米波频率的基本设计、交换性能和额外复杂性;2.低成本高带宽的毫米波引导线框封装,介绍一种新型中继馈线方法,使低成本高容量的封装理念可以应用到高频领域。这个方法影响了数字电子封装技术;3.微机电毫米波的聚合系统,介绍一种大批量生产毫米波无源器件的技术工艺;4.毫米波板上芯片的集成和封装,介绍板上芯片的集成与封装技术对毫米波电子学领域所带来的低成本效益,以及讨论了毫米波电路性能的若干特殊问题;5,射频液晶聚合物和毫米波的多层气密封装包与组件,提出x、K、Ka-频段的应用组件的薄膜液晶聚合物(LCP)表面安装封装技术;6.随身设备的射频、微波基板封装线路图,回顾随身设备的设计方案和材料,并讨论如何达到所需的封装密度和性能;7.陶瓷系统在射频和微波封装技术中的应用,展示出使用陶瓷材料和陶瓷制造工艺的优势,从而研发复杂性不断增长的多层结构;8.毫米波产品的低温共烧陶瓷(LTCC)层压材料波导,讨论复合材料波导,通过数值仿真的手段,解决材料问题并处理毫米波频率的内部连线有损耗和间隔时所产生的折衷问题;9.射频、微波应用组件的低温共烧陶瓷(LTCC)基片,展示关于射频、微波封装应用中的LTCC技术的计算机模拟和制造的最新进展,包括当前的LTCC制造技术、模块封装包、高带宽设计和集成天线的射频、微波系统的发展趋势;10.用于微电子封装的高散热陶瓷和复合材料,讨论散热复合材料的高级性能,包括纳米碳管、合成金刚石、做结构旋转后的氮化铝、氧化铍等;11.高性能微电子封装的散热片材料,回顾了射频、微波封装的散热材料的制造、应用和研发,包括传统的、第二代、第三代散热材料;12.氮化铝三维多芯片组件(A1N 3D MCM)的技术研究,回顾了射频、微波封装的氮化铝三维多芯片组件技术的最新发展,包括A1N高温共烧陶瓷(HTCC)工艺、钨贴片匹配、烧结温度分布图的影响以及其它实际设计和制造过程中的问题。

本书主要作者Ken Kuang等人是多年从事该领域研究、具有丰富经验的业内专家。他是国际微电子和封装协会(IMAPS)会员兼副主席、圣地亚哥分会的主席。他多次获得IMAPS的最佳会议论文奖、电子封装技术国际大会(ICEPT)的最佳研讨会论文奖、IMAPS的主席奖。2004年,他创办了Torrey Hills Technolo-gies,LLC公司。该公司迅速成长为美国INC500之列,是射频、微波封装产业的引领者。

本书反映了射频、微波微电子业界的近期研究成果和发展动态,是从业工程师了解行业最新技术和发展的必备指导书籍。

微波技术论文篇5

主办单位:中国电子学会

出版周期:双月刊

出版地址:江苏省南京市

种:中文

本:大16开

国际刊号:1005-6122

国内刊号:32-1493/TN

邮发代号:

发行范围:国内外统一发行

创刊时间:1980

期刊收录:

CBST 科学技术文献速报(日)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

联系方式

微波技术论文篇6

基金项目:本文系浙江省高等学校精品课程建设项目、中国计量学院校立高教课题资助(编号:HEX200727、HEX200872)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)08-0051-02

“电磁场理论与微波技术”是电子信息工程、通信工程和电子科学与技术类专业的一门重要专业必修课。也是一门学生公认较难学难教的课程,该课程既与前期的高等数学、大学物理学等课程的知识紧密联系,又对目前移动通信、电磁兼容和生物电磁学等前沿学科的学习与认知起着重要作用。[1-2]随着信息技术的快速发展,为满足社会对从事于微波工程、电磁测量技术和无线电技术等领域人才的需求,中国计量学院(以下简称“我校”)始终如一支持该课程的建设,我们对“电磁场理论与微波技术”进行课程改革和教学实践,有效地提高课程的教学质量,改进了教学效果,[3]2009年被评为学校精品课程,在2010年被增选为浙江省精品课程。本文对课程的改革和实践作初步总结。

一、课程建设和教学实践历程简述

我校“电磁场理论与微波技术”课程建设与教学改革实践经历多年,从原先“电磁场理论”和“微波技术与天线”分开授课,然后合并成“电磁场理论、微波技术与天线”课程,发展到目前为“电磁场理论与微波技术”,期间主要经历了三个时期:

2004年以前,课程建设初期。“电磁场理论”和“微波技术与天线”单独设课,两个课程安排在不同学期,理论与实践相隔一个学期,总体教学效果不明显。

2005至2006年,课程建设的起步期。学校根据高校微波专业的电磁场培养目标,决定将原来的“电磁场理论”和“微波技术与天线”合并为“电磁场理论、微波技术与天线”课程,电信、通信和电科三个专业同时开设该课程,并进行教学方法、教学手段的改进,以及教材建设和师资队伍建设。编写了《电磁场理论与微波技术》实验指导书;在校内实行微波实验室“全日制”开放,积极开辟学生第二课堂;制作《电磁场理论与微波技术》课件,改革教学方法与手段,结束了“黑板+粉笔”的单一教学模式,聘请外校知名教授来校讲课和培训新教师,取得了一定的教学效果。

2007年至今,课程的建设改革期。2007年申请了校级教改课题,开展“电磁场理论与微波技术”课程实践和教学探索,并以建设学校重点课程为契机,全面修改课程内容体系。从内容的广度、深度都有了质的改变,强化了电磁场理论的基本原理、基本知识,以及仿真、设计、制作方法和步骤等内容,进行精品课程建设,全面提高教学质量。

二、课程建设和教学实践的主要内容

1.完善教学大纲,调整教学内容

教学大纲是指导课程教学、评价教学质量的主要依据。根据培养计划和课程设置等情况,最近五年对教学大纲进行了三次较大的修改和完善,使学生掌握电磁场和微波的基本结构,建立相关概念间的联系,对本课程理论知识有比较完整的理解,为后续课程的学习打下基础。比如在电磁场理论方面,重点要求重点掌握静电场的梯度和散度、静电场的基本性质、恒定磁场的磁通连续性、磁介质的磁化及矢量磁位和矢量泊松方程、标量磁位和拉普拉斯方程、麦克斯韦方程组的内容及其物理内涵和时变电磁场中的分界面的边界条件等内容;在微波技术方面,掌握传输常数、特性阻抗、反射系数、驻波比等微波传输线的基本概念及其物理意义。掌握不同负载时的传输线的工作状态和传输线的阻抗圆图及其应用,掌握导波系统中的波型、传播常数、相位常数、截止波长、相速、群速等的概念,掌握微波网络分析中常用的参量和双口网络的工作特性参量,对矩形波导的波型及传输特性、TE10及波导壁的电流分布也予以重点要求,掌握各种基本微波元件的结构、原理和使用,使学生能对微波器件等最新技术有更加深入的认识,为学生在将来选修天线等知识时打下良好的基础,对于课程其余知识则要求了解。虽然本课程总学时数有所下降,但是教学大纲仍能在知识更新和课程体系结构等方面保证其合理性。

2.精选教材,突出“化繁为简”理念

根据教学大纲选择合适的教材是教学质量的基本保证。近些年来,我们先采用高等教育出版社1999年出版,谢处方、饶克勤编的《电磁场与电磁波》和西安电子科技大学出版社2001年出版,刘学观、郭辉萍编的21世纪高等学校电子信息类系列教材《微波技术与天线》,由于课本内容太多,公式推导繁琐,影响部分学生学习积极性。然后就改选用西安电子科技大学出版社2002年出版,盛振华编著的《电磁场微波技术与天线》,在与学生的互动过程中,学生反映对矢量分析这部分内容比较困惑,希望能在课本中列出这部分知识。于是又选用机械工业出版社2007年出版,傅文斌主编的《微波技术与天线》为教材,[4-6]该教材属于普通高等教育“十一五”部级规划教材。

由于进行精品课程建设,对教材也提出更高的要求。吸取以往选择教材的经验,现在使用北京邮电大学出版社2010年出版,李媛、李久生编写的《电磁场与微波技术》,与以前教材相比,该教材根据面向21世纪电类技术基础课程教学改革的要求,并考虑到电子类专业的特点,注重对电磁场与微波技术的基本概念、基本规律、基本分析方法的介绍,着重对广大普通学生分析问题、解决问题能力的培养。本书内容由浅入深、重点突出,基本理论推导去繁就简,着眼于应用,方便学生理解,使学生更易于接受课程知识。[7]

