欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

无线传输技术论文实用13篇

无线传输技术论文
无线传输技术论文篇1

上世纪70年代末,诞生了被称为第一代蜂窝移动通信系统的双工FDMA模拟调频系统,但由于模拟系统固有的先天缺陷,在90年代初被以TDMA为基础的第二代数字蜂窝移动通信系统所取代,相对FDMA系统有诸多优点,如频谱利用率高,系统容量大、保密性好等。与此同时产生了以CDMA为基础的数字蜂窝通信系统,相比TDMA系统具有低发射功率、信道容量大、软容量、软切换、采用多种分集技术等优点。

随着网络的广泛普及,图像、话音和数据相结合的多媒体和高速率数据业务的业务量大大增加,人们对通信业务多样化的要求也与日俱增,而一代二代系统远远不能满足用户的这些需求,所以诞生了第三代移动通信技术,它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。国际上承认的3G标准有三个:CDMA2000、WCDMA以及TD-SCDMA,这里主要从各个方面做WCDMA和CDMA2000的对比研究。

二、WCDMA和CDMA2000的综合比较

由于WCDMA和CDMA2000这两种技术都是将CDMA技术用于蜂窝系统,许多的思想都是源于CDMA系统,因此WCDMA和CDMA2000有许多相试之处:从双工方式上看,WCDMA和CDMA2000属于FDD模式。WCDMA和CDMA2000都满足IMT-2000提出的技术要求,支持高速多媒体业务、分组数据和IP接入等。但它们在技术实现、规范标准化、网络演进等方面都存在较大差异。

WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。

CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。

1.WCDMA与CDMA2000的物理层技术比较

WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。

(1)这两个标准的物理层技术相似点可以归纳为以下几点:

①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。

②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。

③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。

④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。

(2)两个标准的物理层技术差异可以归纳为以下几点:

①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。

②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。

③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。

④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。

2.WCDMA与CDMA2000网络接口的比较

3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。

WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。

3.WCDMA和CDMA2000网络演进的比较

(1)WCDMA的网络演进技术

现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。

(2)CDMA2000网络演进技术

主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。

窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。

①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。

②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。

③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。

三、WCDMA和CDMA2000在我国的前景

对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。

在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。

WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。

由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。

参考文献:

无线传输技术论文篇2

当今是个高度信息化的世界,人呢么的日常生活、工作都离不开网络的运行,信息传输在互联网技术中的地位举足轻重。信息传输技术的水平直接关系到信息化的产业结构,随着人们对信息技术的依赖性越来越大,因而对信息的传输质量与速度也提出了更多的要求。有线传输的介质通常有以下几种,双绞线、光缆、光纤和同轴电缆等,可以根据不同情况选择适合的传输介质。

1 有线传输介质

传输介质可以在两个通信设备间进行连接,传递信号从一方向另一方。以往的信息传输媒介是语音,可输送的信息容量很小,传输信号的模式也很简单,受外界的干扰比较大,这样就对信号传输的质量有了一定影响。有线传输介质主要有双绞线电缆和同轴电缆、光缆三种。

1.1 双绞线电缆传输。双绞线电缆是应用非常广泛的一种介质材料,可以用来传输数字信号以及模拟信号。通常来说,双绞线的电缆中有一对或一对以上的双绞线,两条相互绝缘的导线缠绕在一起,一般是逆时针缠绕。双绞线分为两大类,一类是非屏蔽双绞线。二是屏蔽双绞线。这样的通用配线,在以前是传输模拟信号的,现在数字信号的传输也同样适用。双绞线的传输距离最大为100m。屏蔽双绞线的外层由金属材料包裹,能够减少辐射,阻止信息被窃等作用,于此同时,它还具有很高的传输率。缺点是屏蔽双绞线的价格较高,安装困难,需要用特定的连接器,有较高的技术门槛。非屏蔽双绞线更适合综合布线系统。

1.2 同轴电缆传输。同轴电缆在曾经应用广泛,但是后来发展越来越不好。它的技术原理总是使用同轴的铜管和铜网来进包裹铜线。同轴电缆有两种,一是基带同轴电缆,二是宽带同轴电缆。基带电缆只用在数字传输。同轴电缆的缺点是安装、维修困难,价格高。优点是,带宽范围大,对外来干扰的抵抗性好。同轴电缆在降低对外来干扰信号的同时,也使频带的宽度得到了加大,有些同轴电缆的频宽甚至达到十几兆赫兹,由于直径的尺寸不同,同轴电缆分为细、粗同轴两种电缆。粗和细两种电缆在总线的两端都要装上与之相匹配的终端电阻。

1.3 光纤传输。光纤是现代科技的产物,光纤通信的载体是光和电信号。光缆由光纤组成,光纤是一种输光信号的介质,细小并柔韧。光缆在目前的长距离大容量传输中扮演着重要角色。光纤中有光脉冲,出现时表示为“1”,不出现时表示为“0”。光纤分为两大类,一类是传输点模数类,传输点魔术类又分为多模和单模光纤,单模光纤在制定的工作波长中只能够用单一的模式传输,传输的频带宽,容量大。而多模光纤能在制定的波长上用多个模式进行同时传输。这是一种高效的传输方式。

