欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

电站继电保护论文实用13篇

电站继电保护论文
电站继电保护论文篇1

1.1信息数据源的分布

二次系统所具备的信息来源可大致分为3部分:

a)由变电站微机保护装置经RTU发送至调度端的实时运行数据;

b)继电保护管理端(生技部门和继电保护班组)所存放的设备管理资料、各类试验记录和运行制度等;

c)其他系统中需要了解继电保护数据或可以提供继电保护有关数据和参考资料的数据源接口。

1.2系统结构

怎样有效地将信息数据源联系起来,而对于各级用户都能予以充分利用呢?我们可以考虑以调度监控计算机网络系统的数据源为中心,建立图1系统。

通过数据仓库技术集成各类数据源,使用方法库来支持各个不同等级客户的分别应用,利用网络功能实施数据交换,并且开放MIS的数据接口,基本实现对二次保护数据资源的充分利用。

1.3系统方法与功能

1.3.1数据仓库和方法库

a)数据仓库是比传统的关系数据库更高一级的数据组织形式,它不仅支持海量数据的处理,而且对于动态存储、应用程序接口、非结构化数据等方面都具有更强的性能。

b)方法库是封装了一系列分析处理方法的规则库,也是应用程序软件功能的集中表现,可通过设置各用户权限来限制其对数据仓库的查询和读、写操作,维护数据的完整性,同时也限定了客户的应用范围。

1.3.2软件应用功能

a)“三遥”数据的实时分析处理:各类二次信息的查询,和以前定检、定试记录的比较,动作时间和次数的统计,故障、事故等报警事件的指示和响应等。

b)二次设备试验的记录管理、定试预告、定值单管理、材料管理等。主要由继电保护班组人员填写,其他部门共享查询。

c)二次设备图形管理系统具备GIS功能,支持图形和数据库相连,直接在图形上查询参数。

d)二次设备事故、缺陷记录分析,各保护装置运行状况分析。主要是继电保护技术专责完成,其他部门共享查询。

e)设立一次设备参数接口。如电流、电压、功率因素和高压设备试验记录等,配合一次主接线图查询,可作为二次系统的辅助分析数据来源。

f)可使用电子函件和新闻公告板方便各部门间的信息交流。

1.3.3软件开发工具

电站继电保护论文篇2

1 数据源端维护技术的应用意义

数据源端的应用主要是将模型数据与图形数据全部统一后,由智能变电站的源端对这些数据进行配置与维护,其主要的目的是让主站可以直接利用数据,减少主站端工作时的任务量,实现主站端数据可以不用进行维护的目标,在智能变电站系统中维护技术的应用的另外一个目标就是保证智能变电站数据与主站端数据一致,若数据不一致则很容易对电网运行构成安全威胁。

2 继电保护信息系统中维护技术的应用流程

在继电保护信息系统中维护技术维护的主要内容包括:模型、通信以及图形,其实现维护的具体流程(如图1),由变电站端使用模型工具以及图形工具来生成具体的文件,并将文件以在线或者离线的形式进行上传,传送至主站端,再由主站端利用计算机工具以自动或者手动的形式将文件导入,生成变电站模型与图形作为数据支撑。除此之外主站端可以使用模型工具在变电站端提供的数据模型中,挑选出变电站的远动装置在运行过程中需要的转发测点,同时形成一份完整的通信点报表,并分别导入变电站端的运动装置以及主站端的前置模块,继电保护信息系统按照此通信点表进行对点通信,可以有效保障模型的一致性与整体性。

3 数据源端维护技术的具体应用

3.1 在模型方面的应用

变电站以IEC61850标准规范数据建模,采用SCD文件描述以及存储变电站数据模型。主站采用IEC61970标准作为电网数据建模的依据,数据模型采用的是CIM文件描述以及存储电网。智能变电站可以利用模型工具把SCD格式的文件转换为CIM格式的文件,同时将采用SCL描述的ICE61850数据模型直接映射到主站端IEC61970上,由主站端负责接收并生成CIM文件,通过文件传输的标准以及协议输送至主站端,最后由主站端负责生成数据库模型,提供给继电保护系统的主站应用,实现继电保护信息系统主站端模型免维护。

3.2 在图形方面的应用

变电站主流电力系统的自动化软件可以将可缩放的SVC文件进行导入或者将其导出,文件主要的描述对象是图元或者样式等,同时还记录电力设备对象以及量测对象等,在对这些对象进行建模时,主要是利用其关键字ObjectID和CIM文件中的关键字rdf:ID,根据这一特点需要SVG和CIM文件进行配套使用,并且要将二者文件同时导入,方可实现图形显示与操作,若需要变电站端传输的文件较多时,可以利用IEC104或者FTP文件向主站端进行传送即可。最终由主站端利用图形工具自动生成一次主接线图,同时对一次设备的电气拓扑关系进行解析以供主站系统使用,由此可以实现主站端图形免维护。

3.3 在通信方面的应用

当前大多数变电站和主站之间采用的是ICE104/104通信,在进行通信前需要保证双方的约定好的通信点表中发送数据和接收数据要一一对应,则必须保证双方通信点表一致,否则会引发通信错误。在使用ICE104/104条约时,由于该条约不可以进行数据模型的传输以及自描述语义,其只能按照通信点表的内容进行对点通信,所以极易造成继电保护信息系统出现通信问题。但是主站端可以根据输送来的数据库模型挑点,可以自动生成通信点表供通信双方共同使用,可以有效的避免由于二次制作或者手工维护造成出错的风险,其实现维护的流程如图2。

4 维护技术应用需要注意的问题

在维护数据模型时,需要注意主站系统可以不被要求必须使用CIM,其主要是由于主站端使用的模型工具只需要将CIM转换成主站系统所使用的私有模型即可,并且不会影响主站系统实现私有。在维护图形时,也需要注意要想实现图形源端的维护,也不必须使用SVG,由主站端图形工具负责将SVG转换成主站的私有图形,则不会对主站系统私有实现产生影响。

虽然主站端的使用规范可以有效的描述电网数据模型,并满足继电保护信息系统的需求,但是继电保护装置数据模型影响着电网安全运行的稳定性,并且主站端继电保护系统中大部分工作都是依靠解析装置模型以及应用数据,由此需要将设备模型与继电保护模型充分的融合在一起,才可以保证电网全景模型的完整性,而完整性需要大量的准确的数据支撑,来维护继电保护系统,经过不断地实践证明IEC61970可以提供给一次设备完整建模规范,不过在维护继电保护装置建模方面还需要进行改进,主要是由于该建模比较简单且不够全面,但是可以充分的作为建模的基础进行扩充,从而实现数据源端维护作用,用来完善IEC61950使其作为数据源端的规范。

5 结语

文中对数据源端维护技术应用在继电保护信息系统中的意义做了简单的论述,同时对数据源端实现维护的流程做了论述,包括在数据建模、图形、通信等,数据源端维护技术可以起到保障继电保护系统的作用,但是想完全起到支撑作用,还需要进一步研究与修改。

参考文献

[1]笃峻,胡绍谦,滕井玉,夏可青.数据源端维护技术在继电保护信息系统中的应用[J].电力自动化设备,2015(03).

[2]笃峻,胡绍谦,滕井玉,夏可青.数据源端维护技术在继电保护信息系统中的应用[J].电力自动化设备,2015(03).

[3]张琦.数据源端维护技术在继电保护信息系统中的应用[J].中国新技术新产品,2016(06).

[4]李文淑.变电站继电保护系统中信息管理技术的应用[J].黑龙江科技信息,2008(03).

[5]杨利.小议信息管理技术在继电保护系统中的运用[J].硅谷,2009(02).