3.促进教学科研互动,培养创新能力

教学与科研的相互结合,可促进教学质量提高。任课教师在授课过程中,把自己相关的科学研究项目和研究结果介绍给学生,例如在讲授微波滤波器知识时,介绍如何用微带设计新型微波器件,并用Ansoft HFSS和MathCAD等仿真软件进行设计和分析,画出设计电路原理图,然后再播放相关滤波器件的实际电路图,这样一方面使学生对利用微带设计微波器件等复杂过程和抽象概念有简洁的理解,加深对理论知识的认识,另一方面提高学生对本课程的学习兴趣,为学生今后做相关微波研究和创新设计打下基础,例如利用MATLAB软件进行练习和处理,学生还可以自己动手实践,起到良好的效果。目前太赫兹波的研究利用是近些年比较热门的课题,在车站、奥运会和出入境等安检以及食品质量检测方面具有越来越多的应用前景,鼓励有潜力的学生利用学校太赫兹波实验室进行研究和创新设计,允许学生与老师一道,积极参与发表科研论文和撰写专利,有些学生在攻读硕士研究生时,继续选择与本课程相关的课题作为研究方向,学生的创新能力得到培养。

4.改进实验教学,提高实验效果

根据教学大纲,改革实验内容,重新编写实验指导书,增加综合性和设计性实验。在实验中,教师首先讲解实验要点和注意事项,然后以学生操作为主,教师指导为辅进行实验,对实验结果进行当场验收并进行相关理论知识的提问,以此作为评定学生实验平时成绩的主要依据,有助于学生的实验预习和增强学生的动手积极性,鼓励学生多角度分析实验现象,检验实验数据的可靠性,规范学生实验报告,提高实验效果。实验室还提供高要求的选做实验和开放性实验,利用学院建立的RF-2000系列射频实验基地,鼓励学生自行创新设计,切实体验和探索电磁场和微波技术在工程中的应用,使学生感受理论知识与实际工程的联系,增进对基本概念的认识。

5.重视教学电子资源建设,拓宽课程信息来源

课程组利用学校教学网络设施,建设本课程的教学网站,列出该课程的教学团队情况、教学大纲、教学日历、电子教案、授课录像、实验指导书、实验大纲、思考题、习题及解答和多媒体课件等信息,鼓励学生经常点击浏览。作为随堂答疑的补充,还安排教师负责解答学生提出的疑难问题,解决学生在学习中遇到的困惑,增强学生对学习本课程的自信心,也为学生提供了一个崭新的自学环境,拓宽了本课程信息来源。

6.改革考试方式,促进考核公平公正

本课程的考试方式曾经采用开卷考试,相当一部分学生就以为只要考试时带上书本就能考好,在平时也不认真做作业和复习,实际情况是考得不是很理想。课题组教师决定改变考试方式,采用闭卷考的方式,建立20多套试题库,由于本课程的公式较多,有的公式又较繁琐,就在每套试题后面附上公式,而且公式不按照章节的先后顺序排列,比如有关相速度的公式可能就有;;;;;等公式,需要学生真正了解试题所指物理概念才能找到正确公式。期末考试时由学校教务处随机抽取试题进行考试,任课教师也不清楚具体会考什么题目,使学生打消了以前认为的平时可以不来上课,只要划重点的那节课来了就能考好的投机心理,从而重视平时按时上课,既提高了课堂出勤率,又促使学生自觉加强考前复习,改善了学习效果,促进学生考核更加公平和公正。

7.建设精品课程,提升教学水平

精品课程建设对教学质量的提高起到积极作用,已成为课程建设的重要标志。本课程积极参与精品课程建设,整合课程资源,优化教学内容体系,全面提升课题组的教学水平,在2009年经学校评审成为校级精品课程,2010年被增选为浙江省精品课程,表明该课程建设取得了良好成果,课程的教学水平也得到进一步的提升和认可。

三、结束语

课题组教师经过多年的不懈努力,“电磁场理论与微波技术”课程建设和教学实践取得了初步成效,学生对本课程的学习积极性更加主动,教学效果得到明显改善,在校内外获得了积极评价。当然,还有许多工作需要进一步完善,我们一定会在今后的教学中继续改进。

参考文献:

[1]周雪芳,钱胜,李齐良.“电磁场与电磁波”精品课程建设的探索与实践[J].中国电力教育,2011,(4):68-69.

[2]李丹美,仇润鹤,叶建芳.“电磁场与电磁波”课程教学改革探索[J].实验室研究与探索,2005,(S1):157-159.

[3]姜宇.在“电磁场与电磁波”课程中建立创新理念[J].电气电子教学学报,2009,31(1):95-96.

[4]谢处方,饶克勤.电磁场与电磁波[M].北京:高等教育出版社,1999.

微波技术论文篇7

微波是一种波长为1-1000mm,频率为300GHz~300MHz的电磁波。在食品工业中,微波常用频率为915~2450MHz。微波会与物料中的极性物质(如水分、蛋白质和脂肪等)相互作用,通过使物料极性的取向随外电磁场发生变化,造成分子急剧的摩擦和碰撞,从而在同一瞬间加热物料的各部分。相比常规加热中所采用的外部加热模式,微波利用介质损耗原理,采取内部加热的方式,通过分子极化和离子导电两个效应对物料进行直接加热。所以,微波加热具有选择性、即时性、高效性,以及热惯性小、穿透性好、加热均匀且易于控制等特点,并且微波技术的应用有利于环境保护和能源的节约。

二、微波技术在食品加工中的两种应用

1.微波技术在食品的杀菌保鲜方面的应用及其原理

食品的传统杀菌,通常可以采用高温干燥、烫漂、巴氏灭菌、冷冻以及防腐剂等常规技术来实现。但这些设备大都庞大,处理时间长,灭菌不彻底或不易实现自动化生产,同时往往影响食品的原有风味和营养成分。而微波杀菌是使食品中的微生物,同时受到微波热效应与非热效应的共同作用,使其体内蛋白质和生理活动物质发生变异而导致微生物生长发育延缓和死亡,达到食品杀菌保鲜的目的。

微波杀菌机理主要包括热效应理论和非热效应理论。热效应理论认为微波具有高频特性,当它穿透介质时,水、蛋白质、核酸等极性分子受交变电场的作用而取向运动,相互摩擦产生热量,从而导致温度升高,使微生物的蛋白质、核酸分子改性或失活,从而杀灭微生物。非热效应理论主要有细胞膜离子通道模型和蛋白质变性模型。前者认为微波对细菌的生物反应是微波电场改变细胞膜断面的电子分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此不能正常代谢,细菌结构功能紊乱,生长发育受到抑制而死去。后者认为,微生物中的蛋白质、核酸物质和水等极性分子在高频率、强电场的微波场中随着微波极性的改变而引起蛋白质分子团的旋转或振动,使其蛋白质分子变性,从而达到杀菌目的。

2.用微波技术催陈

各种酒在酿制过程中,必须在特定的条件下贮存一段时间,时间越长,酒的口感越好,即所谓“酒越陈越香”。国内现已有利用远红外、太阳能、高频电磁能、激光能、微波能等新技术处理新酒,使之加速老熟陈化过程,取得不同程度的进展,而应用最广泛、性能最可靠、效果最明显的是微波能老熟催陈技术。主要机理是:利用微波对酒的化学反应和热效应。酒液是由水、乙醇和一些其它微量成分组成,由于活度较大的自由乙醇分子的存在,使酒的辛辣味变大。而用微波处理时,在微波场的作用下,酒中的水分子和乙醇分子重新排列,更趋整齐,乙醇分子受到水分子的束缚、活度有所减少,使酒的辛辣和暴味大大减轻,这个过程比自然老熟要快得多。乙醇和水分子都是极性分子,在微波场的作用下,这些极性分子随着电场周期变化而迅速旋转,旋转次数为108次/s,促使自然老熟过程中缓慢进行的氧化还原和酯化反应得到加剧,化学反应速度加快,使醛含量降低酯类增加。经过1 min~2 min的微波照射,就能消除新酒的辛辣,减少杂味,使酒绵软爽口,醇和甘润,可能达到酒库贮存自然老熟方法所需3―6个月的效果。

三、微波技术在食品加工方面的优点

1.升温速度快、热能利用率高

常规加热法加热速度很慢。微波加热过程是微波能量与目标物质相互作用被吸收而产生热能的过程,在这个过程中,微波能够深入到物料内部而不靠物体本身的热传导进行加热,通过微波能与物料直接相互作用,使表面与内部一起加热,温度升高的速度快,加热均匀,所需的时间非常短,而且微波加热设备本身不耗热,热能绝大部分都作用在物料上,热效率高,节约能源。

2.具有杀菌,保鲜作用,产品质量高

微波可透入被加热物料内部,使物料表面与内部的温度同时升高,故加热均匀,表里一致。与传统干燥方法相比,不但加热效率高,加热时间短,而且处理温度低,能够较好地保持物料中原有物质成分,较好地保持物料中原有的色、香、味和营养物质含量,同时具有独特的杀菌优势,有利于提高膨化食品质量和产品贮藏期。