2 与无线传输技术的对比

有线传输技术和无线传输技术是现代信息传输技术最重要的两种,无线传输技术近年来的发展迅速,这基于信息化的进程,多种通信设备的不断发展,人们对信息传输的速度和质量要求也水涨船高。无线传输技术的成本较低,实现方式也容易,在很多领域中都得到了使用,比如手机通信、“无尾电视”、WIFI技术和手机软件互联等领域。无线传输在最近几年的发展势头强劲。

无线与有线的传输技术在介质方面有所不同,有线传输的介质有光缆和电缆等,无线传输的介质是电磁波。在有线传输技术中,传导材料可能制约传导的质量,传输距离会影响传输的信号质量。无线传输的信息发射装置若不同,那么信号的传输质量也不同。可以看出,有线传输信号是数率衰减,无线传输信号与空间电磁波成平方反比关系,无线传输模式可以在距离上走的更远,目前,航天通讯就是使用的无线传输模式。总之,有线传输的稳定性较好,传输的速度快,有比较好的抗干扰性,安全系数高等特点。

3 有线传输的发展动态

人类信息化工程的不断建设,对信息传输的要求越来越高,无线传输在这样的时代背景下诞生,虽然有灵活、方便的特点,但是,目前在人机互联、机机互联,在这样的条件下,有线传输还是最适合的。从某种意义上说,无线传输不可能全面替代有线传输方式。目前,随着科技的不断进步,处理语音之外的传输介质不断出现更新,其中有本文字、符号数字、图形图像和数据包等等,利用此种传输介质可以支持电脑、数字电视、幻灯片、多媒体、机器仪器、电影科技、显示屏等。过去简单传输介质已经无法满足全方面发展的传输技术了,有线传输技术与无线传播技术在传输方式上有所不同,但都占据了非常重要的位置,尤其是近几年来,WIFI的普及和无线技术的告诉发展更是迅速,有线传输在技术上还是有自己的优势,如传输的质量和效率方面。这两种传输技术的良好发展能更好的为人们生产生活服务。

3.1 传输技术发展。网络技术的不断发展,比如:路由技术、数字复分接技术、光纤通信技术、网络信号的传输协议技术、传导材料升级等等,这些都需要有线传输技术发挥重要作用,其优越性不言而喻,有线技术也有赖于传输的材料更新和传输协议的发展、软件系统等。光纤的传输成本很高,但是基于现代工业发展和经济发展的需要,有很大的上升空间。

3.2 传输距离更远。由于人们的生产生活需要,对传输距离有了更高的追求,世界越来越小,地球村的概念被广泛接受,尤其在我国加入世界贸易组织后,我们有了更多的国际贸易机会。我国幅员辽阔,国内贸易在地理上的跨度也是很大,还有西部大开发等项目,这些都要求传输距离要远。很多跨地域的光缆和电缆、跨海电缆被铺设,这对于世界的有线传输事业起到了促进作用。对于光纤传输来说,传输距离当然是越远越好,所以,研究人员在传输距离方面的努力一直没停过,光纤放大器的应用对传输距离技术的提高又很大作用。

3.3 网络化发展。计算机的网络技术迅猛发展,信号的传输更加网络化,而不是传统单目标指向性的连接方式。在功能上要能实现信息传输,还要能对安全性有保障,这才是未来发展的方向。随着IP业务的大规模应用,通信行业的结构有所改变,行业面临着重新洗牌的情况,新技术也随之出现。软件的开发控制也标志着光通信技术也朝向网络化、智能化发展。

4 结束语

有线技术有很好的发展前景,尽管无线技术的迅速发展给有线传输技术带来影响,但是无线传输技术的不安全性却是有线传输技术可以弥补。多种通信技术要协调发展,为人们进行更好的服务。在通信事业未来的发展当中,我们要根据有线传输技术本身的特征来对该技术进行优化、改进,从而推动传输事业的发展。本文通过对有线传输技术进行分析,可以得知有线传输技术在通信领域的重要作用。我们要继续深入研究有线传输技术,进一步探索其新技术的应用,可以创造更多的经济效益,为我国的信息传输事业做出贡献。

参考文献:

[1]刘湘荣.通信线路与容灾能力研究[A].中国通信学会2009年光缆电缆学术年会论文集[C],2009.

[2]王永红,宋志佗,鹿中晖.我国西南地区通信线缆的安全与防护技术[A].中国通信学会2009年光缆电缆学术年会论文集[C],2009.

[3]潘峰.半干式光电复合缆研究[A].2012年光缆电缆学术年会论文集[C],2012.

无线传输技术论文篇3

所谓无线充电技术通常指的是电能的无线传输技术,通俗的说,就是不借助实物连线实现电能的无线传达。这样做的好处是方便、快捷,减少在苛刻条件下使用电缆带来的危险性等。关于无线充电技术的研究开始较早,早在1900年,尼古拉・特拉斯就开始无线电能传输的实验,经过一百多年的发展,关于无线传电的方法多种多样,但是基本原理大概可以分为以下三种:电磁感应式、无线电波式、谐振耦合式,通过非辐射磁场内两线圈的共振效应实现中距离的无线供电。

从表1对比可知, 谐振耦合式无线充电技术的非辐射性、高效率等优点是其它无线充电技术无法相比的。所谓谐振耦合式就是利用接收线圈的电感和并联的电容形成共振回路,在接收端也组成同样共振频率的接收回路,利用谐振形成的强磁耦合来实现高效率的无线电能传输。该技术的出现引起了国内外学术界与工业界的巨大兴趣,被公认为目前最具发展前景的一种无线能量传输技术方案。