作者简介

电站继电保护论文篇3

一、智能变电站继电保护配置的现状

当前,先进的智能变电站使用的都是可靠和先进的设备,是以实现全站信息数字化,采用自动化程序来采集信息、控制信息以及对电网进行检测和保护的电站。而且,智能变电站还具备了电网控制和调节的功能,能够在线决策以及互动。智能化就是实现了人性化,让变电站同人一样能够调节电网。如果电网中的电压负荷开始增加,其就会送出需求电量,相反,如果负荷下降时就会减少电量输送,这样就能够确保能源得到节约,实现电能能源的节省。

当前,我国的智能变电站尽管不是很多,而且还处于推广的阶段,但是同常规的变电站相比,智能变电站的设备实现了可视化,通过告警和防误等功能能够避免检修过程中和故障出现时需要停电的问题,而其主要的设备的寿命也得到了延长。此外,智能变电站的占地面积同常规的变电站占地相比要少,其优势十分明显。智能技术和设备的发展为减少智能站投资提供了条件。在不久的未来。智能变电站的建设会越来越广泛,其经济性和前景都是良好的。

智能变电站有设备层、间隔层、站控层三层。其中设备层也叫过程层,主要是提供设备构成、单元合并和电能分配等功能的。间隔层则是实现长距离信息输出和输入以及控制通信功能的。站控层中主要有自动化系统和通信系统等,是实现向全站或设备进行测量和控制,完成数据采集、监视、电量采集以及信息保护等功能。

二、继电保护配置

(一)过程层保护

在继电保护配置中的过程层继电保护主要是对快速跳闸的事件进行保护的。诸如,变压器差动、母线差动保护等等。在实践中,过程层保护的定值是固定的,而且不会受电网系统模式变化的影响。

线路保护:过程层的线路保护装置通常是以纵联差动或者纵联距离为主保护的,其后备保护主要是处于集中式的保护设备当中的。对单端电路来说,线路保护设备是通过光纤通信口对侧线路保护设备通信的基础上,来实现纵联保护的。变压器保护:对于变压器保护中的过程层来说,采用的是分布式的配置方法,以实现差动保护,其后备保护也采用的是集中的方式。智能变电站中的变压器以及母线保护都是可以作为多端线路来采取保护措施的。

(二)变电站层保护

变电站层中的继电保护配置使用的是集中后备保护模式。实践中,智能变电站中的这种保护模式使用的是自适应和实时管理的技术,能够实现广域保护的功能。这种保护模式为变电站中的各个元件提供了保护的作用,而且还为相邻的元件也提供了后备保护。独立后备保护主要是采集变电站元件和电流信息以及短路设备等,而且还能够接收相邻的变电站中的故障信息,并且进行分析,做出判断。在结合整定计算方法的基础上,从不同的运行模式当中确定整定方案,站中的保护设备要根据实时参数确定系统的运行情况。选择好运行方式以后,继电保护就会切换到定值范围内,达到保护目的。

三、继电保护配置发展趋势

(一)以广域信息为基础的电网保护

当前,国内对于电网继电保护的理解还停留在断层线上。以广域电网信息为基础的电网保护是目前研究的一个新的热点。广域保护系统主要是由以下部分组成:实时动态监测系统,实现广大地区电力的监测和分析。安装在电力系统的调度中心;为实现自动广域控制,可在控制中心网络以及自动电力系统中安装实时控制系统。当电网出现故障时,广域保护在第一时间内就能够进行保护。广域保护系统包含了异常电压控制、发电机阀控制、切割机、频率等等,实现了广域安全自动控制的功能。而且还能够实现紧急安全控制,避免给参数的稳定带来损伤。当系统处于异步振荡当中是就会形成大量的稳定的子系统,干扰其以使得其失去稳定性,防止系统崩溃。

(二)主动化瞬态保护

瞬态保护是在检测基础上形成的高瞬态传输线路保护。其主要是利用瞬时频率特征和暂态行波进行保护的。数量的瞬态保护可以不受电源频率的影响,其有着高反应速度、高精度的特点。而且还具有系统摇摆、过度电阻等优点。新的数量的瞬态保护设置同样也具备了滤波器的优点。这是继电保护配置未来的一个主要发展趋势。

四、结论

电力系统中的电力元件如果是在没有继电保护时是不能够运作的。一般把确保电力元件安全的装备称为继电保护装置。智能变电站中的继电保护配置是其中的一个不可缺少的部分,对于电网的安全运行有着重要的影响,因此研究继电保护配置发展具有现实意义。

参考文献:

[1]徐晓菊.数字化继电保护在110kV智能变电站中的应用研究[J]. 数字技术与应用,2011,10:78.

[2]李锋,谢俊,兰金波,夏玉裕,钱国明. 智能变电站继电保护配置的展望和探讨[J]. 电力自动化设备,2012,02:122-126.

电站继电保护论文篇4

1.广域继电保护的有限性

广域继电保护是通过电网广域同步信息的测量,并通过信息的整合来计算出故障元件的位置,并通过简单的时序来保证保护动作的科学性,电网中的广域继电保护应该从工程的实际保护对象以及实际应用为对象进行开展性研究,其核心事项就是保证保护动作的正确定,应用在电网之中的广域继电保护应该从保护对象的后备保护以及工程的实际应用进行研究,需要获取广域内的所有信息,这主要表现在以下几个方面:

(1)在广域继电保护中,需要加强首道防线的性能,同时,为了实现保护对象的保护功能,避免出现整定配合困难的问题,要求获取到与保护对象相关的信息,但与此同时,继电保护后备保护范围内需要的信息也具有一定的有限性。

(2)广域继电保护是一个不断发展的过程,需要将整个网络发展为不同的有限元区域,保证系统过程的实现。

2.广域继电保护的区分

广域继电保护系统的区分是有限广域继电保护系统的主要环节,对系统进行科学合理的区分是系统空间与保护范围有限性的重要体现,也是制定保护跳闸以及保护算法实现的主要依据之一。

2.1中心站的选取原则

有限广域继电保护集中式结构需要在有限区域内部选择一个发电厂和变电站作为继电保护的决策中心站,区域内部其他的发电厂以及变电站就是子站,这类子站也可以作为备用的中心站。中心站的选择需要考虑输电系统节点的连接关系以及节点通信系统的连接问题。一般情况下,需要优先考虑人员、通信条件以及地理环境等因素,将一些特殊的发电厂以及变电站作为中心站,也可以选择路径关联密集、相邻节点多的变电站作为中心站。 为了保证决策中心的安全性和可靠性,需要在区域内部选择好备用的中心站,在少数情况下,中心站会由于特殊的问题难以起到应有的作用,因此,在实际的选择过程中一般选择路径关联密集、相邻节点较多的变电站作为备用的中心站。此外,为了减小分区,可以选择任意的两个中心站作为发电厂,一般需要将中心站作为起点,保护范围要延伸到下一个线路末端,如果两个中心站为相邻关系,两个区域交互区会变大,可能会因此划分出过多的区域。

2.2继电保护的保护范围

广域继电保护是被保护对象的后备保护,在功能上需要实现远后备保护和常规近后备保护的功能,那么电力系统中不同的保护对象也需要在整个继电保护的系统中实现该种功能,在这个层面上而言,广域继电保护的保护范围需要满足各个保护对象的远后备范围,以中心站作为起始点,将保护范围延伸到下调线路末端。

2.3边界有限的区分原则

电网的建设是一个长远的工程,因此,在光与机电保护系统的分区过程中需要考虑到变电站以及发电厂的规划节点,在进行分区后需要增加相关的节点,并满足广域继电保护结构的需求,尽量不要重新进行区域划分。此外,电力系统是发电、输电以及用电的过程,发电和用电分别作为系统运行的起点和终点,输电则是电路传输的重要过程,发电、输电以及用电的过程在运行中容易受到系统的干扰,导致运行方式出现变化,甚至会发生解列的情况,但是一般这种情况在发电和用电中较少,在输电过程中较多。因此,在广域继电保护的分区过程中,应该从系统的起点和重点来划分区域。

2.4区域的交互原则

一般变电站的设置都是遵循交互的原则,如果没有按照交互原则进行设置,那么变电站得不到保护,在变电站的直流消失之后,变电站和线路都难以得到保护,如果线路依照交互原则进行设置,那么在发生故障之后就可以实现后备功能,但是由于交互区域如果过大,就会导致整个系统的通信量增加,因此,根据分析,对于广域继电保护系统,其两个相邻区域内需要有一条以上线路的交互,在必要情况下,可以在一定程度上增加交互的线路,这样就可以有效的避免断路器失灵以及点电站直流消失的情况,也可以防止由于信息缺失导致故障难以快速切除问题的产生。

【参考文献】

电站继电保护论文篇5

智能变电站技术的不断发展对智能电网的整体发展有着直接的影响,是智能电网体系中的重要组成部分,在电网发展中占有着极其重要的地位。随着电力事业的不断发展与进步,越来越注重对智能变电站技术的开发和利用,并且在长期的实验研究工作中,已经取得了一定的成果,为智能电网体系的建设和发展提供了有力的理论依据和参考。

一、智能变电站的基本属性和架构

(一)智能变电站的基本属性

智能变电站的特点主要就是将传统形式的变电站系统内的相关设备进行一系列的智能化转变,促进变电站在工作运行中实现信息化、现代化、智能化等,使其满足电力现代化发展的要求。智能变电站技术不仅能够自主的进行信息数据的收集、整理、统计、管理等工作,同时还能够根据电网工作运行的状况进行相关的自动化控制和职能调控等辅助工作。智能变电站体系越来越朝着网络化和智能化的方向发展。将智能化技术有效地应用到变电站中,不仅可以提高变电站的整体工作效率,同时还可以有效降低变电站的运行成本。