3.易于自动控制

利用微波加热,无升温过程,开机数分钟就可正常运转,如停机,只需切断电源,物料加热情况立即无条件地停止,不存在“余热”现象。

总之,微波技术在食品加工中的使用具有升温速度快、热能利用率高,可以杀菌保鲜,易于自动控制等优点。近年来微波技术的不断发展使得它在食品加工行业中的运用越来越广泛,我们还需努力研究,使其更好地为我们服务。

微波技术论文篇8

微波的理论研究起步于1900年。经过科学家几十年的不断的研究,二战时期成为微波技术蓬勃发展的时期, 在那个时候国防军事领域,雷达,也就是无线电检测的概念和理论逐步发展,因为电磁波在波导中传输中表现出的优良特性, 使得微波电真空振荡器、微波管、微波无线电的发展十分迅速。在二战之后,微波技术的研究与应用逐渐从国防军事为主转变向民用工业领域过渡,其实最具有代表性的便是家用微波炉以及工业微波炉等一系列产品的推出。人们快速的接受了这种产品,因为微波炉是一种快捷的、能量能够转化均匀的加热工具。在设计微波炉时,通常使炉腔的边长为1/2微波导波波长的倍数,并且在金属板上涂覆非磁性材料,形成谐振腔。微波经波导管输入炉腔内时,在腔壁内来回反射,每次传播都穿过和经过食物使食物加热,同时采取一定的措施使微波电场能量分布均匀。微波加热的特点就是内加热,所需时间短,不依靠热传导,均匀受热,操作简单,安全无害,节约能源。如今微波炉已经成为全世界各地广泛使用的食品加工器具。

2、微波的特点

2.1 波长短

微波是一种波长范围在1mm-1m的电磁波。可细分为米波、分米波、厘米波、毫米波。它的波长和频率如表格所示:

微波具有似光性,如表格所知,波长很短,具有直线传播的性质。根据似光性,制作出的天线系统具有良好的方向性,可以接收不同的波段。这样,几十空间或地面发出的微弱回声也不担心接收不到,因此可以通过微波来确定该物体的方向和距离。因此微波技术在雷达、导航和通信,广播中得到了广泛的应用。

2.2 频率高

由2.1的表格可以看出微波的微波的频率很高,周期和频率乘积恒为一,因此振荡周期很短。它的频率由产生微波的电子线路参数决定的。根据实验得知,我们需要将微波固体器件、微波电子管替代一般的电子管,用作放大器,衰减器,隔离器。因为频率越高,损耗也随之提高,携带的信息也越来越丰富。微波传输的波长跟线度很像,容易被阻断,所以我们更加需要使用不同的元器件来替换分立的电容器、电感器以及电阻器等。

2.3 穿透能力强

一定频带的微波可以穿入到介质内部,而微波的能量可以通过地球上的空电离层不断被吸收,对于水来说也是会被吸收产生热能。所以利用微波技术可以实现宇宙导航并且为医疗电疗的研究和开发提供了便利。

2.4 非电离性

微波的量子能量很低,非向前散离可以忽略,这样的能量不足以提供改变分子之间的内部结构的能力,因此可以说明物体和微波之间的电离的程度很低。

2.5 量子特性

很多原子和分子能级间所要吸收跃迁辐射出来的波长刚好处在微波频段的中,人们利用这种量子特性研究原子和分子的结构,发展一系列学科以及边缘学科,比如量子无线电物理,量子光学,量子通信,微波光谱等等。

3、微波技术的现代运用

3.1微波加热原理与微波炉

微波炉由很多的器件组成,其中最为主要的就是微波发生器,又称作磁控管,包括微波管和电源。微波产生的交变磁场可让食物极化,电源提供稳定的连续波微波功率,在高频交流的电磁效应下,极性分子在磁场中交替排列,每秒的微波振动可达数亿次。这种振荡让分子不停的运动,分子之间产生摩擦,使分子获得高能,在食品释放大量的热,从而使得实物均匀受热。所以使用微波必须注意的是食物需要有水分,否则将无法加热。微波只在炉腔内传播,金属外壳可以隔绝电磁波而避免辐射。

3.2 微波通信

微波通信是1950年左右的产物,[1]当时由于其通信频带宽、一次性投入大但后期低、施工方便、建设速度快等一系列优点而取得了快速的发展。此外,微波通信抗灾能力强,它不会太受风、水的灾害带来的影响。即使有天灾人祸,微波通信一般不会受到干扰。因为微波的频率高波长短,遇到阻挡就会被反射或被阻断,所以微波在空中传送的过程中会受到干扰。因此不能在同一方向上使用频率相同的微波,微波电路的建设须在管理部门的严格管理下进行。因为离散度与频率选择性衰落的影响,又没有好的方法去解决问题,因此数字微波技术就此中断。因此在1980年左右,数字微波传输技术发生了突破性的变化。而到九十年代,由于自适应编码调制解调技术的发展,在各地建立的中继站,再加上微弱信号检测的迅速发展,所以今天的移动通信传输才可以得到广泛的运用。在1980年至1990年间,自适应编码调制和解调技术与信号处理和信号检测技术快速发展,今天,带宽越来越大,从有线到无线的发展,甚至高品质记录的多领域的信号设计与处理等的应用,发挥了重要的作用数字微波技术在目前来说有着广阔的发展空间及应用前景, 需要因地制宜的安排不同传输手段,在某些领域,微波技术还占据着不可忽略的重要地位。

3.3 工业微波技术

微波技术目前也在材料的合成、微波解冻、冶金矿物、杀菌、垃圾处理、微波萃取、样品分析等领域发挥着主要的作用。微波技术在无机合成材料的研究,已取得良好的进展,主要是在硬质合金、导体材料,锂电池正极材料、高温材料,合成金刚石、沸石分子筛、陶瓷材料等方面。并且具有低能源消耗、速度快、合成温度低等一些了性能特点。[2] 微波技术在矿石预处理、金属氧化物矿的碳热还原的应用,具有能耗低、速度快、浸出率高、产品性能优良和环境效益好等特点。可以想象,在矿产冶金能源消耗大的领域中,微波技术带来的影响将是难以估计的,在这个领域中,这样的发展前景将带来的是巨大的经济效益。微波技术还可以用于处理工业污泥,对医疗垃圾进行灭菌。处理电子垃圾,建筑垃圾,生活垃圾等等。常规使用处理垃圾的方法比如说焚烧,填埋等,这些方法都有可能产生二次污染。而人们经过长期努力发明了微波处理污染的技术,既解决了常规处理带来的一系列问题,保护了环境,操作时间短,又节省了处理的费用,可谓是一举数得。微波技术与传统技术相比较,具有操作简单,该效率,保证了国家绿色经济和可持续发展的政策。不易造成二次污染,减少能源的损耗和治疗的费用,解决了常规治疗,如堆肥,焚烧,填埋,投资,占地面积大的而带来的问题。综上所述,微波处理废物快速,高效,工艺流程简单,能耗低,成本低,资源回收利用率高和环境效益好,有很好的应用前景。越来越多的人开始关注微波技术,目前,微波技术已经开始在国内开始广泛推广。此外,微波技术也被用于在食品安全的鉴定、石油原油的开采、环境、化妆品、调味品和合成的材料的处理等等方法。

3.4 军用微波技术

微波和无线电道理一样,密闭金属可屏蔽,微波也被称为无线电频率武器。战争中的微波强度很大,基本上没有武器可以阻止它,在现代的战争中运用也越来越频繁,微波武器通常通过长距离的对光电设备的干扰,使仪器出现问题,最后引爆仪器,达到直接摧毁仪器的目标,在战争中,微波的作用更加不容忽视。微波武器与激光武器相比,激光采用的是高强度激光产生的热能去摧毁一切事物,分子间的相互摩擦越来越快,使得电磁的能量转化成为热能,微波的波束宽,波长短,频率高,不受灾害天气的影响。其杀伤机理可分为“非热效应”和“热效应”两种。所有的内侧和外侧在同一时间产生热量,以突然产生高温,火力易于控制,从而使敌方对抗措施更加困难和复杂化。微波武器的工作机制是根据微波和照射对象,选择不同的频率,其实是用频率低的较低轻型微波武器,主要作为战争中的武器来用。与此之外,还有一种频率较高的高能微波武器,这种武器杀伤力较大,毁灭性强,所以一般不经常出现在战争中,更多的是作为一种研究。

作为微波武器,还有一点至关重要,就是使用什么去发射不同频率的微波,在战争中,通常使用的是飞机,航母舰艇,甚至是卫星。这样的话,可以从天上,陆地,海面各方为发动攻击。让敌方的飞机,计算机等设备统统被摧毁,特别是指挥和通信的部位,作战网络的联系信息以及其他重要信息战的关键部位。一旦目标遭受物理损伤就会丧失战斗力,且其受损伤的部位不能被修复。作为世界前列的军事强国,中国一直高度关注微波武器、大型激光武器,在几代科学家一直在努力研发各种武器,近几十年的辛苦打造,中国的微波武器和激光武器已经开始投入使用。