但是目前基于谐振耦合式的无线充电技术的研究偏向理论化,缺乏对实际应用有定量指导意义的研究成果,同时此技术传输功率较小远远不能完成大功率能量传输,也存在着能量损失较高等缺陷。但毋庸置疑,谐振耦合式无线充电技术对充电设备位置的灵活性以及充电设备的高效匹配性具有重要的实用价值。

二、国内外研究现状

无线能量传输的构想最早可以追溯到19世纪80年代,由著名电气工程师(物理学家)尼古拉・特斯拉(Nikola Tesla)提出。为证实这一构想,特斯拉建造了巨大的线圈用于实验使用。由于实验耗资巨大,最终因财力不足没有得到实现,随后也一直被技术发展水平所限制。

国外对无线充电技术的研究开展的比较早。1968 年,美国著名电气工程师P. E. Glaser在W. C. Brown提出的微波无线能量传输(WPT)概念的基础上提出了卫星太阳能电站(SSPS)的概念。随后美国,日本和欧洲等国都试图把这项技术作为获取新能源的手段,但由于该方案在技术上要求很高,故在实际使用上存在一定的局限性。随后,一家名为 Powercast 的公司推出了一款利用无线电波充电的充电装置,实现了距离为1米左右的低功率无线充电。

另一方面,在20世纪70年代,美国出现了电磁感应能量传输原理的无线电动牙刷。这项应用的传输功率和传输距离都不是很理想,但其无线的特征却恰好满足了其特殊条件下的应用要求。近年来,美国、日本、新西兰、德国等国家相继在这项技术上继续深入研究,目前已经研发了很多实用的产品:美国通用汽车公司研制出的 EV1 型电车;日本大阪幅库公司研制出的单轨型车和无电瓶自动货车;2013年10月,瑞典汽车制造商沃尔沃声称成功地研制出电磁感应式无线充电汽车。

国内对无线充电技术的研究相对较晚。目前在无线电波和电磁感应无线能量传输方面取得的主要成果有:2005年8月,香港城市大学电子工程学系教授许树源教授宣布成功研制出“无线电池充电平台”;中科院严陆光院士带领的研究小组从高速轨道交通的角度对运动型应用进行了性能分析;2007年2月,重庆大学自动化学院非接触电能传输技术研发课题组突破技术难点,设计的无线电能传输装置实现了600至1000W的电能输出,传输效率达到 70%。

谐振耦合式方案是2006年由美国麻省理工学院物理系助理教授 Marin Soljacic 所带领的研究团队提出来的。并于 2007 年 7 月 6 日在科学杂志《Science》上发表成果文献。团队利用该方案,成功的点亮了距离为2米外的一个60 瓦的灯泡,传输效率为40%左右。此项称为“Witricity”技术,该技术树立了无线充电技术发展史的里程碑。一年后,Marin Soljacic团队声称已将传输效率提高至90%。

由于该技术极具前景和市场,世界各国的相关机构和公司也不约而同的进行深入研究。2010 年 1 月,海尔在美国拉斯维加斯举行的国际消费电子展(CES)上展出了最新概念产品无尾电视。一方面,产品运用无线通信技术传输视频信号;另一方面,又使用谐振耦合式充电技术供电,真正实现了无线化。

三、发展疑难点及解决方案

3.1 如何克服干扰源的影响

无线能量传输系统工作在包含各种用电设备的电磁环境中,易受到外界电磁源的干扰。一方面,磁耦合谐振无线能量传输系统以磁场为能量传输介质,任何能感应到磁场的元件都可能成为负载,这种情况为无源干扰源,称为负载类干扰,干扰源称为负载类干扰体;另一方面,外磁场也会影响能量传输系统的磁场,这种情况为有源干扰,其干扰源为干扰场源。这些干扰都会降低系统的传输效率。根据无线输电原理,本文提出以下两个解决方案:(1)选择隔磁的充电空间。为了避免干扰源对能量传输系统的影响,可以把能力传输系统与干扰源隔离,故可以利用电磁屏蔽技术,使系统不受外界干扰源影响。电磁屏蔽的工作原理是利用反射和衰减来隔离电磁场的耦合,所以可以制作屏蔽体,来保护系统免受外界电磁波干扰。如屏蔽导电漆就是能用于喷涂的一种油漆,干燥形成漆膜后能起到导电的作用,从而屏蔽电磁波干扰。(2)控制能量传输系统的谐振频率。由磁耦合谐振式无线能量传输机理的研究知,能量传输系统对干扰源的频率十分敏感。在实际应用中,0.5~25MHz 尚属于空白应用频率段,因此可以在设计能量传输系统的时候,使系统的谐振频率满足电磁耦合的同时尽量处于0.5~25MHz之间,这样有可能降低实际应用中的电子设备对无线能量传输系统的影响。