(二)智能变电站的基本架构

智能变电站中的逻辑结构主要被分为两个网络和3个层次,其中两个网络主要就是指站控层网络和过程层网络,而3层主要就是间隔、过程、站控的3个层次,其两个网络的运行位置大多集中在3层之间。而且智能变电中的间隔层包含的范围主要是对继电保护和各项设备管理工作。过程层还包含了一些智能设备,例如,高压断路器、隔离器以及变压器等。其职能主要就是收集信息以及对各项设备的检查。站控层的基本结构就是信息数据的前置机、工作站以及人际交互设备等各部分组合而成。智能变电站技术已经逐渐取代了人工的各项检测工作,极大地减少了人工的工作数量,降低了人工操作中出现的失误率,有效提高了变电站的整体运行效率和质量。

二、智能变电站对电网继电保护产生的影响

(一)对数据传输保护产生的影响

在继电保护的各项数据传输保护中,智能变电站技术所起到的作用主要包括两个方面。一方面,置换互感器。传统形式的继电保护中运用的互感器主要是电磁互感式,其调节和传输的方式与相关整定原则都需要进行相应的优化和审查。而在当前继电保护中所运用的互感器主要是电子式的,这样的互感器在响应速度和频带宽度等方面都有自己的独特优势,并且还会产生一种新型的计算方法。

另一方面,对数据传输方法进行不断地优化。其主要表现就是电缆硬连接的数据传输方式逐渐被二次信息的数据传输所取代。同时,统一执行ICE612850标准的前提下,要对二次信息进行统一建模,这对继电保护中的数据应用和处理产生了巨大的影响,各种设备之间可以进行交互式运行,实现了大量数据的传输、挖掘和储存,为继电保护提供了新的保护组态和保护原理。

(二)对继电保护系统产生的影响

在继电保护系统方面,智能变电站技术对继电保护起到的作用主要有4个方面。首先,数据交换的网络化可以有效解决传统形式的继电保护计算、出口、采样一体化出现的弊端。继电站所要保护的数据信息和对象等可以不用在捆绑在一起,使得继电保护系统变得更加灵活。其次,数据交换的网络化和智能化逐渐改善了传统二次回路无法进行相关监控控制的问题。再次,对时数据交换逐渐改变了以往继电保护管理工作根据保护装置为中心的模式。最后,过程层实现统一采样,有效弥补了以往对数据进行分别采样的不足。

(三)对继电保护维护与运行产生的影响

智能变电站技术在继电保护的维护和运行方面起到的作用主要包括3个方面。首先,智能变电站转变了传统继电保护的具体运行方式和组成结构,在以往的继电保护测试形式与项目以及项目周期等在继电保护维护和运行方面的标准相对较为落后,而智能变电站技术的有效应用有效地解决了这一问题。其次,智能变电站技术的有效应用,也在一定程度上解决了以往继电保护工作中二次回路方面的问题。最后,智能变电站技术有效推动了变电站中各项设备之间的有机统一,同时,还改变了继电保护的维护与运行标准和方法,这一方面虽然还在进一步的探索阶段,但却是电网在未来研究和发展的重要方向。另外,智能变电站技术还有效提升了继电保护的安全性和可靠性。从维护和调试的方面上看,智能变电站技术统一了保护设备检修等工作的标准,这虽然还处于初级发展阶段,而且ICE612850标准也有一定的理解差异,但是,继电保护专业却是其中的重要内容。许多智能变电站在进行正常使用后,相关运营单位依然还用以往的方式来进行变电站的维护和调试,在一定程度上限制了智能变电站的发展与推广。

结论

总而言之,随着信息化时代的到来和发展,我国电力系统逐渐朝着智能化的方向发展,而智能化变电站作为当前电网发展中的重要组成部分,在电网的继电保护中具有重要的意义。本文对智能变电站技术以及对继电保护产生的影响进行分析发现,智能变电站技术在继电保护工作中发挥着非常重要的作用,所以,电网企业应该重视对智能变电站技术在继电保护领域的应用和开发,不断改善传统继电保护工作中存在的缺陷,促进我国电网的可持续健康发展。

参考文献

电站继电保护论文篇6

1继电保护在无人值守变电站调控中的应用作用

1.1继电保护装置与电力系统的协同关系

无人值守变电站通过信息采集、远程控制等智能一体化技术,能够对电力资源进行科学调度,与故障监控,从而保证电力资源的高效稳定供应。电力资源作为社会各界广泛需求的重要资源,因其自身特点所决定,当在电力运行过程中出现故障时,如果不采取有效地控制与解决措施,势必会造成大范围影响,因此无论是传统式的电力系统还是智能化无人值班变电站都不能在无继电保护的情况下运行。

1.2无人值班变电站电力调控中继电保护的运作机制

当变电站运行过程中出现系统故障时,继电保护自动化系统能够对所收集的故障信号进行系统分析,并迅速做出反应,经故障分析与判断后向调控中心反馈信号,调度员根据反馈信号,进入事故应急处理程序[2]。当出现故障,继电保护装置应及时对故障区域进行隔离或切断故障,从而有效避免故障的进一步影响,减少损失,并为接下来的合理调度与维护提供先决条件。

1.3无人值班变电站对继电保护装置的性能要求

通过以上分析可以看出继电保护装置是无人值守变电系统中的重要组成部分,无论是电力调度还是远程监控都离不开继电保护装置的协同配合。为保障无人值守变电站调控功能,继电保护装置应满足以下基本要点:(1)可靠性。电力系统无人值班化改造,其本质作用是在解放人力的同时,大幅提升供电服务效率,并有效避免人工操作带来的误差,提升供电质量与安全性[3]。因此为了能有效满足社会大众的用电需求,作为无人值班电力系统重要组成部分的继电保护装置必须具备足够的可靠性,从而确保供电系统的供电稳定。(2)灵敏性。当电力系统出现故障时,继电保护装置必须立即切断或隔离故障区域,从而有效避免故障的进一步影响,起到电力线路的保护作用,因此继电保护装置必须具备高灵敏系数,确保当通过电力系统远程监控装置监测到电力故障时,可马上实施保护操作。(3)选择性。选择性指的是当系统发生故障时,继电保护装置应有选择性的切除故障,以保证非故障部分继续运行,缩小停电范围。要求上下级保护之间保护定值必须配合,如果本线路拒动,则可由相邻电力设备切除故障,缩小停电范围。

2无人值班变电站继电保护装置运行中常见的故障问题

2.1灵敏性问题

通过上文分析可以明确灵敏性是继电保护装置的重要性能要求,因此为保证继电保护装置在电力调控中的优化应用,必须着重考虑此点[4]。灵敏性主要会受系统运行方式、保护整定值配合、设备质量以及保护装置设计是否合理所影响。例如如果保护整定值灵敏度不满足要求就会造成保护拒动;合闸辅助触点接触不良,则可能会对继电保护的切换功能造成影响,甚至可能烧毁开关合闸线圈。

2.2设备问题

继电保护功能会一定程度上受电力系统中的设备影响,例如系统中的电压互感器就对继电保护功能有着重要影响。电压互感器的使用率较为频繁,因此因电压互感器造成的继电保护故障就显得相对较多。例如如果电压互感器出现二次回路短路故障,将会出现很大的短路电流,如果没有及时采取措施,则可能烧坏电压互感器,进而对继电保护功能造成影响。

2.3网络信息传递延迟问题

无人值班变电站无论是电力调度还是实时监控,都需要借助网络信息技术,通过信号采集、传递等实现相关操作,因此除继电保护装置自身的敏感度、电力系统中相关设备以外,网络信息化建设也是实现优化继电保护应用实效的重要问题。如果信号收集、传递过程中出现问题,那么继电保护也就无法在无人值班的状态下实现自动切除故障,造成保护失灵;数据传输中断调度监控人员无法实时监控变电站运行情况,对电力调控质量造成严重影响。

3强化继电保护应用实效的优化措施

3.1开展装置与设备的定期维护及保护整定值的定期校核

继电保护装置与电力系统中的相关设备质量都会对继电保护功能起到一定影响,因此为保证无人值班变电站继电保护功能,助力电力调控的高效运行,变电站应当定期对继电保护装置与相关设备进行维护检修,重点检测其灵敏度,以及各元件的接触性能,如果存在问题,则应及时维修或更换,从而确保继电保护功能的有效应用。继电保护整定值是电网稳定运行的守护者,定值的正确与否直接影响电网的安全、稳定运行,保护的正确动作与整定值息息相关,当系统运行方式发生改变时,及时校核定值,校核灵敏度满足系统的要求,保证继电保护快速、灵敏的隔离或切除故障,为调控中心提供有效的数据,帮助调度监控人员正确、快速的分析、处理故障,使继电保护在电力调控中发挥积极的作用。