4、微波技术的展望

虽然在各个领域,微波技术已经有了广阔的前景,但是目前,微波技术的运用仍停留在实验的积累,而且需要验证准确的检测方法,我们需要在巩固加强理论研究的同时,进行各系列的实验,完善各种理论,从而可以造出更多适合国防军事或者用民用的微波仪器设备。微波技术已经在多方面展现出它的魅力,我们需要将它完全融入生活,我们通过多方面的研究成果可以得知,微波技术可以在未来的几十年之内成为常规的工业生产以及其他很多领域的技术。但是就我们所知的是,由于微波的特殊性,目前还没有一个科学家找到一个合理的理论来解释,所以微波技术在某些领域仍然存在盲点。微波技术的应用目前仍处于一个巨大的转折点中,发展的可塑性很强,世界范围军事变革需求强力牵引,各国开始研发微波武器,成为新一代军事国家。而民用发面,微波处理材料、大型工业微波炉等一系列令人兴奋的实验室研究成果已经出炉。走向产业化的迫切需要,一系列的研究成果会逐步实现现代化、工业化,对中国的经济建设作出了巨大的影响。深度的微波技术的应用和发展是非常重要的,因为只要通过正确的理论指导,与实践才可以出成果。在我国,微波技术应该引起关注,预计理论研究带来的突破性进展会指引真正意义上微波技术应用时代的到来。

微波技术论文篇9

为了培养学生的实践能力,提高学生的就业能力,使学生的综合素质和人才市场需要相接轨,普通高校都重视学生实践能力的培养,[1,2]并增加相应实验实践类课程的设置。微波技术是通信工程专业必不可少的专业基础课,也是一门重要的专业基础课。[3]近些年,随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。[4]微波技术广泛的应用也带动了就业市场的需求。由于微波技术领域的特殊性,目前社会上招聘微波工程师和射频工程师的岗位都要求应聘者具有丰富的实践经验,能够熟练使用微波设计与仿真软件进行仿真优化设计,能够熟练使用常规的射频及微波仪器设备等。[5]为了培养微波技术领域的高素质应用型人才和卓越工程师,需要在实践和创新方面加强对学生的培养。

实践教学是微波技术课程的重要组成部分。利用ADS软件构建涵盖传输线理论,Smith圆图和微波网络等内容的仿真实验可以使学生较好地掌握微波技术的基本原理,加深学生对微波器件基本参数的认识和掌握。在微波技术基本实验的基础上可以引导学生进行扩展实验,进一步研究,这样有利于培养学生的实践能力、设计能力和创新能力。

一、传输线理论仿真实验

传输线理论是微波技术的基础。传输线理论即分布参数电路理论是学生接触微波技术的切入点,也是入门点。因此,全面理解掌握传输线理论也是学习后续课程内容的关键。传输线理论重点是要学生把传输线的等效电路理解好,并能正确分析信号在其上面的工作状态。在学生已经有了输入阻抗、反射系数、驻波比的一般概念后,我们给出了广义无耗传输线上的仿真实验。广义无耗传输线更符合实际应用情况,即最普遍的情况是电路的两端均不匹配,因此实验更具有一般性和实际应用的价值。根据广义无耗传输线理论,在传输线两端均匹配,仅源端匹配和仅负载端匹配三种情况下负载端的电压分别为:[6]

其中,Vs为信号源激励电压,Zs为信号源内阻,Z0为特性阻抗,为负载处反射系数。

利用ADS软件可以仿真广义无耗传输线上的电压波形。ADS仿真模型如图1(a)所示,激励源信号的频率为1GHz,电压幅度为1V,激励源内阻为R1,负载阻抗为R2,传输线的特性阻抗为50Ω,当源端匹配而负载阻抗为100Ω时,传输线输入端电压V1和负载处电压V2的仿真结果如图1(b)所示,从图中可以看出V2叠加了反射的电压,与式相吻合,可以继续改变激励源内阻和负载阻抗,得到其他两种情况下传输线输入端电压和负载上电压的对比,从中可以直观地验证广义无耗传输线理论。在此基础上,可以进一步指导学生仿真传输线两端均不匹配情况下的电压波形,使之理解波在传输线上的来回反射。并给学生提出为什么会出现来回反射这一问题,引导学生独立思考,为学生自己设计微波电路做好理论的铺垫。

二、Smith圆图与阻抗匹配实验

Smith圆图是微波技术课程的重要内容,也是学生掌握阻抗匹配的工具。Smith圆图主要用于计算微波网络的阻抗、导纳及网络阻抗匹配设计等,还可用于设计微波元器件等。[7]利用ADS中的Smith圆图工具可以直观地进行阻抗匹配。图2为ADS软件中的Smith圆图工具。为了简单起见,设置传输线特性阻抗为50Ω,负载阻抗为75Ω。图2给出了负载和传输线进行匹配的结果。匹配结果可以从多个角度得到并验证,图3中右下角给出了匹配的网络原理图,即此时可在负载端并联一个电阻;图2中右上角给出了匹配后网络的S参数;在图2左面的Smith圆图中可以看到匹配的最终结果。由于利用Smith圆图进行匹配是一个动态的过程,因此在改变参数的过程中可以随时关注匹配的效果。在Smith圆图上既可以考虑源端匹配也可以考虑负载端匹配,特别是对于同一个匹配问题可以有不同的解决方案。在此基础上可以指导学生应用Smith圆图工具进行单支节匹配和双支节匹配等内容的练习,以加深学生对Smith圆图的认识和掌握,为微波电路及微波器件的设计奠定基础。

三、微波网络S参数仿真实验

散射矩阵即S参数是描述微波网络特性的一种重要矩阵形式,也是微波网络的特色之一,对散射矩阵概念的理解与应用是微波技术课程微波网络部分的一个重点和难点。[8]本部分可以通过一些仿真实例来使学生理解S参数。图3(a)给出了两条平行耦合微带线(四端口网络)的S参数仿真模型。当两条微带线距离很近时,由于电磁场的相互作用会产生耦合,应用平行耦合微带传输线可以构建多种类型的微波滤波器,因此本节实验来仿真两条平行耦合微带线的S参数。构建PCB板上长为4inch,线宽为40mil,线间距为40mil的两条平行微带线,并使其各个端口均匹配。S参数仿真结果如图3(b)所示,图中给出了频率在100M~3GHz范围上的S(2,1)和S(4,1)参数,从图中可以看出微带线的传输特性和耦合特性。由于所仿真的四端口网络具有互易性和对称性,因此查看其他S参数,会发现S(2,1)与S(1,2)一致,S(3,4)与S(4,3)一致,S(3,1)与S(1,3)一致,S(4,1)与S(1,4)一致。

根据这个仿真模型和结果可以引导学生再进行实验和研究。比如,实际上S(3,1)参数为两条平行耦合微带传输线间的近端串扰,S(4,1)参数为两条平行耦合微带传输线间的远端串扰。串扰是噪声,对于高速电路的设计者来说,如何抑制串扰就是一个问题。把抑制串扰这个问题抛给学生,使之思考,就会激发他们的学习兴趣和研究潜能。

四、结论

基于ADS软件的微波技术仿真实验既可以使学生掌握微波仿真软件的使用,也可以增强学生理解相关理论的能力。特别是通过引导学生在基本实验的基础上再进行扩展实验,可以激发学生的学习兴趣和研究潜能,提高他们解决实际问题的综合能力。在北京信息科技大学通信工程专业实施“卓越工程师教育培养计划”中,物联网是三个培养方向中的一个,其中的射频电路设计和射频识别技术等课程就需要学生有较好的微波技术基础,因此微波技术实践教学的地位将更加突出,基于ADS软件的微波技术仿真实验方案将为北京信息科技大学“卓越工程师教育培养计划”的实施奠定基础。

参考文献:

[1]吕淑平,马忠丽,王科俊,等.基于创新型工程科技人才培养的实验教学体系建设与实践[J].实验技术与管理,2012,29(7):133-135.

[2]张发爱,吴志强,刘来君,等.以重点实验室为平台,培养地方性工科大学生的实践和创新能力[J].实验技术与管理,2012,29(7):5-7.

[3]夏祖学,李少甫,胥磊.《天线与微波技术》课程的教学改革研究与实践[J].实验科学与技术,2013,11(6):49-51.

[4]孙凤坤,邢泽炳.微波技术原理及其发展与应用[J].科技创新与应用,2014,(6):3-4.

[5]全绍辉.构建“微波技术”课网上教学和实验实践学堂[J].实验技术与管理,2012,29(12):159-163.