3.2 如何提高传输距离

美国麻省理工学院物理系助理教授 Marin Soljacic 所带领的研究团队成功地点亮了距离为 2 米外的一个 60 瓦的灯泡。但目前这种技术的最远充电距离只能达到2.7m,传输距离较近严重限制了它的应用。由于传输距离的远近与能量传输系统的电路结构密切相关,现提出如下解决思路:改变电路参数角度来提高传输距离。研究表明,传输距离受到频率、线圈参数等的影响。线圈的谐振频率越高,传输的距离越远;线圈的线径越大,传输的距离越远;线圈的直径越大,传输的距离越远;线圈的匝数越多,近距离传输效果强于远距离传输效果。因而可以综合频率、线圈参数等因素,选定合适的电路器件,使系统传输距离较远。

3.3 是否存在有害电磁辐射

磁耦合谐振式无线充电技术的原理告诉我们,由于电感线圈的存在,必然会产生磁力线辐射,那么这样的磁场会不会造成电磁辐射危害人们的身心健康呢?在电流的辐射方面,目前无线充电器基本上将交流电整流后转换为直流电,且功率极小,业内人士也一直在强调理论上对人的健康不构成威胁。但是辐射的问题,现在也只是停留在理论分析上,到底会不会,依旧是需要更进一步的理论分析和实验研究,只能让时间来证明。

四、发展前景及创新

4.1 RFID与无线充电技术的融合

射频识别技术是利用射频信号通过空间耦合(交变磁场或电磁场)传播来实现无接触式信息传递并通过所传递信息达到自动识别自标的一种技术,将RFID技术与无线充电技术相结合,对每个无线充电设备嵌入RFID电子标签,读写器通过射频信号同电子标签进行通信,保证被充电设备与充电系统的完全分离,实现能量的高效率无线传输。

4.2 智能家居与无线充电技术融合

智能家居是物联化的一个体现,最终发展方向之一是终端无线化。应用无线充电技术,可以使各家电系统自动获取电能,进一步实现智能家居的自动控制化。但在无线输电过程中产生的磁场是否会影响到各级系统装置的正常工作有待进一步考证。如果相互影响问题得到有效的解决,无线充电设备与常规家电设备能有效共存,则是智能家居与无线充电两大领域的完美结合,势必进一步改变人类生活。

4.3 电动汽车与无线充电技术融合

无线充电技术对手机等小型电子产品而言,是个锦上添花的新功能,对电动车产业而言,则可能是启动整个市场的关键。对电动汽车进行无线充电,没有外露的连接器,可以彻底避免漏电、跑电等安全隐患。同时采用电磁共振式无线充电技术,可以将电源和变压器等设备隐蔽在地下,让汽车在停车处或街边特殊的充电点充电。若能将无线充电技术应用于电动车产业,将是电动车行业的一大改革。

五、结束语

谐振耦合式无线充电技术是目前最被看好的无线充电技术之一,从长远来看具有广泛发展空间及应用前景。但是每一种无线输电方式都有一系列的关键问题需要解决,如何实现电磁共振式无线充电技术应用的大型化、高效化与距离化,是各国科学家探索研究的重点。随着技术水平的提升,无线充电技术发展迅速,应用逐渐成熟,技术普及逐步实现,在未来的各种场合,无线充电技术无疑将扮演重要角色,服务全人类。

参 考 文 献

[1] 曲立楠,磁耦合谐振式无线能量传输机理的研究,哈尔滨工业大学硕士论文,2010

无线传输技术论文篇4

1射频技术的概念

射频[2],也就是英文名RadioFrequency的首字母缩写形式,高频交流变化电磁波射频经常被简称为射频技术。射频技术可根据电流频率的高低又分为低频电流和高频电流两种不同频率的电流形式,所谓低频电流与高频电流的区分是以交流电每秒钟的具体变化频率来分的,如果交流电的每秒变化频率在一千次以下,这种电流就被纳入低频电流的范围,如果交流电的每秒变化频率在一万次以上,此时这种电流就被认为是高频电流,而本文将要重点展开论述的无线通信射频技术的应用就是一种不同于低频电流的高频电流。

2不同的无线射频通信技术在无线射频通信领域中的实际应用分析

2.1蓝牙无线射频技术

目前蓝牙无线射频技术是我国无线射频通信技术领域中比较多见也是应用价值较高的一种无线射频通信技术,蓝牙无线射频技术不仅功能强大,而且信息数据的传输以及连接非常开放,这种技术可以通过传统的手机端、耳麦以及打印机还有电脑设备等技术设备在短距离范围、短时间内就可以实现蓝牙无线射频技术连接与数据信息传输的功能,从使用的技术频带来看,这些相互连接的设备之间所通用的就是同一种信息传输频带,只有达到2.4GHz的有效频带才能确保设备在全球范围之内各地实现畅通连接。蓝牙技术的功能,从实际的应用意义来看,最大的成果就是将传统的连线通信变为了历史,确保了通信领域之内各种数码电子设备之间能够经过无线连接和沟通。蓝牙无线技术不断增加比特发送量是通过数字编码技术的运算实现的,而通过调频技术,不仅使数据传输的可靠性和安全性大大提升,也有效扩展了频谱,将信号功率谱的密度不断降低,在一定程度上提升了系统抗电磁干扰的性能。一般倩况下,2.402-2.480GHz是蓝牙无线技术通用的频带范围,而在系统中会分别增设3.5MHz与2MHz的高端设置频率与低端设置频率两种不同的设置频率形式,如果需要相互进行数据连接与信息传输的不同电子设备一旦被置于同一个信息传输连接场域时,这些蓝牙无线射频技术的信号传输经过数据传输就会自动形成一个数据信息传输的微网,而且它们的调频、时钟等可以保持同步。