3.2强化继电保护装置的智能化建设

应用于无人值班变电站的继电保护装置应当确能够实现保护、监控、数据通讯的智能一体化[5]。继电保护装置不能只是收集故障信号,还能够借助网络、信息终端等实时信息在控制中心的相互传递。基于此种性能要求,变电站应当积极引入智能信息化技术,强化继电保护装置的智能化建设,并结合单位实际,引入适宜且高效的信息智能化操作系统。

3.3自适应控制技术的应用

无人值班变电站的继电保护功能需要能够在电力系统出现故障时,及时对电力线路及设备进行保护,引入自适应技术就是要强化继电保护中的保护作用。自适应控制技术最初源自航空领域,即随着飞行高度及速度,自动调节飞机运行的相关参数。而此种能够根据实际情况进行自动调节的保护工作,也与电力系统的保护需求不谋而合。随着信息技术的不断发展,这一技术已被逐步引入到电力系统中,因此变电站可尝试引入此类新型技术,进而强化继电保护的保护性能。

4结束语

综上所述,首先探讨了继电保护在无人值守变电站调控中的应用作用,之后分别从灵敏性、设备故障以及信息传递延迟等角度探讨了无人值班变电站继电保护装置运行中常见的故障问题,最后针对这些问题,提出了开展设备装置的定期维护、强化继电保护装置的智能化建设以及积极引入新技术等方面提出了强化继电保护应用实效的优化措施,希望能为相关人士提供些许参考作用。

参考文献

[1]梁志雍.电力系统自动化与继电保护关系研究[J].企业技术开发,2014,32:97-98.

[2]黄立文,蒋传文,刘海洋.电网继电保护远方操作的工程应用[J].江苏科技信息,2015,19:59-60.

[3]王智.继电保护在智能变电站中的应用分析[J].中国高新技术企业,2015,35:53-54.

电站继电保护论文篇7

一、动作逻辑分析的作用

继电保护是维持变电站安全作业的常用措施,能够在变电故障发生前做出准确地动作命令,控制继电保护器故障的危害程度。但是,“满负荷”作业使得继电保护器也面临着较多的故障问题,阻碍了变电系统的稳定工作。动作逻辑分析是系统性地研究工作,能够对变电操作的实况进行判断,得出真实可靠的逻辑关系。通过利用计算机软件模拟实际故障情况下继电保护装置的动作行为,可以进行定值校验、动作逻辑考核等分析工作,如图1。

图1 动作分析与控制

二、550KV变电站动作逻辑的分析

对于变电站而言,动作逻辑分析主要是为了掌握变电系统的运行流程,对其现实操作过程中遇到的相关问题进行研究,以提出更加科学的变电作业方案。随着继电保护装置在550KV变电站中的普及应用,变电管理人员更需加强保护器的动作逻辑分析。结合笔者的值班操作经验,研究继电保护装置的动作逻辑应从测量元件、逻辑运算、执行输出等三点进行。

1、测量元件。测量通过被保护的电气元件的物理参量,根据比较的结果,给出“是”“非”性质的一组逻辑信号,从而判断保护装置是否应该启动。测量元件动作逻辑分析应注重两点,一是电气元件信号是否正常,是否有外界因素造成的干扰问题;二是测量信号与继电保护性能是否一致,并且预测出保护器动作的流程。

2、逻辑运算。接收到测量元件输送的电气信号,应交由逻辑运算模块进一步分析,掌握550KV变电站保护器的工作状态,使保护器在标准规定内执行命令。使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是应该使断路器跳闸、发出信号或是否动作及是否延时等,这些都是要借助动作逻辑分析才能确定的,如图2。

图2 继电保护动作逻辑的运行流程

3、执行输出。这一环节是继电保护的最后一步,由接收端口接收数字信号,再传递给550KV变电站调度中心进行调控。在动作逻辑分析过程中,需要根据逻辑传过来的指令,最后完成保护装置所承担的任务。通常,根据逻辑运算结果的输出情况,可指令保护器在故障时及时执行跳闸动作,不正常运行时发出信号,而在正常运行时不动作等。

三、基于逻辑分析结果的变电控制

动作逻辑分析仅从理论上对变电站实施相关的探索,面对日趋复杂的电力系统结构,变电站应积极调整内部运行模式,充分发挥继电保护器的安全保护功能。550KV变电站属于高压变电场所,继电保护系统运行的效率关系着站内的安全系数。值班人员要根据逻辑分析结果,制定更加安全可靠的操作方法,重点解决变电站潜在的风险隐患,提高变电系统日常作业的可控制性能。

四、结论

总之,国内电能使用需求量持续增加,给变电站日常运行带来了巨大的安全隐患,控制不当则会引起一系列的意外事故。550KV变电站继电保护装置动作逻辑分析是十分重要的研究工作,能够客观地反映变电站常规的工作状态,对站内潜在的风险问题提前防范处理。

参考文献

[1] 黄集贤,陈旋. 集中控制下500kV无人值班变电站管理模式的探讨[J]. 广西电力. 2007(02);

[2] 陈希武. 主网无人值班变电站管理机制的思考[J]. 武汉电力职业技术学院学报. 2009(03);

[3] 吴平,范金华. 500kV无人值班变电站建设及相关技术的研究[J]. 华东电力. 2008(01);

[4] 凌平,杨凌辉,黄华,吉亚民,傅慧,丁士长. 500kV无人值班变电站的带电启动与性能验证[J]. 华东电力. 2008(01);

电站继电保护论文篇8

随着人类社会和现代化的不断发展,人们已经越来越离不开电带给我们的帮助,离开了电力,人类几乎无法生存。所以,电力系统合理高效的保证供电不但与经济发展有关,更关乎举国上下的民生问题。而电力系统中最重要的一个环节就是继电保护系统,它使供电系统可以有条不紊的安全运行。因此,研究继电保护的现状与未来的发展前景具有非常重要的意义。

1 电力系统继电保护的发展现状

随着中国的计算机技术,电子技术和通信技术的高速腾飞,我国的电力系统也是得到了日新月异的发展。现阶段最值得国人骄傲的就是电力系统微机继电保护技术的研发、成熟与应用。微机继电保护技术与过去几十年的机电式继电保护、晶体管继电保护、集成电路保护三种继电保护技术不同,它的数字计算能力和逻辑处理能力强劲,自我检测和记忆能力也是远远超越前几代的继电保护技术。如今,这种微机继电保护技术已经广泛的应用在了我国的高低压线路、电气设备以及低压网络当中,尤其是220kv以上的线路已经几乎全部被微机保护。重要的事,经过多年实践验证,实际应用中的微机继电保护确实比其他的保护技术具有更加显著的效果。目前我国具有自主产权的微机保护设备已经渐入佳境,不再依靠进口的继电保护技术和设备,甚至在原理和技术上已经超过了其他国家的继电保护。因此,微机继电保护技术在我国电力系统的应用已经被人们普遍认可,而且达到了不可取代的地步。

2 对继电保护发展的展望

继电保护装置经过几十年天翻地覆的变换,经历了结构由繁到简、由分散到集中的过程。现如今,光电互感技术、计算机网络技术和自动化变电站技术这三大技术群的迅速发展使得变电站又开始进入数字化变电站时代。

数字化变电站最大的特点就是分成了过程层、间隔层和站控层三层设备。三层设备的重新划分使控制、数据通信、测量等原来由微机保护完成的任务也重新划分给了其他层的设备。比如过程层中的智能断路器、电子互感器和合并单元共同完成控制、模拟量及信号量的采集任务,而这些任务都是由原来的微机保护独自完成的。

这种继电保护任务的分层处理使得现在的继电保护只保存了数据计算、逻辑处理等非常少的任务,也必然会导致包括运行维护以及功能配置等方面的影响。笔者认为,未来的继电保护将会出现以下变化。

2.1 硬件向模块化发展

过去的微机保护是一个整体装置,它的各个功能都集成在了几块互相交互的模块上,包括数据采集和计算以及信号逻辑处理的CPU模块、出口模块、电源模块、电流电压互换的CT/PT交流模块。设计制作继电保护装置时,针对不同的保护装置和原件,其设计出的设备的采集交流量和跳合闸出口的数据和性能都也各不相同,这样的话就没法做到硬件的模块化处理。而新式的变电站将功能分为三层,过程层负责交流采集功能,智能操作箱负责跳合闸的功能。这样的话,保护装置的模块就缩减为电源模块和CPU模块,这两个模块一般情况下都是标准化处理。因此,全站的保护设备就可以进行硬件的模块化处理,这样不但减少了工作人员的工作量,也使设计方便,节省了成本。

2.2 软件向元件化发展

目前继电器的保护原理和技术基本已经成熟,而且保护功能一般情况下也不会进行革命性的更改,所以,我们可以利用某种高级语言,将这些程序封装在标准的控制元件当中,再将这些元件针对不同的保护性质和功能嵌入到相应的位置。对于未来不会修改的功能可以做成完全封闭的元件,而对于将来可能进行修改的,可以开放元件的进出口进行修改和完善。为了避免使用和操作的过程中出现麻烦,可以将元件按照某项标准进行合理划分。这样不但有利于元件厂商推出新产品,而且增强了继电保护装置的适应性,同事避免了由于设计者的不同设计思路导致产品的不合适。