微波技术论文篇10

1 引言

我国历史悠久,土地辽阔,蕴藏着极丰富的中草药天然资源,在远古时代人们就已经开始利用各种中草药治病,如常山治疟疾,桦树皮止痛,都证明有很好的疗效。同时大量临床试验表明,相比人工合成药物,中草药的副作用小得多。免费论文。因此,传统药物尤其是中草药,在欧、亚、美等各洲越来越受到欢迎和重视。免费论文。

中药材一直是我国出口创汇的重要商品。目前我国中药材出口已扩展到世界130多个国家和地区,2008年出口金额为13.09亿美元,同比增长10.94%。但是在我国中药材出口贸易不断扩大、面临良好机遇的同时,也面对着一些随之而来的挑战,造成这种局面的主要原因之一就是中药材的质量问题。传统中药材干燥加工过程中所造成的性味劣变、生物活性物质(特别是药用有效成分)的损失以及安全性等问题,正是目前我国中药材面临的主要问题。在国际市场对中药材质量要求提高的同时,我国的中药材生产、产地加工相对不够规范,产品外观、色泽劣变、有效成分含量低。微波干燥由于具有干燥速度快、干燥均匀、产品质量好、可以选择性加热干燥、热效率高、反应灵敏等优点,而日益成为重要的中药材干燥方法之一。

2中药材干燥方法

我国对中药材干燥方法的研究已经有很长历史。早在公元1~2世纪左右,我国现存最早的中药材专著《神农百草经》中已有对中药材“阴干、曝干、采造时日、生熟土地所出”等有关干燥方面的记载[1]。唐代孙思邈著《千金翼方》一书中也有“夫药采取,不以阴干曝干,虽有药名,终无药实”等具体描述[2]。这是最经济的方法,成本较低。但是存在着许多工艺上的问题,如干燥时间长、有效成分破坏大、遇到阴雨天气容易霉烂变质、易被灰尘、蝇、鼠污染等缺点。

现代中药材干燥技术为了保证中药材药性及有效成分,在人工控制条件下,对中药材进行适当的干燥处理,包括常压或减压环境中以传导、对流、辐射方式或在高频电场内加热使之干燥,以促进水分蒸发,达到要求含水率,保持较高的产品品质,便于包装、储藏、运输。目前常采用干燥技术包括:烘房干燥、厢式烘干机、网带式干燥机、隧道式干燥机、翻版式干燥机、振动流化床干燥。上述几种方式多采用热风干燥原理,生产成本较低,因此广为采用,但有效成分损失也大,甚至有严重的品质衰退现象。另外,中药材干燥前需要适当的预处理,但由于程序较繁杂、费工时,实际干燥生产中往往不重视;干燥过程自动化程度不高,不能分时间段对中药材的含水率、水分活度,以及干燥介质的温度、湿度、流速进行自动监控,都造成干燥品质不佳、最终含水率不符合要求,严重地影响中药材产品的品质。

随着新型干燥技术及设备的开发及应用,人们对中药材干燥质量的提高、能量单耗的降低、操作的可靠性都提出了更高的要求,干燥将朝着提高产品质量、有效利用能源、减少环境影响、运用计算机提高自控水平、操作简单等方向发展。结合当前中药材的特性,正在开发研制的干燥技术主要有:真空冷冻干燥、微波干燥、远红外干燥、热泵以及太阳能干燥。真空冷冻干燥与其工艺相比,设备昂贵,加工成本高,但它是保证中药材干燥品质的较佳工艺,增值率高,将被十分广泛地应用到生产实际中去;微波干燥作为一门先进工艺,技术上是可行的,但生产成本较高,使用时还对监控手段和供电条件有苛刻的要求,所以尚未能大规模应用;远红外干燥设备简单,辐照均匀,干燥速度快,干燥时间为热风干燥的1/10左右,生产效率高,可连续操作,实现温度、风量、进料的自动控制 ,不会引起中药材物理结构的变化,较好地保持性味及有效成分,因此在实际干燥生产中普遍应用;热泵干燥能够很好地保障干燥产品的品质,中药材的颜色、外观形态和有效成分等在热泵干燥都能得到妥善的保护,其还有不污染环境、操作方便等优点,因此越来越受到中药材干燥行业的重视;太阳能干燥是取之不尽,用之不竭且无污染的能源,中药材采用太阳能干燥可以取得较好的经济效益。

3微波技术在中药材干燥的应用

随着微波技术的发展,微波干燥技术在中药领域的应用得到一系列的进展,尤其是在中药材干燥灭菌上。卢鹏伟等对六味地黄丸进行微波干燥与烘箱干燥比较,发现微波干燥时丹参酚含量损失率平均降低2.4%,灭菌率平均提高1.9倍[3]。鞠兴荣等对不同微波功率条件下银杏叶的干燥规律和对有效成分含量的影响进行了初步研究,结果不同的微波功率对干燥速率影响比较大,脱水恒速期结束时银杏叶的水分含量在10%左右,过高强度的微波辐射导致黄酮苷和萜类内脂等主要有效成分部分降解[4]。杨张渭等把微波干燥灭菌工艺试用于丸剂生产,用微波干燥灭菌工艺对水丸、水蜜丸、和浓缩水蜜丸3种丸剂类型的5种产品进行试验,结果表明成品的形状、溶散时限、水分、微生物限度检查等质量指标均符合标准规定。一般干燥250—300kg丸药,耗电仅83kw,能源利用率达到70%,将微波频率控制在2450 MHz,时间为1.5min,对5个批号的玄驹胶囊进行微波灭菌,细菌平均降低率为98.11%[5]。王茂学利用改进的实验室微波炉进行人参干燥,提出微波与热风干燥相结合,能有效地保护人参的干燥质量,有效成分总皂贰含量损失小,且在自然对流的情况下,干燥的时间仅为热风干燥的1/10~1/5[6]。王绍林认为采用微波——真空冷冻干燥人参,微波能量达到物料深层转换成热能,使深层水分迅速蒸发形成较高的内部蒸汽压,表里温升均匀,消除了干燥表层常见的皱皮萎缩现象[38]。免费论文。

4 基于微波技术的中药材干燥设备

采用微波进行中药材干燥是指利用微波能量使中药材内水分气化的过程。微波加热穿透性强,能使中药材表里温升均匀,微波能量达到中草药物料深层转化为热能,使深层水分迅速蒸发形成较高的内部蒸汽压,消除干燥表层常见的皱皮萎缩现象,较好的保护干燥品质,这是常规加热干燥所不及的。同时微波还对物料伴随着生物效应(非热效应),在较短时间内杀死虫卵和大肠杆菌等微生物。

微波干燥设备主要有直流电源、微波管、传输线或传导、微波炉及冷却系统等几个部分所组成。如图1-1所示:

5 结语

在中药材干燥质量方面,和其他技术相比,微波技术有明显的优势。但应用微波技术进行中药材干燥,也有很多不足之处且技术比较不完善。随着技术的发展,这些不足之处必会逐步被克服,或许会有更先进的技术将应用于中药材干燥。

参考文献:

[1] 陈重明. 本草书[M]. 南京:南京工业出版社,1994

[2] 孙思邈. 千金翼方(卷一)[M]. 北京:人民医生出版社,1982

[3] 卢鹏伟, 杨晨华, 何颖等. 浓缩六味地黄丸两种不同干燥方法的比较[J]. 河南大学学报,2002,21(4):21~22

[4] 鞠兴荣, 汪海峰. 微波干燥对银杏叶中有效成分的影响[J]. 食品科学, 2002, 23(12):56~58

[5] 杨张渭, 周定君, 任琦等. 微波干燥灭菌工艺在丸剂生产中的应用[J]. 中成药, 2000, 22(7): 468~469

微波技术论文篇11

我国历史悠久,土地辽阔,蕴藏着极丰富的中草药天然资源,在远古时代人们就已经开始利用各种中草药治病,如常山治疟疾,桦树皮止痛,都证明有很好的疗效。同时大量临床试验表明,相比人工合成药物,中草药的副作用小得多。免费论文。因此,传统药物尤其是中草药,在欧、亚、美等各洲越来越受到欢迎和重视。免费论文。

中药材一直是我国出口创汇的重要商品。目前我国中药材出口已扩展到世界130多个国家和地区,2008年出口金额为13.09亿美元,同比增长10.94%。但是在我国中药材出口贸易不断扩大、面临良好机遇的同时,也面对着一些随之而来的挑战,造成这种局面的主要原因之一就是中药材的质量问题。传统中药材干燥加工过程中所造成的性味劣变、生物活性物质(特别是药用有效成分)的损失以及安全性等问题,正是目前我国中药材面临的主要问题。在国际市场对中药材质量要求提高的同时,我国的中药材生产、产地加工相对不够规范,产品外观、色泽劣变、有效成分含量低。微波干燥由于具有干燥速度快、干燥均匀、产品质量好、可以选择性加热干燥、热效率高、反应灵敏等优点,而日益成为重要的中药材干燥方法之一。