2.2WLAN

不经过任何导线或纯金属电缆进行连接的局域网就是WLAN,这种局域网一般以无线电磁波作为数据传输介质,可在几十米的距离之内传播,在这种无线局域网中有线电缆是必须要设置的通信传输介质,从它的主要传输原理来看,WLAN无线局域网信息传输是经过一个无线连接设备或者多个无线连接设备在WLAN无线局域网中进行数据连接传输。WLAN无线局域网由多个嵌套设施来辅助完成信息传输的功能,例如基本服务单元、站点以及关口、还有扩展服务单元和接入点以及其它分配系统等构成,一般情况下,2.4GHz802.11b/g的操作Wi-Fi是常见的无线局域网射频波段,更高或更快的模块提供的是高速MIMO性能、双波段的Wi-Fi。目前最前沿的WLAN无线射频通信技术具有很强的信息传输优势,但是其弊端就是可以为某些不法分子或者未经过批准审核以及有效授权的用户提供WLAN无线网络数据信息的传输,这些不法用户不仅可以通过无线技术接入无线局域网,而且还可以实现数据资源的共享,从而对传输信息进行不断控制,但总体而言,WLAN无线射频通信技术一方面可以提高数据传输的稳定性,另一方面可以减少设备之间的相互干扰。

2.3超宽带无线射频技术

与上述两种无线射频技术的形式不同,当前我国在无线通信技术领域,超宽带无线射频技术与其它两种技术相比是一种非常前沿和具有远大发展前景的信息化通信技术,这种技术与传统的截波通信技术也有很大的差异,在传输过程中呈现出很大的优势,由于超宽带无线射频技术可以在很短的时间之内以及较近的范围距离之内就可以通过传统的家电设备、手机平板等移动设备以及最常见的电脑经过数据连接就可以在这些设备中实现快速以及高速的数据传输,完成信息的通信。从几种不同的无线通信射频技术的特点来分析,当前我国无线通信技术领域最具影响力的技术当属超宽带无线射频技术,不仅可以实现高品质、快速的信息传输,而且在很大程度上克服了传统通信技术领域无线通信传输技术传输质量差、传输数据慢等弊端,超宽带无线射频技术在一定的距离以及时间段之内向可以同时向不同的电子设备进行大量的高品质数据信息传输,但在传输过程中并不会受到无线网络的影响。超宽技术[3]的应用突出代表就是IR,IR可以将数据传输的发射信号经过数据分析从而实现随化,此外IR还有一项巨大的功能作用就是可以把伪随机中的极窄脉冲经过内部构建跳时码将其实现串接,从而不断保护数据传输的可靠性与安全性。信号的调制一般是通过调制脉冲位置或幅度来实现的,常见的脉冲形式都是为了节省成本,一般为波形,可以在较短时间内实现数据的精准、大范围、更快、更多传播。

3结语

综上所述,随着信息技术的不断发展,射频技术的运用已经得到大力的普及与推广,特别是在我国目前的无线通信技术领域具有里程碑式的巨大作用,如今是一个互联网技术不断发展的时代,借此发展契机,通信技术的发展也不断智能化和集成化,市场的需求会越来越广,射频技术也会不断推进我国信息化社会的建设。

参考文献

[1]王鹏飞,刘流.射频技术在无线通信中的应用初探[J].信息通信,2013,10:224.

无线传输技术论文篇5

一、 直接序列扩频技术的应用背景

信息交流是人类社会要进行发展和进步所必不可少的。随着人类社会的发展,信息系统也逐渐发展成了覆盖全球的信息网。从十九世纪人们对电缆通信的初步发明开始,伴随着科学技术的不断发展,通信技术突破了最初的有线通信,发展出了无线通信技术。无线通信靠电磁波来进行信息传递,不用架线,更具灵活性,因而被迅速推广和发展。但无线通信由于其传输环境的复杂性,在传输过程中会遇到各种各样的反射体以及来源于其它无线电波的干扰,会极大的影响甚至改变信号的传输信息,因此,无线通信抗干扰技术便应运而生。

直接序列扩频技术作为主要的抗干扰技术之一,产生于二十世纪五十年代,其发明之初主要被应用于军事领域。在世界格局动荡的那个年代,扩频抗干扰技术主要用来对抗敌方的恶意干扰,维持军事系统安全不被侵入,其作用的重要性由此可见。

二、 直接序列扩频技术简介

直接序列扩频技术是指利用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。该技术作为一种信息传输方式,通过编码及调制的方法将频带展宽,使得其信号所占有的频带宽度远大于所传信息必需的最小带宽,与所传信息数据无关,这样便可以有效提高频率资源的利用率,且使所需要传达的信息安全、准确的传达。

该技术主要是通过发端、信道和接收端三部分来实现的。其工作原理为:将需要传输的数字信号在发端输入以后,首先通过扩频码发生器产生的扩频序列将输入的数字信号进行调制,以扩宽其信号频谱,扩频码序列一般采用PN码。然后将扩宽后的信号调制到射频发生器发射出去。调制方式多采用BPSK、DPSK、MPSK等方式。发出的信号在接收端的本地射频发生器接收到信号后立即进行解调,此后再由本地的扩频解调设备产生与发端相同的扩频序列进行信号解扩,使信号恢复到原信号进行输出,从而实现信息的传输。