2.3 保护功能向网络化发展

随着网络信息共享的发展,可以利用计算机网络的时效性和共享性将过程层所采集的数据共享到整个系统的所有设备上,让所有工作人员都可以随时查阅。这样不但极大地提高了继电保护装置的时效性和工作效率,而且通过信息的全站共享,可以将多台机器的保护功能集成在一台超级计算机上一同实现,同时也有利于优化变电站的自动化、元件化和模块发的发展。全站的网络共享是变电站整体工作效率提高的基础,只有网络共享、数字化进一步深入发展和广泛应用,将计算机网络和数据处理的效果达到最大化,才能最终实现整个变电站数据的统一化、智能化、共享化处理,变电站的保护功能网络化必然会发展到新的天地。

2.4 装置功能向集成化发展

现阶段,随着处理器逻辑运算速度的快速发展、需要处理的继电保护现场情况也是越来越繁杂、又要考虑到成本的节省问题,集成化的继电保护装置逐渐受到人们的关注。比如一个110/10 kV的变电站,我们可以将整个变电站的变压器设计成由10 kV的出线、110 kV的进线和变压器在内的三台间隔层的保护单位组成的系统,这样这三台保护单元就可以对整个变电站进行继电保护,而不再像以往那样浪费人力物力。当然这其中也需要对不同的精度和算法进行相应的调整。装置功能向集成化发展不但可以通过压缩变电站的设备大大的节省成本,而且在维修时只需要维修或者更换损坏的部件,备份时都只需要对这三台设备的设置进行备份即可,不再需要在乎其他方面,也极大的缩减了劳动量,提高劳动效率。

3 结语

继电保护产品不断推陈出新,新的数字化变电站的推广也使得微机继电保护技术进入了新的发展阶段。经过该文对继电保护设备模块化、网络化、元件化、集成化的讨论,可以看出我国未来新式继电保护技术和设备必然会走出新的一步。

电站继电保护论文篇9

随着现代信息技术的发展提升以及智能化电网建设的不断加快,在现代化电网建设中,先进计算机信息应用技术以及网络通信技术、电力电子技术等,不仅在电网建设中的应用实现更为广泛,并且对于电网建设与发展的促进作用也越来越明显。电网建设与电力系统工作运行过程中,传统的后备保护方式不仅保护整定比较复杂,并且保护动作延时较长,电网运行过程中,一旦电网结构或者运行工况发生预设以外的变化时,电网的后备保护功能与作用很难得到保障,因而会对于整个电网的工作运行以及稳定性产生不利影响,基于网络通信以及广域测量技术的广域继电保护就是针对这种传统后备保护模式的问题,提出的一种电网运行保护新思路和新模式。广域继电保护模式在进行电网运行保护中,根据该保护模式的保护算法与分层系统结构情况,进行高效以及双向、实时、自愈、安全、可靠的通信网络构建,是广域继电保护模式实现的基础。本文将结合广域继电保护模式的分层系统结构特征,从广域继电保护模式中IED与变电站网络的接入实现,以及广域继电保护IED与电力通信网络的接入实现两个方面,对于基于MSTP平台的广域继电保护分层系统结构的网络拓扑设计进行分析论述。

1 广域继电保护的分层系统结构特征分析

广域继电保护作为电网运行保护的一种新模式以及电力系统的新增业务,其分层系统结构主要将整个保护网络分为三个结构层次,即接入层、汇聚层以及核心层。广域继电保护分层系统结构的通信网络设计中,关键是对于与数字化变电站网络以及电力通信网络的接入进行设计实现,以在满足广域继电保护功能的同时,不对于变电站以及电力通信网络中现有的业务功能产生影响。在该广域继电保护分层系统结构中,主要采用的是变电站信息集中和区域集中决策相协调的分层系统结构模式。在该分层系统结构中,变电站以及调度中心内部网络结构,在该结构中IED1到IEDn均表示智能电子设备,其中,子站中的广域继电保护IED被定义为TCU,主站中的广域继电保护的IED被定义为DCU,而调度中心的广域继电保护IED则被定义为MU,而目前所谓的广域继电保护主要是指实现同一电压等级下的线路保护;在广域继电保护分层系统结构中,通常情况下,从广域通信网络的结构层面上来看,同一电压等级的整个电网广域继电保护分层系统结构主要包含三个层次结构,即接入层以及汇聚层、核心层,在进行广域继电保护通信网络构建过程中,将整个广域电网看作是若干个有限区域共同组成,然后在每个区域选择其中的一个变电站作为主站,将所有区域的主站设置为汇聚层,对于子站TCU上传的信息内容进行汇聚,同时以主站为中心进行区域划分实现,将区域内部除主站外的其他变电站归结设置为子站,这样一来整个广域电网内的子站就构成了接入层,而广域电网的调度中心MU则是整个分层系统结构的核心层。

在广域继电保护的分层系统结构中,子站中的广域继电保护主要由信息采集单元和跳闸执行单元两个结构部分组成,其中,信息采集单元的主要功能作用包括,进行启动元件的判断以及被保护线路模拟量与开关量的测量等,并且在进行被保护线路模拟量测量中,进行模拟量测量预处理后,进行相量值的计算,并将计算所得的相量值与开关量通过远程通信网络传送到主站中;而在子站广域继电保护的跳闸执行单元结构部分,其主要功能为接受主站的控制命令,并在与本地的传统在后备保护进行综合决策后,进行相应断路器的跳合闸操作控制,同时上传指令到广域电网主站与调度中心结构部分。而在广域继电保护分层系统结构中,主站中的广域继电保护主要由信息采集单元与综合决策单元两个部分组成,其中信息采集单元在承担主站中的TCU任务,进行本区域内TCU上传信息的收集同时,进行调度中心下指令的接受;而主站中的广域继电保护综合决策单元,则具有定时根据子站上传信息进行广域继电保护运算,并且在区域内出现故障问题后,进行故障问题处理决策的制定与下发,以实现对于相关故障问题的切除控制。最后,广域继电保护的调度中心结构部分,主要是进行各区域广域继电保护系统运行情况以及全网实时拓扑结构、故障记录查询等的实施协调与监控。

2 广域继电保护IED接入变电站网络与电力通信网

2.1 广域继电保护IED接入变电站网络

对于广域继电保护IED接入变电站网络,需要结合数字化变电站网络的通信设计方案,在确定数字化变电站网络的通信方案后,进行广域继电保护IED接入变电站网络的设置实现。通常情况下,在数字化变电站通信中,应用较多的通信网络方案主要有独立过程网络与全站统一网络两种网络通信方案。其中,独立过程网络是一种比较容易实现的数字化变电站网络通信方案,而全站统一网络具有信息高度共享的特征优势,是数字化变电站通信网络的最终方案形态。以220kV的两电压等级数字化变电站为例,在广域继电保护TCU/DCU接入数字化变电站的全站统一网络拓扑结构中,数字化变电站的低压侧主要采用的是集中备用的双星形冗余网络拓扑结构,而在数字化变电站的高压侧,对于每一套单一间隔设备通过间隔交换机和本间隔内的合并单元以及断路器智能终端等过程层设备进行相互连接实现从而形成一个通信子网,数字化变电站的低压侧单一间隔设备则通过间隔交换机与集中备用交换机,与本间隔内的过程层设备进行相互连接实现。此外,对于上述网络拓扑结构中,跨间隔设备在高压侧是通过公共交换机与本间隔内过程层设备相连实现,低压侧保护则是通过另一公共交换机与连接实现。

2.2 广域继电保护IED接入电力通信网

广域继电保护IED与电力通信网的接入实现,则是在以MSTP作为传输平台的情况下,通过将广域继电保护的网络通信业务接入到电力通信网的方式,实现广域继电保护IED接入电力通信网,即为广域继电保护业务与变电站其他业务通过MSTP平台设备接入到电力通信网的传输模型结构。

3 广域继电保护分层系统结构的网络拓扑设计

根据上文所述可知,在进行广域继电保护分层系统结构的网络拓扑设计实现过程中,主要是以MSTP设备的接入或者说是以MSTP作为平台设计实现的。

首先,在进行广域继电保护分层系统结构的HVPLS网络拓扑结构设计过程中,接入MSTP平台设备的以太网接口业务主要包括,广域继电保护数据网、调度数据网、综合数据网等,各种业务通过不同以太网接口的接入,并以各自独立的虚拟网桥,实现相互连接。在广域继电保护模式中,分层系统结构的广域继电保护是一种集中式业务形式,保护区域内子站广域继电保护信息均向主站汇集,并最终汇集到核心层结构中,以组网方式实现点到多点、多点到点的网络通信传输结构形式。此外,在进行广域继电保护分层系统结构中信息传输方式以及过程的设计中,由于MSTP以太网业务处理单板具有汇聚功能,能够通过以太网进行多个接口的数据连接实现,因此,在进行广域继电保护分层系统结构信息传输方式与过程设计中,主要是以这种子站、调度中心以及主站等结构相互连接的方式设计实现,以满足广域网运行过程中,运行传输业务对于传输通道的带宽需求,同时对于降低广域网通信传输过程中的故障率也有着积极的作用。。

结语

总之,高效、稳定的网络通信是广域继电保护实现的基础,进行广域继电保护分层系统结构的网络拓扑设计,有利于促进广域继电保护在电网运行与建设中的推广应用,对于电网的安全稳定运行实现有着积极作用和意义。

参考文献

[1]丛伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报,2006(21).