2中药材干燥方法

我国对中药材干燥方法的研究已经有很长历史。早在公元1~2世纪左右,我国现存最早的中药材专著《神农百草经》中已有对中药材“阴干、曝干、采造时日、生熟土地所出”等有关干燥方面的记载[1]。唐代孙思邈著《千金翼方》一书中也有“夫药采取,不以阴干曝干,虽有药名,终无药实”等具体描述[2]。这是最经济的方法,成本较低。但是存在着许多工艺上的问题,如干燥时间长、有效成分破坏大、遇到阴雨天气容易霉烂变质、易被灰尘、蝇、鼠污染等缺点。

现代中药材干燥技术为了保证中药材药性及有效成分,在人工控制条件下,对中药材进行适当的干燥处理,包括常压或减压环境中以传导、对流、辐射方式或在高频电场内加热使之干燥,以促进水分蒸发,达到要求含水率,保持较高的产品品质,便于包装、储藏、运输。目前常采用干燥技术包括:烘房干燥、厢式烘干机、网带式干燥机、隧道式干燥机、翻版式干燥机、振动流化床干燥。上述几种方式多采用热风干燥原理,生产成本较低,因此广为采用,但有效成分损失也大,甚至有严重的品质衰退现象。另外,中药材干燥前需要适当的预处理,但由于程序较繁杂、费工时,实际干燥生产中往往不重视;干燥过程自动化程度不高,不能分时间段对中药材的含水率、水分活度,以及干燥介质的温度、湿度、流速进行自动监控,都造成干燥品质不佳、最终含水率不符合要求,严重地影响中药材产品的品质。

随着新型干燥技术及设备的开发及应用,人们对中药材干燥质量的提高、能量单耗的降低、操作的可靠性都提出了更高的要求,干燥将朝着提高产品质量、有效利用能源、减少环境影响、运用计算机提高自控水平、操作简单等方向发展。结合当前中药材的特性,正在开发研制的干燥技术主要有:真空冷冻干燥、微波干燥、远红外干燥、热泵以及太阳能干燥。真空冷冻干燥与其工艺相比,设备昂贵,加工成本高,但它是保证中药材干燥品质的较佳工艺,增值率高,将被十分广泛地应用到生产实际中去;微波干燥作为一门先进工艺,技术上是可行的,但生产成本较高,使用时还对监控手段和供电条件有苛刻的要求,所以尚未能大规模应用;远红外干燥设备简单,辐照均匀,干燥速度快,干燥时间为热风干燥的1/10左右,生产效率高,可连续操作,实现温度、风量、进料的自动控制 ,不会引起中药材物理结构的变化,较好地保持性味及有效成分,因此在实际干燥生产中普遍应用;热泵干燥能够很好地保障干燥产品的品质,中药材的颜色、外观形态和有效成分等在热泵干燥都能得到妥善的保护,其还有不污染环境、操作方便等优点,因此越来越受到中药材干燥行业的重视;太阳能干燥是取之不尽,用之不竭且无污染的能源,中药材采用太阳能干燥可以取得较好的经济效益。

3微波技术在中药材干燥的应用

随着微波技术的发展,微波干燥技术在中药领域的应用得到一系列的进展,尤其是在中药材干燥灭菌上。卢鹏伟等对六味地黄丸进行微波干燥与烘箱干燥比较,发现微波干燥时丹参酚含量损失率平均降低2.4%,灭菌率平均提高1.9倍[3]。鞠兴荣等对不同微波功率条件下银杏叶的干燥规律和对有效成分含量的影响进行了初步研究,结果不同的微波功率对干燥速率影响比较大,脱水恒速期结束时银杏叶的水分含量在10%左右,过高强度的微波辐射导致黄酮苷和萜类内脂等主要有效成分部分降解[4]。杨张渭等把微波干燥灭菌工艺试用于丸剂生产,用微波干燥灭菌工艺对水丸、水蜜丸、和浓缩水蜜丸3种丸剂类型的5种产品进行试验,结果表明成品的形状、溶散时限、水分、微生物限度检查等质量指标均符合标准规定。一般干燥250—300kg丸药,耗电仅83kw,能源利用率达到70%,将微波频率控制在2450 MHz,时间为1.5min,对5个批号的玄驹胶囊进行微波灭菌,细菌平均降低率为98.11%[5]。王茂学利用改进的实验室微波炉进行人参干燥,提出微波与热风干燥相结合,能有效地保护人参的干燥质量,有效成分总皂贰含量损失小,且在自然对流的情况下,干燥的时间仅为热风干燥的1/10~1/5[6]。王绍林认为采用微波——真空冷冻干燥人参,微波能量达到物料深层转换成热能,使深层水分迅速蒸发形成较高的内部蒸汽压,表里温升均匀,消除了干燥表层常见的皱皮萎缩现象[38]。免费论文。

4 基于微波技术的中药材干燥设备

采用微波进行中药材干燥是指利用微波能量使中药材内水分气化的过程。微波加热穿透性强,能使中药材表里温升均匀,微波能量达到中草药物料深层转化为热能,使深层水分迅速蒸发形成较高的内部蒸汽压,消除干燥表层常见的皱皮萎缩现象,较好的保护干燥品质,这是常规加热干燥所不及的。同时微波还对物料伴随着生物效应(非热效应),在较短时间内杀死虫卵和大肠杆菌等微生物。

微波干燥设备主要有直流电源、微波管、传输线或传导、微波炉及冷却系统等几个部分所组成。如图1-1所示:

5 结语

在中药材干燥质量方面,和其他技术相比,微波技术有明显的优势。但应用微波技术进行中药材干燥,也有很多不足之处且技术比较不完善。随着技术的发展,这些不足之处必会逐步被克服,或许会有更先进的技术将应用于中药材干燥。

参考文献:

[1] 陈重明. 本草书[M]. 南京:南京工业出版社,1994

[2] 孙思邈. 千金翼方(卷一)[M]. 北京:人民医生出版社,1982

[3] 卢鹏伟, 杨晨华, 何颖等. 浓缩六味地黄丸两种不同干燥方法的比较[J]. 河南大学学报,2002,21(4):21~22

[4] 鞠兴荣, 汪海峰. 微波干燥对银杏叶中有效成分的影响[J]. 食品科学, 2002, 23(12):56~58

微波技术论文篇12

一、俄亥俄州立大学电磁场与微波技术专业课程体系基本情况

美国俄亥俄州立大学的电磁场与微波技术学科在美国处于领先水平,其讲授的课程大致分为两大类。

第一类侧重电磁场基础理论,相关的n程包括:1)电磁场理论I,II,III(ECE719,ECE810,ECE811):主要讲授Maxwell方程及方程的经典解析解法等。2)电磁导波(ECE812):主要讲授如何求解波导和平面传输线中的导行电磁波。3)高等电磁场理论(ECE815):主要讲授电磁波的传播和散射理论,包括高频近似方法、波在各向异性介质中的传播等。4)随机媒质和粗糙表面的散射(ECE816):主要讲授基于统计模型的媒质散射理论,包括独立散射、辐射转移理论和解析波理论等。

第二类偏向于技术与工程应用,相关课程包括:1)微波电路(ECE710):主要讲授微波线性无源器件以及微波电路的计算机辅助设计和加工测量。2)非线性微波电路(ECE694):主要讲授微波非线性电路设计,如低噪声放大器,功率放大器等。

与天线相关的课程包括:1)天线的辐射(ECE711):主要讲授线天线、反射面天线、透镜天线等天线的特性以及阵列天线的性质。2)高等天线理论(ECE815):主要讲授阵列天线的方向图综合以及天线的测量等。3)无线系统的天线与传播(ECE613):主要讲授无线基站中的天线设计、城市与郊区的电波传播模型等

与课堂授课相配套的有两门实验课,包括:1)电磁实验(ECE517):实验内容主要包括微波无源器件与天线的设计、实现与测量。2)微波晶体管放大器与振荡器实验(ECE723):实验内容包括低噪声放大器、功率放大器、宽带放大器和振荡器的设计、实现与测量。

另外一些比较重要和值得关注的课程主要有:1)实践性课程,如Individual study in ECE等,这些课程一般包括项目的撰写、现代设计工具的使用、系统设计与实现以及项目研究情况报告。2)企业实习经验交流课程(ECE489),要求学生就实际的实习工作经历准备一份报告,目的是提供一个相互交流的平台,让学生之间分享工作经历和体验。

从以上课程设置可以看出,俄亥俄州立大学电磁场与微波技术专业的课程体系比较完备,从授课课程到实验实践课程均有覆盖,同时注重基础理论的学习和实践能力的培养,形成了较为科学、完备的体系。