三、直接序列扩频技术的理论基础

无线通信技术自发展以来,伴随着科学技术的飞速发展也迅速发展。发展至今,人们由通用无线逐渐发展出了专用无线网络,无线通信传输环境变得日趋复杂,同时人们对无线传输网络的传输质量变得日益严苛,所以如何在保证传输质量的同时尽量节约传输信号所占用的频谱宽度便成了当代无线技术不断探索的领域。直接序列扩频技术可以把传输信号在发射端用扩频码进行调制,使得其所占用的频带宽度远大于传输信息所必须的带宽,再在接收端用相同的扩频码进行解扩,以把信号进行还原。这样既节省了频率资源,又可使信号安全送达,保证了信号传输的质量,一次被广泛应用。其理论依据为:

该式是香农在长期的无线通信研究中总结出来的公式,称为香农公式。

式中,C―信息的传输速率(即信道容量,单位b/s),B―频带宽度(单位Hz),S―信号平均功率(单位W),N―噪声平均功率(单位W),S/N―信噪比。

从公式中可以看出,要提高到信号的传输速率,可以通过两种途径实现。一种是提高信号传输的频带宽度,另一种是提高信噪比。在保证信号的传输速率一定时,可以通过提高信号传输的频带宽度来降低对信噪比的要求,这便是直接序列扩频技术的原理,通过增加带宽来降低对信噪比的要求,从而保证信号传输的质量。

该式是柯捷尔尼科夫在其长期研究的潜在抗干扰理论中得出的估算信号传输差错概率的公式。

式中,Pe―信号差错概率,S/N―信噪比,B/Bm―信号带宽比。

由此可以看出,信号差错概率与信噪比和信号带宽比两个因素有关。降低信噪比或信号带宽比均可使信号传输的差错概率减小。因此,在信噪比一定的情况下其差错概率可通过信号带宽比的调整来减小。由这一公式也可以得出直接序列扩频技术抗干扰的原理。

四、 直接序列扩频技术的特点

4.1抗干扰性强

抗干扰性是直接序列扩频技术之所以发展的本质属性。该技术通过扩频序列将要传输的信号的频带进行扩宽,使得窄带干扰基本不起作用,而宽带干扰要想达到干扰目的必须提高相应倍数的总功率,从而避免了无论是来自窄带还是宽带的干扰,保证了传输信号的稳定性。同时,由于在发射端对传输信号进行了扩频处理,要还原信号必须要在接收端用同样的扩频序列进行解扩,在不知道信号扩频码的情况下是不能进行信号还原的,因此这类干扰在扩频技术下是起不到作用,从而保证了传输信号的安全性。

43.2隐蔽性好

由于扩频技术是把传输信号在很宽的频带上进行扩宽,所以单位频带上的信号功率很低,几乎淹没在了白噪声之中,很难进行捕捉。加之,由于不知道扩频码序列,很难获取有用信息,所以这一技术很好的把信号隐藏了起来,使得别人很难对信号进行破坏及获取。

4.3易于实现码分多址

由于扩频技术对不同传输信号进行了不同的扩频码序列扩,在扩宽信号频带的同时,由于不同扩频码之间互不干扰,可以极大地提高频带的重复利用率。同时,发送者可用不同的扩频编码分别向不同的接收者发送数据,接收者也可用不同的扩频编码,接收不同的发送者送来的数据,从而实现多址通信。

五、直接序列扩频技术的发展前景

直接序列扩频技术从发展之初便不断进行改进以适应不断变化的需求环境。但是,其发展至今仍存在一定的技术缺陷,如由于信号的带宽增大使得接收端的信号干扰增多、传输速率在一定程度上受限等。对此,必须对这一技术进行不断地改进与完善,以适应社会的不断发展需求。同时,伴随着无线通信技术的发展,尤其是近几年投入使用的4G无线移动通信技术的发展,直接序列扩频技术也必须进行不断地改进,如朝着网络抗干扰技术、与其他抗干扰技术组合应用等方向发展,才能不断使用当代社会对无线通信安全性、及时性、稳定性的严苛要求,保持其在无线通信抗干扰技术中的地位而不被淘汰。

结语:

无线传输技术论文篇6

1 磁耦合谐振式无线电能传输原理

磁耦合谐振式无线电能传输系统结构框图如图1所示。系统包括发射端和接收端,接收端由高频逆变电路和发射线圈构成,接收端包含接收线圈、整流滤波电路和负载。发射线圈和接收线圈分别构成两个相互匹配的LC谐振电路。在高频信号的驱动下,当发射端电路频率接近发射线圈的固有频率时,发射谐振线圈回路不断产生电磁波向空间发射,在近场区形成交变磁场。而接收谐振线圈经过磁耦合谐振接收空间电磁波,再将接收到了高频电流进行整流滤波供给负载,从而实现了电能的无线传输。

2 系统模型与仿真

根据磁耦合谐振无线电能传输技术的相关理论,通过两个耦合线圈实现电能的传输。高频交流电源为Us,发射线圈和接收线圈电感分别为L1和L2,电容为C1和C2,R1和R2分别是发射端和接收端等效电阻,负载用RL表示,M为互感。当系统电源角频率为ω时,则两线圈自阻抗分别是:

式中,D为两线圈距离,n1,n2分别为发射与接收线圈匝数,r1,r2分别为发射与接收线圈半径。由于两线圈参数和结构相同,可令n=n1=n2,r=r1=r2。

结合式(4)和式(6),可得出输出功率与传输距离之间的关系式。使用Matlab仿真软件绘制出磁耦合谐振式无线电能输出功率和传输距离仿真图,如图2所示。由图2可知,随着传输距离的增加,传输功率先增大后减小。

3 结束语

文章对磁耦合谐振式无线电能传输工作原理进行了分析,建立了传输实验模型,得出了系统输出功率和传输距离的关系。利用Matlab仿真工具对系统输出功率进行仿真,从中得出传输功率随着传输距离先增大后减小的结论。

无线传输技术论文篇7

在过去的20年中,移动通信技术不断进步,技术标准不断演进,最新推出的第四代移动通信技术(4G),其数据业务传输速率达到每秒百兆甚至千兆比特,能够在较大程度上满足今后一段时期内宽带移动通信应用需求[1]。然而,随着智能终端普及应用及移动新业务需求持续增长,无线传输速率需求呈指数增长,至2020年,无线通信的传输速率需求将是目前正在运营系统的千倍[2],能够支撑高达每秒千兆比特传输速率的4G移动通信系统,将仍然难以满足未来移动通信的应用需求。另一方面,随着全球范围内移动用户数与高速数据业务应用的增长以及信息技术系统能源消耗所占比例的不断增加,降低移动通信网络系统的能源消耗已逐渐成为移动通信发展的重要需求[3],以支持高速率传输为主要目标的4G移动通信技术,将难以满足未来移动通信对能耗效率的需求。因此,移动通信技术需要在4G基础上不断演进,满足超高传输速率无线通信的相关需求。

世界各国在推动4G产业化工作的同时,已开始着眼于新一代移动通信技术(5G)的研究,力求使无线移动通信系统性能和产业规模产生新的飞跃。4G之后移动通信的发展,需要新的重大科学问题的解决和原理性的突破,在无线频谱资源日趋紧张的情况下,如何在4G基础上,将无线移动通信的频谱效率和功率效率进一步提升一个量级以上,是4G之后移动通信技术的核心所在。4G之后移动通信发展需要在网络系统结构、组网技术及无线传输技术等方面进行新的变革,从根本上解决移动通信的频谱有效性和功率有效性问题,实现更高频谱效率和绿色无线通信的双重目标。

面向4G之后移动通信的发展,为提高无线资源利用率、改善系统覆盖性能、显著降低单位比特能耗,异构分布式协作网络技术及智能自组织组网技术得到业界更加广泛的关注[2-4]。

在分布式协作网络系统中,处于不同地理位置的节点(基站、远程天线阵列单元或无线中继站)在同一时频资源上协作完成与多个移动通信终端的通信,形成网络多输入多输出(MIMO)信道,可以克服传统蜂窝系统中MIMO技术应用的局限,在提高频谱效率和功率效率的同时,改善小区边缘的传输性能。然而,在目前典型的节点天线个数配置和小区设置的情况下,研究工作表明网络MIMO传输系统会出现频谱和功率效率提升的“瓶颈”问题[5]。为此,研究者们提出在各节点以大规模阵列天线替代目前采用的多天线[6-7],由此形成大规模MIMO无线通信环境(如图1所示),以深度挖掘利用空间维度无线资源,解决未来移动通信的频谱效率及功率效率问题。

大规模MIMO无线通信的基本特征是:在基站覆盖区域内配置数十根甚至数百根以上天线,较4G系统中的4(或8)根天线数增加一个量级以上,这些天线以大规模阵列方式集中放置;分布在基站覆盖区内的多个用户,在同一时频资源上,利用基站大规模天线配置所提供的空间自由度,与基站同时进行通信,提升频谱资源在多个用户之间的复用能力、各个用户链路的频谱效率以及抵抗小区间干扰的能力,由此大幅提升频谱资源的整体利用率;与此同时,利用基站大规模天线配置所提供的分集增益和阵列增益,每个用户与基站之间通信的功率效率也可以得到进一步显著提升。

大规模MIMO无线通信通过显著增加基站侧配置天线的个数,以深度挖掘利用空间维度无线资源,提升系统频谱效率和功率效率,其所涉及的基本通信问题是:如何突破基站侧天线个数显著增加所引发的无线传输技术“瓶颈”,探寻适于大规模MIMO通信场景的无线传输技术。

近两年来,大规模MIMO无线通信引起了研究者们的广泛关注,文献上出现了一些初步的相关研究工作报道[8-18],这些工作涉及传输性能分析、传输方案设计等多个方面。从已报道的工作可见:

(1)关于大规模MIMO信道的理论建模和实测建模的工作较少,还没有受到广泛认可的信道模型出现。

(2)所涉及的传输方案大都基于贝尔实验室提出的方案[6],即在配备单天线的用户数目远小于基站天线个数的假设下,通过上行链路正交导频和时分双工(TDD)系统上下行信道互易性,基站侧获得多用户上下行信道参数估计值,并以此实施上行接收处理和下行预编码传输。