[2]李振兴,尹项根,张哲,等.分区域广域继电保护的系统结构与故障识别[J].中国电机工程学报,2011(28).

[3]尹项根,李振兴,刘颖彤,等.广域继电保护及其故障元件判别问题的探讨[J].电力系统保护与控制,2012(05).

[4]李振兴,尹项根,张哲,等.基于多信息融合的广域继电保护新算法[J].电力系统自动化,2011(09).

[5]李振兴,尹项根,张哲,等.广域继电保护故障区域的自适应识别方法[J].电力系统自动化,2011(16).

电站继电保护论文篇10

根据我国提出的关于电网的建设要求,需要在实际的工作当中,建立起具有统一规划以及建设标准原则的电网,并且需要以高压的电网,作为主干网络,同时各级电网协调的发展,进而建设出具有自动化、智能化、互动化以及较强的信息化的国家电网。而要实现这一点内容,就需要在实际的工作当中,针对现阶段电网建设当中的一些主要问题,诸如技术规范、操作配置的实际状况、保护配置的原则等,进行深入的研究,同时,针对继电保护工作,进行合理的加强以及改进,进而为电网建设打下坚实的基础,很好的顺应时代的发展,提升变电站的工作稳定性以及可靠性,为相关技术的进步以及发展,做出突出的贡献。

一、智能变电站继电保护的设计技术规范原则

针对智能变电站的继电保护配置的基本技术规范进行详细的分析和研究,是逐步的开展工作的重点环节。根据我国的相关规定以及技术要求,针对继电保护的技术指标、配置的主要原则以及信息的交互性原则等,都进行了详细的规定,同时,针对电子互感装置以及合并的单元等,都在技术方面提出了新的要求。在实践的工作当中,一方面需要针对智能变电站当中的继电保护的四性进行很好的设计,还需要针对高电压的等级继电保护的系统进行双重化的配置设定,保证站控层完全的独立化,同时,其中的继电保护设备装置,不需要接入到网络当中,采用具有交互式的独立借口的数据控制装置。针对具体的保护动作,需要采用直接的采样,针对单间隔的保护,则需要使用直接跳闸的方式,其中涉及到多间隔的保护,也可以使用直接跳闸的方式。另外一个方面,针对智能变电站之中的继电保护,还需要针对变压器的保护以及线路的保护等,进行详细的规范,针对高压的并列线路以及母线的配置保护,进行明确的设计,全面的保证各个设备装置都可以正常稳定的运行,针对安全自动装置设备以及智能的终端等,进行详细的技术要求以及具体的说明,以此为基础,很好的提升智能变电站继电保护工作的稳定性和可靠性,为相关技术的进步做出努力。

二、智能变电站继电保护配置状况

根据上文的详细阐述和分析,可以对目前阶段的智能变电站继电保护工作当中主要的技术规范以及设计的基本原则等,有着明晰的了解和掌握。接下来,将针对智能变电站当中继电保护的实际配置的状况,进行细致的阐述。

在变电站之内,站内的主开关,一般是选择常规式的开关,针对自动化的系统,则应该采用三层的设备以及两级的网络线路的结构来组成,在变电站之内,过程层,需要使用SV网络以及GOOSE网络相互结合的方式,来对具体的组网方案进行改进,同时,在变电站之内,还需要针对配置的线路保护纵差以及故障的录波器等,进行双重化的配置。针对双重化的配置,首先,需要在其第一层设置相应的电子保护设备装置以及单套的配置线路,针对继电保护的工作进行有效的加强,同时,对于智能变电站当中的母联保护,则需要直接的接入至过程层,以便更好的和单套配置的智能终端结合起来,全面的提升使用的效果以及工作的稳定性和协调性。另外一个方面,在智能变电站的继电保护配置过程之中,还需要注重过程层采用直接跳闸的设置原则,这一点对于实际的工作和运行来讲,尤为重要,如果采用的是网络跳闸的方式,则有可能会导致网络延时以及对于电力网络的工作稳定性造成一定程度上的影响,所以,针对这一方面的问题,还需要在实际的工作和配置当中,引起足够程度的重视。

三、智能变电站站内的各个设备继电保护配置

在智能变电站的各个设备的继电保护配置工作当中,主要是针对线路的保护、变压器的保护以及母联的保护进行具体的设计,很好的针对这一环节进行分析和研究,将直接的影响到智能变电站的工作稳定性以及工作的可靠性。

(一)线路保护。针对线路的保护,需要保证站内的控制以及测控等的功能高度一体化,同时,还需要针对重合闸以及断路器等装置进行很好的技术改进,以便在实践的操作过程当中发挥出应有的效应。首先,在线路的间隔保护层之内,需要针对测控的装置以及相关的网络交换信息装置进行具体的配置,同时,还需要使用点对点的方式来合并单元并且和智能的终端相互的连接,保护的装置设备,和合并的单元之间进行数据的传输,很好的实现了直接的采样功能,而这一点改进对于实践的工作以及运行则是有着非常重要的作用和意义。此外,在安装母线以及线路的电子互感器装置之时,还需要针对其中的电流以及电压的控制信号进行明确的分析,保证数据可以经过光线以及网络保护测控装置。

(二)变压器的保护。针对变压器的保护,也是相关工作当中的重点环节之一。首先,其具体的保护配置方案,和线路的保护基本一致,需要针对低压的侧和单元以及电流信号等,直接的输出至保护侧控装置当中,很好的实现信号以及数据的直接采样,这一点同样对于实际的工作具有重要的意义,在高压以及中压的智能终端之上,需要使用GOOSE网络,来直接的和变压保护装置相互连接起来,进而可以更好的实现直接的跳闸操作,保证了设备装置以及电力系统的智能化以及自动化。

(三)母联保护。针对母联的保护,相关的配置原则较为简单,并且在结构的设置之上,也更加便捷。针对分段保护装置设备,需要很好的与合并的单元以及智能终端相互连接起来,同时,实现不通过网络的数据交换,来进行相关电力系统运行以及工作信息数据的采样和分析,针对其中的保护装置设备以及合并的单元涉笔,需要通过独立的网络以及SV的网络来进行连接,进而很好的实现信号的分段传输以及间隔式的传输,保证了电力设备以及相关系统的运行稳定性和可靠性。

四、结束语

综上所述,根据对智能变电站当中的继电保护进行详细的分析和研究,从实际的角度出发,深入并且细致的探析了智能变电站的继电保护具体的配置原则以及设计的技术规范,针对其中各个设备的具体设计,进行了细致的探究,从实际的角度出发,针对电力系统设备当中的线路保护、变压器保护以及母联的保护等,进行具体化的分析和探究,针对其中的重点环节和设计当中的难点,都进行了详尽的阐述,力求为相关技术和工作的进步做出积极的贡献。

参考文献:

电站继电保护论文篇11

智能变电站对我国信息变革、智能化电网变革等一些改革工作中基础的一环,也是非常重要的一环,据以往的智能变电站建设经验来看,建立性能良好、网络全面的继电系统是智能变电站建设的保证,在110 kV智能变电站的建设工作中,我们结合继电保护系统的装配原理、变电站供电层的继电保护系统、过程层的继电保护系统这个三个方面来进行分析,对智能变电站中继电保护装置的建设作出规划,并提出一些合理性的探究意见。

1 110 kV变电站中继电保护系统的配置

1.1 智能变电中智能蓄电保护系统的配置内容

110 kV变电站中继电保护的配置规划中包括变电站供电层和过程层。其中在一次变电站中过程层可以独立地对变电站中所有的电力设备进行保护,并且过程层占主导地位;如在一次智能变电中,继电装置则安置与智能设备内部,或者是将合并装置、保护装置、测控装置等放置于智能设备附近的控制柜之中,以达到是智能设备的维护和运转更简便的目的。使用互联网进行统一的样本值以及Goose的传送。智能变电站中站系统采用IEEE-1588来进行时间调对,除了在内部分散保护保护装置之间进行数据同时不使用IEEE-1588来完成时间调对。采用这种方法的一种重要原因是可以充分避免因为内部通讯线路跳闸、采样……这些不可确定因素而引发的继电保护失效现象,而且使用该种方法网络数据就能在继电保护发生时得到更充分的保存,使损失数据减少,提高对数据的保护程度。