二、我校电磁场与无线技术专业课程体系基本情况

南京邮电大学是国内为数不多的在本科阶段即开设电磁场与微波技术专业的院校之一,该专业在本科阶段称为电磁场与无线技术,下面概括介绍下课程的设置情况。

本科阶段,电磁场基础理论课程主要有电磁场理论,课程侧重于电磁场基础理论。其他课程则偏重工程技术与应用,如微波技术基础、微波网络和射频电路课程,分别讲授微波无源和有源电路的理论与设计;天线理论与设计课程则讲授常见天线如线天线、微带天线等的特性与设计;微波电路EDA课程主要讲授微波电路的计算机辅助设计方法;微波与天线测量则讲授常见微波测量仪器的结构和测量方法;电波传播理论课程主要讲授在各种环境下电磁波的传播特性;电磁兼容课程主要讲授电磁兼容的基本概念和原理以及常用的电磁兼容技术。射频电路、微波电路EDA、微波与天线测量、电磁兼容等课程均设有课内的实验课,在帮助学生消化所学知识的同时也培养他们的动手能力。此外,每学期还设有课程设计,通过课程设计可以培养学生用所学知识解决实际问题的能力以及团队合作精神。

在研究生阶段的课程主要有高等电磁场、电磁场数值方法、微波技术、射频电路理论与设计、天线CAA与CAD等。

我校电磁场与无线技术专业成立较早,所以经过多年的发展,课程体系的设置比较完备,基本涵盖了本学科的基础知识范畴,能够保证学生掌握较完善的专业基础知识,毕业后能够从事相关工程和科研工作。但还存在着一些不足之处,如课程中电磁场理论部分所占比重不足,坚实的电磁理论基础是进行科研和工程开发的必备条件,然而在本科阶段只有电磁场理论一门课程,在研究生阶段也只有高等电磁场和电磁场数值方法两门课程,其他课程基本是面向工程应用的。此外,对实践动手能力的培养也有待加强,由于实验条件的不足,造成很多学生需要合用一台仪器,每个学生平均实践时间不足。另外,由于学校的课程设置调整,专业课的课时基本都压缩至32学时,造成授课内容基本上是浅尝辄止,无法深入。

三、对我校电磁场与无线技术专业建设的几点思考

我校的电磁场与无线技术专业经过多年的发展,在课程设置和实验条件建设等方面都取得了一定的进步,但与美国知名高校如俄亥俄州立大学还存在不小的差距,甚至与国内的设置类似专业的高校如电子科技大学等高校也存在一定的差距。结合上述我校与俄亥俄州立大学各自在课程体系方面的特点,针对我们电磁场与无线技术专业的特点与不足,对其建设与发展提出几点思考:

1.增加基础理论方面的内容:由于电磁场理论涉及数学知识较多,学生在学习时普遍反映课程内容较难,因此在课程设置上电磁场理论相关的教学内容比重较少,然而电磁场理论是其他相关专业课程的基础,因此有必要加大基本电磁理论方面的比重。参考俄亥俄州立大学的课程设置,其电磁场理论课程在整个课程体系中占了很大的比值,授课内容也由浅入深,从基本的电磁场理论到复杂的电磁散射问题均有覆盖。此外,可以增开计算电磁学方面的课程,这方面课程一方面可以巩固电磁场基础理论学习,另一方面,可以锻炼学生编程能力和使用商业电磁软件的能力。

2.课程合并和增加课程学时:由于课程设置调整压缩了专业课课时,导致本专业的专业课学时明显不足,授课内容只能一再压缩,这并不利于培养学生的专业能力。所以,在不改变其他课程学时的前提下,只能将部分专业课合并,同时增加授课课时。因为有些课程在授课内容上有所重叠,完全可以将这些课程进行合并,如微波网络和微波技术课程,两门课都会涉及微波网络方面的内容,所以可以将这两门课合并,同时将课时增加到48学时。这些在授课内容上有所重叠的课程合并后,虽然课程数量减少了,但课程学时增加,课程深度可以适度增加,有利于学生的专业能力培养。

3.加强实验和实践环节。由于微波仪器价格昂贵,导致实验教学资源紧张,很多时候需要很多学生合用一台仪器,实验效果较差。为了克服这方面的不足,可以自行研发相关的实验仪器,作为教学实验用,仪器满足基本需要即可,这样减低了仪器的成本,可以让学生人手一台,保证了每个学生有充分的实践动手时间。

参考文献:

[1]付云起,袁乃昌.俄亥俄州立大学电磁场与微波技术专业及课程体系浅析[J].高等教育研究学报,2011,34(1).

[2]彭麟,姜兴.中美高校电磁场教学比较研究[J].中国电力教育,2014,(17).

微波技术论文篇13

为了突破这种传统加热方式的局限性,国际上的一些国家的科研人员,已经在研究和应用一种新型的微波炉加热快速分解试样的新技术,并取得了一定的研究成果。在最初的研发阶段,该种加热技术主要应用于敞口系统中,而随着该技术的不断发展,目前已经实现了微波能加热与热压分解技术的结合。微波能加热的最主要的优点是受热物内外瞬间一起加热,速度快且热损耗小,热能利用率高。近些年我国的化学分析专业人士对于该技术也进行了一定的研究,先是何华生及钱鸿森对微波能加热及其在国民经济发展中的应用作过相关的介绍,而后李明等首次在国内应用微波分解矿样,另外,张玉祥在论述近代分析化学的新进展中,也把微波能技术推荐为重要的新进展之一。同时还有,吴瑞林在对难溶试样热压分解法的论述中,指出微波加热是改进热压分解法的一种重要途径。所以,基于以上这些学者的研究和论述,笔者将在本文中重点对微波能分解岩石、矿物在化学分析中的应用进行阐述。

一、微波能加热原理

微波加热系统的主要工作原理是:用直流电源可提供微波发生器的磁控管所需的直流功率。通电的情况下,磁控管会产生一定的微波功率,然后将通过波导输送到微波加热器中,在微波场的作用下使被加热物体的内外部同时受到加热。我们已经知道在外加电场的作用下,可大大影响分子内部的结构,因而也影响分子和原子们的性质。另外,在加热的过程中除了极性分子外,非极性分子受到外界电场的作用,也会因此而极化而暂时变成极性分子。

在微波能作用下加热的简要原理:在电容器的两极板之间放一杯水,电容器与转换开关以及电池相连接。当开关合上时两极板间产生的电场作用,使杯中的水分子带正电的氢端趋向电容器的负极,并使带负电的氧端趋向正极,这就使水分子按电场方向规则地排列。如转换开关打向相反方向,则电容器极板产生的电场方向与前相反,水分子的排列也跟着转向。如不断地快速转换开关方向,则外加电场方向也迅速变换,导致水分子的方向也不断变化而摆动并受相邻分子的阻碍,产生相似于摩擦的作用,使部分能量转化为分子杂乱运动的能量,加剧了分子运动,使水温迅速升高。外加电场频率越高,极性分子摆动越快,产生的热量就越多,外加电场越强,分子摆动振幅也越大,产生的热量也越大。

由此可见,微波能加热的工作原理是通过影响物质中的原子或者分子的带点方向实现的,并且通过不同方向的快速转换,形成高频率和高强度的电场,从而产生热量。

二、微波能分解试样的反应原理

在化学分析中,为了分解试样必须同时进行化学反应,而为了促进化学反应的形成就必须要加入化学溶剂。与常见的传统加热反应的方法不同,微波加热同时发生在试样内部与外部。由于待分解试样的微粒和溶剂(如混合酸等)的良好接触是快速溶解的关键,那么产生在微粒上的局部内热量促使微粒破裂,暴露出新鲜的表面,有利于化学反应,所以微波加热是一种更加快速和有效的加热分解的方式。另外,被加热的介电液体(酸或者水)和介电微粒反应,形成高于微粒表面的热量,产生较大温差,从而形成了强烈的热传递流,并搅动着粒子表面的薄层及溶液,使新鲜表面不断暴露于新鲜的溶液中,从而大大加速与强化了分解过程,达到快速分解试样的目的。如分解反应不是在敞口容器中,而是在封闭的高压弹中进行时,溶剂,例如王水中分解所产生的氯、氧化氮等不会逸出容器而损失,在高温产生的高压下,它们在溶液中的浓度较高,且由于高温及微波能的作用,加速氯分子分解为氯原子,起到活化作用,进一步加速了试样的分解反应。

所以,从分解试样的角度来看,微波能加热是一种内外同时进行的分解,相较于传统的由外至内的加热方式,能够起到更好的促进作用,不仅可以均匀导热,还能够加速分解效率。

三、微波能加热过程中的问题与特点

微波能加热虽然有着先进的技术优势,但是就其实际应用来看,并不是十分完善的,同其他的加热技术一样,也存在着一些问题,下文中,笔者将主要对微波能加热过程中易出现的各种问题和其应用特点进行阐述。

在化学分析试样的分解中,国外使用的微波加热炉通常都是市售微波炉,因而价廉,购买方便。而供分析应用的微波炉如美国麦克仪器公司和美国国家标准局联合研制的MDS-siD型微波热压装置,以及中国9759工厂研制的微波高压溶样器,这两种装置都已在国内出售。但使用时应该注意的是,对没有应用密闭热压器的微波炉,须避免酸雾的腐蚀,因为一旦出现微波辐射的泄漏,会严重的伤害操作人员。炉内腔材料的特性应具有防止酸的侵蚀、能承受快速加热和冷却的能力,所以可选用硼硅酸盐玻璃箱、酸雾气体洗涤器及玻璃干燥器作为设备配置。还应注意微波炉存在过热点所产生的不平衡加热,避免在空的或类似于空的情况下操作,不然会损伤磁控管,有时可把盛水的烧杯放入炉内,来平衡其炉内的温度。

另外,实践中我们总结出的应用过程中微波能加热的主要特点主要有以下几个:

(1)场强高温

所谓的场强高温的特点,就是指在使用微波能加热的过程中,因为受到电磁的影响,会在一定的作业范围内形成较强大的磁场,所以要注意对实验周围的环境进行事先处理。另外,加热的过程中会产生很高的热量,所以操作员要注意做好相关的防护措施,以免在试验过程中被意外灼伤。

(2)高频高温

这一特点指的是在微波能加热的过程中,会产生较大频率的炉内高温震荡,因为微波加热是一种对物质内部和外部同时进行的加热,所以其具有高频高温的特点。

(3)穿透力强

同样的原理,因为微波能加热是一种利用物质中的分子和原子的电荷方向的不断调转而形成的加热方式,其对于待加热的物质来说,具有很强的穿透效果,可以直接作用于岩石矿物质的内部,对其进行加热,所以这种穿透性是同它的作用原理密不可分的,传统的方法之所以没有这样的穿透力,就是受限于由外至内的加热方式。

(4)热惯性小

所谓的热惯性,指的是物质在加热前会有一个比较缓慢的反应和适应阶段,而加热后对于热量的消解也需要很长的时间。微波能是一种在电磁作用的基础上形成的能量,所以其在使用的过程中具有比其他加热方法更小的热惯性,这种性质同时也使其获得了更加灵活的操作性,并且能够在操作的过程中实现能量和能源的节约。

(5)选择性加热

即有针对性的加热,该特点与上文中阐述的内外部同时加热的特点并不相矛盾,因为微波能加热更加便于我们的灵活操作,我们可以有针对性的对目标加热地区进行电磁作用,而被选定的范围内会产生内外部同时加热的现象。

(6)改善劳动环境和劳动条件

通过对微波能加热原理的分析,我们发现其无论是使用的设备还是操作的程序,都更加的简单方便,有利于改善实验室内的工作环境,给技术人员提供一个相对安全洁净的工作场所。另外,由于操作程序简单,可以在相同的工作任务的前提下降低技术人员的工作强度和工作量,从而改善了技术员的劳动条件。

四、在岩石、矿物分析中的应用

上文中对于微波能技术的这些原理和特点的分析,都是为了使其能够更好的应用于岩石矿物的解析中,试验中具体的操作如下:

1、称取粉末试样200毫克置于聚四氟乙烯或聚碳酸醋杯里,加5毫升王水和2毫升氢氟酸,加盖后置于硼硅玻璃真空干燥器里。

2、放上一个盛50毫升水的小烧杯,进行部分抽空,然后放在微波炉里加热3分钟,取出干燥器放在通风柜里排除酸雾。

3、在分解试样的杯中加1克硼酸,加热10分钟,滤去残渣,滤液稀释到100毫升,用ICP-AES法测定试样中的铝、砷、钡等二十多个元素。

实践中此方已用于分析岩石、矿物(如辉绿岩及玄武岩等)、油页岩及沉积物,并且应用结果表明该方法具有良好的重现性和准确度。

整个试验过程中我们可以看到,微波能加热分解的方法的操作步骤简单,仅需三步即可完成,这样不仅便于技术人员学习和操作,还大大的提高了分解的效率。另外值得注意的是,微波加热分解试样的过程中,最重要的是防止样品过热或蒸干,否则将会引起硅呈气态的四氟化硅而损失,还可能会损失一些其它挥发性元素,将会降低分解后的式样的浓度和纯度。过去,传统的分析方法要做到岩石、矿物在酸中分解需几个小时才能完成,而用微波分解只用几分钟,这种分解时间上的差异是微波能分解优于传统的分析方法的又一个非常重要的特点。

国外的学者研究了矿山、工厂及熔炼厂的试样分析,使用了几种酸溶解方法,其中一种是采用传统的方法在电热板上用敞口烧杯分解,这种方法在一般情况下加热约需一至两个小时,能获得适于原子吸收分光光度法测定所用的试液;

而另一种方法是采用在高压弹中微波加热分解。将待加热的试样(原料及精矿0.5克,尾矿1克)与1.5克氯酸钾,10毫升浓硝酸及5毫升氢氟酸,一同加入150毫升容积的聚四氟乙烯容器中,用扳手拧紧盖子。一次性放入四个这样配置的容器在炊具式微波炉(Toshi-b二式ER-BOOBTC)中,使其在477W下保持3分钟,然后取出容器再于冰槽中冷却5分钟后打开盖子,此法可在10分钟内制得试液。

同样的,使用上述两种不同方法对试样中的镍和铜进行加热分解,结果表明,两种试验所得的分析值基本相同,但是试验效率的差距却非常大,微波能加热分析法明显的要优于传统的加热方法。

所以,研究人员得出结论:对某些矿泥来说,用通常方法进行干燥的时间约需3或5个小时,而凡能缩短这一过程的任何手段都能节约时间和能耗,所以只要是在保证干燥效果的基础上,作业时间越短的方法就越应该被优先采用。

上述两种实验的结果说明:对大多数的矿泥和湿的含水块状试料,如采用微波干燥法能在十五分钟内成功地完成烘干操作,而传统的加热方法则需几倍的时间才能完成。例如二十克重含有68肠水份的碳酸钡试样,在一百零五摄氏度的电烘箱中烘干至恒重需要三个小时,而微波烘干仅需15分钟。这是因为通常的烘干方法,加热多是由表及里。而微波则是里外一起均匀、快速地加热。

随后,该研究组的人员又对微波加热分解各种试样(无机试样与有机物试样)进行了试验,以制备原子吸收和电感祸合等离子发射光谱分析用的试液。试验中检测了试样粒度对分解时间的影响,及微波加热硝酸的温度一压力曲线,并讨论了使用各种酸来分解无机试样的情况。

五、微波能在化学分析中的应用前景

因为微波能具有的一系列使用中的优势和特点,使得微波能近些年来的发展很快,尤其是在化学分析领域中,微波加热分解岩石、长石、矿物、煤、烟灰、沉积物、油页岩、生物、塑料、合金钢等试样己有一些相关,但总体来看数量不多,而且研究所涉及的研究面还比较小,深度也有待挖掘,尤其是难分解的许多岩石、矿物、氧化物(如氧化铝)、氮化物(如氮化硅)、稀有金属(如错、铅)、贵金属及贵金属合金(如铱、锗、饿、钉等的合金)等的分解,及分解机理还待深入的研究。与此同时,相对于国外而言,我国在微波能加热分解技术方面的试验研究还处于起步阶段,对于微波能的试验中的各种特点的研究还不够深入,不利于微波能的广泛的推广,科研人员应该加强对于其试验特性的研究,以便更好的应用于岩石矿物的分析实际中。由于热压分解技术在解决难溶试样分解方面有其独到的优点,已有大量资料发表,而近年来把微波加热与热压分解的两技术结合使用,已是一项发展中的新技术,它必定将为上述难分解试样的研究与应用作出新的贡献。

在分析化学领域,微波能除用于加热外,还有许多其它方面的研究与应用,如微波化学和微波等离子体可用来促进某些化学反应,常见的如微波等离子体——发射光谱,微波等离子体——质谱,气相色谱——微波等离子体发射光谱,以及利用微波测定稀土溶液的浓度,试验中还发现微波能产生活性氧灰化有机物根据带线传感器的测湿原理的微波法测定原盐含水量,这些都是微波法在分析化学领域的多方面应用的成果,在此基础上,我们要不断的研究和探索,发掘微波法的更多应用优势领域,使我国在这方面的技术能够迅速追赶和超越其他国家,其中,使微波法用于煤中无机硫的测定就是一个很好的新的拓展方向。

总之,我们看到在分析化学领域中的几个方面,微波能的研究都有不同程度的进展,但仍有许多问题尚待拓展与深化,微波光声谱就是其中之一。结合微波在讯、导航、食品、木材、印刷、染料、灭菌、醇化、治癌等方面的发展,微波能应用技术己在科技与工业等领域展现出广阔的前景,也必将为分析化学的发展作出新贡献。

综上所述,本文中笔者从微波能加热原理、微波能分解试样的反应原理、微波能加热过程中的问题与特点、微波能加热在岩石、矿物分析中的应用以及微波能在化学分析中的应用前景等五个方面阐述了微波能分析方法在的应用,并认为微波能是一种较之传统的加热方法更为先进和高效的分析方法,应该被广泛的应用于岩石矿物的分析中,笔者希望以此能够为推动我国的微波能技术的发展尽一些绵薄之力,也希望能够抛砖引玉,引发学界对该技术的相关探讨,诸多不足,还望批评指正。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读