1.2 智能变电中智能蓄电保护系统的继电保护原则

就110 kV智能变电站而言,变电站中接地导线的设施与装配比高级别的智能变电站更简单,设备形式等简易。这样我们在设置110 kV智能变电站的继电保护装置时就要着重注意以下几点:1)智能变电站的蓄电保护系统建设既要满足传统变电站中继电保护的“四要点”,同时也要满足实时的建设要求变化需要,只有这样才能使智能变电站的继电保护特点体现出来。所谓传统变电中的继电保护“四要求”是指:继电保护系统要具有可靠性、灵敏性、有选择性以及快速性。2)对于像110 kV及以上更高电压等级变电站中,Goose网、过程层SV网以及变电站操控层MMS网之间要保持独立的关系,在三网接入继电保护系统之时要保证各网数据接口控制装置间不能彼此干扰。3)在110 kV及以上更高压级别的变电站中,单母线与双母线之上可装上电压电流感应电子互感系统。4)在110 kV及以下较低电压变电站中,更适宜使用一体化检测保护装置。5)在110 kV及以下较低电压变电站中,当采用就地安装智能保护系统时,其智能保护系统的终端设备可采用集成安装这种形式。6)在110 kV及以下较低电压变电站中,主要变压器的各个侧面合并单元更适宜采用冗余装配的方式,其他各个间隔处的合并单元更适宜采用单套装配这种方式。7)就每一个合并单元来看,来自过程层网中的信息数据均应该有所记录,记录工作应该由网络数据分析记录设备与故障录波设备这两者共同完成对其信息数据的记录,这里要注意的一点是,当这两个设备进行记录工作时,两者所对应的Goose、MMS以及SV这三个网络数据传输接口的控制装置应该相互分开、独立,互不干扰。

2 110 kV智能变电站中过程层继电保护

110 kV智能变电站中过程层的要组成结构包括:一次设备以及一次设备附属组建与装置。两外快速闸跳装置是过程层继电保护计划的主要手段,快速闸跳装置的保护内容主要包括:变压器保护、母线保护、线路保护等等。

2.1 变压器保护

一般智能变电站的继电保护工作中过程层变压器保护计划主要采取分布式保护,具体来说,当变压器保护工作启动时首先启动的差动保护内容,之后启动启动后备保护内容。但110 kV变电站中变压器保护设置则有所不同,具体俩说,110 kV变电站的变压器保护配置可实现差动保护与后备保护的双运行机制。在对

110 kV变电变压器保护计划进行取样分析,分析结构显示,各侧受控断路器自动跳闸,而保护过程中分段断路装置和失灵装置的启动控制信息的传递与数据记录均有由Goose网络所完成。

2.2 母线保护

110 kV智能变电站中对母线的保护计划采用相应设计分布式装置,与一般智能变电站中所采取的母线保护内容不同,虽然

110 kV变电站中也采取母线分段保护计划,但每个保护单元直接与合并单元相连,并且与智能系统终端相连,保护工作中的数据取样和开关跳闸功能可实现自动化,直接受智能终端控制或是直接传输给智能系统终端,不需要在进行网络的数据和信息的交换,保护过程中跨间隔信息直接经过互补干涉的SV网络与Goose网络实现传输。

2.3 线路保护

110 kV变电站的继电保护计划在设计设计之初就要明确一点,变电站的实时运行状态需与继电保护实时相连,并且依据间隔作为单套配置的依据,这要求变电站中线路中两个间隔之间的测控保护设备要分别与合并单元、智能系统终端以及Goose网络一一进行数据信息的交换和连接。和畅通的变电站继电线路保护不同的是,该种线路保护方式直接将信息传递给智能终端,并接收命令信息。

3 智能变电站中变电站层继电保护

智能变电站层继电保护计划采取集中式后备保护配置,采用这种技术的好处就是可以实现自动调定与实时在线调定这两种保护内容。在实际工作中不同的电站内部情况继电保护保护系统的实际功能差距也很大:1)供电正常的情况下,变电中所有的电力设备均正常运转时,继电保护系统主要负责预警与电力设备的实时监控。2)当发生电力事故时,继电保护系统负责对电力事故部门的电力传输阻断,并且将实时信息传输给智能终端。3)在供电异常时,继电保护系统负责警告信号的发出以及对实时电力变化数据进行记录并传输给智能终端。

4 总结

智能变电站是发电站发展的必经之路,对我国智能化电网的建设工作也有着十分重要的意义,而继电保护作为保证智能变电站良好运行的基础条件之一,如何够构建优良的继电保护系统也是智能变电站改革过程中所遇到的重要问题,通过上文对110 kV智能变电站的继电系统建设规划进行了探讨,总结出一些常用的智能站中的继电保护方式和方法。

参考文献

[1]夏勇军,陈宏等.110 kV智能变电站的继电保护配置[J].湖北电力,2010,01.

[2]袁桂华,张瑞芳,郭明洁.110 kV变电站继电保护整定方案优化[J].中国造纸,2010,07.

电站继电保护论文篇12

1 该系统简析

首先,主要的要求,对继电保护回路系统的灵敏性、可靠性、快速性、选择性给予保证,是变电站运行当中变电站工作人员应该需要注意的一个重要问题。灵敏性指的是该系统在本身运行和反映的时候一定要一直保证灵敏,对故障的情况能够正确的反映出来,对停电的原因上也能够很好的反映出来,降低停电的范围。可靠性指的是当有故障出现在变电站运行过程中的时候,拒动的现象不会出现在继电保护回路系统当中,进而有效的降低变电站运行过程中存在的一些风险。快速性指的是当故障出现的时候,继电回路保护系统能够迅速的将故障反映出来,在继电保护装置当中,它是其中比较突出的一个特征之一。选择性指的是当故障发生在变电站运行过程中的时候,必须正确的选择继电保护回路的运行方式,进而有效的降低错误操作的情况出现在工作的过程中。所以,在变电站工作的时候,工作人员应该持续的检查继电回路系统当中的这些特性,进而保证电站能持续高效稳定的运行。

其次,系统的构成,逻辑部分、执行部分、测量部分这样三个部分构成了继电保护回路系统。逻辑部分主要指的是依据以前的测量内容将结论获得出来,能够利用逻辑判断的方式对启动继电保护回路系统进行判断。执行部分主要是指依据逻辑部分的断定对变电站的具体执行工作进行判断。测量部分主要是指该系统能够将变电站的电气量作为基本的依据,有效的测量变电站的运行情况,并且依据这些测量得到的结果将相应的结论提供给运行状态。

再次,自动和备用装置,自动重合闸的装置就是指自动的装置,自动重合闸在变电站的运行过程中应该有一定的灵活性存在于其中,主要展在变电站产生跳闸和断路断开的情况是自动形成的,并应该有一定的动作存在于自动重合闸当中。并且有关的工作人员在工作的时候要合理的统计自动重合闸的动作次数,进而确保继电保护回路能够合理的运行。

当变电站的运行由于在故障的影响下出现了自动跳闸的情况之后对电源断路的装置能够起到代替作用,这就是我们所说的继电保护回路系统的备用装置。同时,当跳闸和断路的情况出现在变电站的正常电源中的时候,应当保证动作依次存在于继电保护回路的系统当中,进而避免出现错误动作和别的事故。

2 具体的应用

继电保护回路系统在变电站的运行当中的有效应用,对供电需求和变电站的正常运行上会带来非常巨大的影响。所以,对继电保护回路系统的合理应用,变电站的工作人员在工作的过程中都要严格的重视起来,进行合理的应用。对变电运行中的继电回路系统的具体应用上进行分析,主要从这样的几个方面入手:

2.1 应用的主要条件

继电保护回路系统在变电站的运行过程中,是确保整体电力系统有效运行过程中不能缺少的一个重要组成部分,对变电站的电力元件利用继电保护回路系统可以对其进行有效的保护。之所以称继电保护回路为一种系统,是由于它可以在多个方面对变电站的继电进行保护,并且继电保护装置的性能上也会对其带来过多的影响和限制。这就表明变电本身的一些环境对继电保护回路系统的工作效率上会带来比较大的影响。所以,对继电保护回路系统的一些应用条件上,变电站的工作人员应该深刻的予以理解和掌握,进而保证当故障出现在变电站中的时候,能够立刻的将变电站的继电保护回路系统运作起来。

2.2 分析故障出现的信息

合理的分析变电站的故障信息,是变电站工作过程中应用继电保护回路系统的一个基本的前提条件。变电站出现故障的类型、变电站出现故障的时间、备用的一些装置有无启动、重合闸的运行装置等都是在工作的过程中需要分析的一些内容。变电站中的工作人员经过对这方面的工作进行合理的分析和掌握,能够合理的分析上述提到的几种信息,将良好的基础提供给接下来的一些故障信息的诊断。

2.3 诊断出现故障的信息

在分析完故障信息之后,在对变电站故障信息进行诊断的时候,为了确保合理的进行,就要对继电保护回路系统进行应用,在这个环节当中,变电站的工作人员应该分层的处理所得到的故障信息。一般来说,有效的应用分层处理的方式,对变电站故障的发生地点、故障的呈现状态、故障的形成原因、故障的基本类型等内容可以高效的予以确定,从而将良好的准备条件提供给以后变电站工作人员对故障的处理。

2.4 处理故障的信息

在变电站运行的继电保护回路系统当中,处理故障的信息是该技术进行应用的时非常重要的环节。当有故障出现在变电站中的时候,变电站工作人员利用分析和诊断出现故障的信息,因此能够清晰的了解和掌握故障信息的整体情况,所以,在处理变电故障信息的时候应该在这样的前提下,对正向处理方式的应用予以推广应用,就是指在过去处理完的故障信息资源库当中将相似的处理方式提取出来,并且对应用的处理方式进行判断,看在目前的故障当中能否将其同样予以应用。在这以后,变电所的工作者应该利用逆向推理的方式对变电站故障处理可用的方式进行使用,进一步将处理的范围缩小,对变电站故障有效的处理方式进行确定,在实践中进行合理的运用。此外,在处理完毕变电站中的一些故障之后,对此次处理的步骤及时的进行记录,这也是变电站工作人员在工作当中不能忽略的一个重要方面,将合理的数据和实例提供给以后发生相似故障打下坚实的基础。

3 结语

在经济发展的推动下,人们对电的需求量日益提升,对我国越来越大的供电需求上给予满足,变电站保持长期稳定在其中发挥了重要的作用,继电保护回路系统在变电站运行中的应用对降低变电站的运行风险和提升运行的水平上带来了巨大的帮助,为我国电力运行水平的提升上必将带来巨大的帮助。

参考文献:

电站继电保护论文篇13

智能变电站对我国信息变革、智能化电网变革等一些改革工作中基础的一环,也是非常重要的一环,据以往的智能变电站建设经验来看,建立性能良好、网络全面的继电系统是智能变电站建设的保证,在110 kV智能变电站的建设工作中,我们结合继电保护系统的装配原理、变电站供电层的继电保护系统、过程层的继电保护系统这个三个方面来进行分析,对智能变电站中继电保护装置的建设作出规划,并提出一些合理性的探究意见。

1 110 kV变电站中继电保护系统的配置

1.1 智能变电中智能蓄电保护系统的配置内容

110 kV变电站中继电保护的配置规划中包括变电站供电层和过程层。其中在一次变电站中过程层可以独立地对变电站中所有的电力设备进行保护,并且过程层占主导地位;如在一次智能变电中,继电装置则安置与智能设备内部,或者是将合并装置、保护装置、测控装置等放置于智能设备附近的控制柜之中,以达到是智能设备的维护和运转更简便的目的。使用互联网进行统一的样本值以及Goose的传送。智能变电站中站系统采用IEEE-1588来进行时间调对,除了在内部分散保护保护装置之间进行数据同时不使用IEEE-1588来完成时间调对。采用这种方法的一种重要原因是可以充分避免因为内部通讯线路跳闸、采样……这些不可确定因素而引发的继电保护失效现象,而且使用该种方法网络数据就能在继电保护发生时得到更充分的保存,使损失数据减少,提高对数据的保护程度。

1.2 智能变电中智能蓄电保护系统的继电保护原则

就110 kV智能变电站而言,变电站中接地导线的设施与装配比高级别的智能变电站更简单,设备形式等简易。这样我们在设置110 kV智能变电站的继电保护装置时就要着重注意以下几点:1)智能变电站的蓄电保护系统建设既要满足传统变电站中继电保护的“四要点”,同时也要满足实时的建设要求变化需要,只有这样才能使智能变电站的继电保护特点体现出来。所谓传统变电中的继电保护“四要求”是指:继电保护系统要具有可靠性、灵敏性、有选择性以及快速性。2)对于像110 kV及以上更高电压等级变电站中,Goose网、过程层SV网以及变电站操控层MMS网之间要保持独立的关系,在三网接入继电保护系统之时要保证各网数据接口控制装置间不能彼此干扰。3)在110 kV及以上更高压级别的变电站中,单母线与双母线之上可装上电压电流感应电子互感系统。4)在110 kV及以下较低电压变电站中,更适宜使用一体化检测保护装置。5)在110 kV及以下较低电压变电站中,当采用就地安装智能保护系统时,其智能保护系统的终端设备可采用集成安装这种形式。6)在110 kV及以下较低电压变电站中,主要变压器的各个侧面合并单元更适宜采用冗余装配的方式,其他各个间隔处的合并单元更适宜采用单套装配这种方式。7)就每一个合并单元来看,来自过程层网中的信息数据均应该有所记录,记录工作应该由网络数据分析记录设备与故障录波设备这两者共同完成对其信息数据的记录,这里要注意的一点是,当这两个设备进行记录工作时,两者所对应的Goose、MMS以及SV这三个网络数据传输接口的控制装置应该相互分开、独立,互不干扰。

2 110 kV智能变电站中过程层继电保护

110 kV智能变电站中过程层的要组成结构包括:一次设备以及一次设备附属组建与装置。两外快速闸跳装置是过程层继电保护计划的主要手段,快速闸跳装置的保护内容主要包括:变压器保护、母线保护、线路保护等等。

2.1 变压器保护

一般智能变电站的继电保护工作中过程层变压器保护计划主要采取分布式保护,具体来说,当变压器保护工作启动时首先启动的差动保护内容,之后启动启动后备保护内容。但110 kV变电站中变压器保护设置则有所不同,具体俩说,110 kV变电站的变压器保护配置可实现差动保护与后备保护的双运行机制。在对

110 kV变电变压器保护计划进行取样分析,分析结构显示,各侧受控断路器自动跳闸,而保护过程中分段断路装置和失灵装置的启动控制信息的传递与数据记录均有由Goose网络所完成。

2.2 母线保护

110 kV智能变电站中对母线的保护计划采用相应设计分布式装置,与一般智能变电站中所采取的母线保护内容不同,虽然

110 kV变电站中也采取母线分段保护计划,但每个保护单元直接与合并单元相连,并且与智能系统终端相连,保护工作中的数据取样和开关跳闸功能可实现自动化,直接受智能终端控制或是直接传输给智能系统终端,不需要在进行网络的数据和信息的交换,保护过程中跨间隔信息直接经过互补干涉的SV网络与Goose网络实现传输。

2.3 线路保护

110 kV变电站的继电保护计划在设计设计之初就要明确一点,变电站的实时运行状态需与继电保护实时相连,并且依据间隔作为单套配置的依据,这要求变电站中线路中两个间隔之间的测控保护设备要分别与合并单元、智能系统终端以及Goose网络一一进行数据信息的交换和连接。和畅通的变电站继电线路保护不同的是,该种线路保护方式直接将信息传递给智能终端,并接收命令信息。

3 智能变电站中变电站层继电保护

智能变电站层继电保护计划采取集中式后备保护配置,采用这种技术的好处就是可以实现自动调定与实时在线调定这两种保护内容。在实际工作中不同的电站内部情况继电保护保护系统的实际功能差距也很大:1)供电正常的情况下,变电中所有的电力设备均正常运转时,继电保护系统主要负责预警与电力设备的实时监控。2)当发生电力事故时,继电保护系统负责对电力事故部门的电力传输阻断,并且将实时信息传输给智能终端。3)在供电异常时,继电保护系统负责警告信号的发出以及对实时电力变化数据进行记录并传输给智能终端。

4 总结

智能变电站是发电站发展的必经之路,对我国智能化电网的建设工作也有着十分重要的意义,而继电保护作为保证智能变电站良好运行的基础条件之一,如何够构建优良的继电保护系统也是智能变电站改革过程中所遇到的重要问题,通过上文对110 kV智能变电站的继电系统建设规划进行了探讨,总结出一些常用的智能站中的继电保护方式和方法。

参考文献

[1]夏勇军,陈宏等.110 kV智能变电站的继电保护配置[J].湖北电力,2010,01.

[2]袁桂华,张瑞芳,郭明洁.110 kV变电站继电保护整定方案优化[J].中国造纸,2010,07.

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读