(3)传输方案性能分析往往假设大规模MIMO信道是理想的独立同分布(IID)信道,在此条件下,导频污染被认为是大规模MIMO系统中的“瓶颈”问题。

由此可知,大规模MIMO无线通信技术研究尚处在起步阶段,为充分挖掘其潜在的技术优势,需要探明符合典型实际应用场景的信道模型,并在实际信道模型、适度的导频开销及实现复杂性等约束条件下,分析其可达的频谱效率和功率效率,进而探寻信道信息获取技术及最优传输技术,解决大规模MIMO无线通信所涉及的导频开销及信道信息获取“瓶颈”问题、多用户共享空间无线资源问题、系统实现复杂性问题、对中高速移动通信场景及频分双工(FDD)系统的适用性问题等。

综上所述,4G之后移动通信对频谱效率及功率效率提出了更高的要求,大规模MIMO无线通信能够深度挖掘空间维度无线资源,大幅提升无线通信频谱效率和功率效率,是支撑未来新一代宽带绿色移动通信最具潜力的研究方向之一。

本文对大规模MIMO无线通信关键技术进行探讨,重点包括复杂无线环境中大规模MIMO信道模型和系统性能分析技术、信道状态信息获取技术及多用户上下行无线传输技术等方面。

1 信道模型及系统性能

分析技术

信道模型与系统性能分析是无线通信系统设计的基础。在大规模MIMO无线通信环境下,基站侧配置大规模阵列天线,MIMO传输信道的空间分辨率得到显著增强,大规模MIMO无线传输信道存在着新的特性,需要深入系统地探讨。值得注意的是,尽管大规模MIMO已引起国际上的广泛关注,但有关大规模MIMO信道的理论建模和实测建模的工作较少。

已报道的文献中往往假设大规模MIMO信道是IID信道[6,9,14,15]。然而部分实测结果表明,实际的大规模MIMO无线传输信道并不能满足IID假设,信道能量往往集中在有限的空间方向上[13,17],这使得基于IID信道的相关分析结果存在着较大的局限性。各种应用场景下大规模MIMO无线信道的理论建模和实测建模的工作是有待进一步开展。

在给定的信道模型和发射功率约束下,精确地表征信道能够支持的最大传输速率,即信道容量,并由此揭示各种信道特性对信道容量的影响,可为传输系统优化设计、频谱以及功率效率等性能评估提供重要的依据。

在已报道的文献中,有关容量和传输方案性能分析大都假设信道满足IID条件,在此条件下,导频污染被认为是大规模MIMO系统中的“瓶颈”问题[6,11],而最近的工作已表明,如果这一理想信道假设条件成立,通过在多个基站之间联合实施统计预编码,理论上可以完全消除导频污染问题[14]。

对于带空间相关性的大规模MIMO信道,利用各用户的统计信道信息,通过多个基站之间联合实施导频调度,也可以有效减轻导频污染[12]。对于典型实际应用场景下无线信道特性对大规模MIMO传输性能影响的研究工作则有待进一步开展。

2 信道状态信息获取技术

信道估计是信号检测和自适应传输的基础,对于大规模MIMO无线传输性能起重要影响作用。在贝尔实验室提出的TDD大规模MIMO传输方案中[6],小区中的各用户(通常假设配置单个天线)向基站发送相互正交的导频信号,基站利用接收到的导频信号,获得上行链路信道参数的估计值,再利用TDD系统上下行信道的互易性,获得下行链路信道参数的估计值,由此实施上行检测和下行预编码传输。随着用户数目的增加,用于信道参数估计的导频开销随之线性增加,特别地,在中高速移动通信场景,导频开销将会消耗掉大部分的时频资源,成为系统的“瓶颈”。开展导频受限条件下的TDD大规模MIMO信道信息获取技术研究具有重要的实际应用价值[19]。

此外,贝尔实验室提出的传输方案需要利用TDD模式上下行信道互异性[6],不适用于FDD模式。针对该问题,美国南加州大学提出了联合空分复用(JSDM)传输方案[8]。其主要思想是,基站侧利用不同用户的信道二阶统计量进行用户分组及预波束赋形,由于预波束赋形之后的等效信道维度显著降低,在该等效信道上实施信道估计能够显著降低信道状态信息获取所需的开销,这使得FDD模式下大规模MIMO信道信息获取成为可能。

JSDM方案假设在同一组内的不同用户的信道协方差矩阵具有相同的特征向量,而组间用户的信道协方差矩阵相互正交,该信道假设过于理想,在实际中通常难以满足。深入开展在实际信道条件下的导频受限FDD大规模MIMO传输技术研究具有重要性[20]。

3 多用户传输技术

如何实现多用户空间无线资源共享及如何优化设计多用户上下行传输系统,涉及基站侧和用户端所能够获得的信道状态信息。在大规模MIMO无线通信系统中,基站侧与用户端均难以获取完整信道的瞬时状态信息,这意味着大规模MIMO传输技术将不同于现有的MIMO传输技术。在已报道的有关工作中,所涉及的基本传输方案大都是贝尔实验室提出的最初方案,利用上行链路正交导频和TDD系统上下行信道互易性,基站侧可获得多用户上下行信道参数估计值,基站侧假定所获取的信道参数估计值为真实值,并以此实施多用户联合上行接收处理和下行预编码传输[6,10]。

该传输方案中,基站侧将信道估计值作为真实值来实施上下行传输,传输的鲁棒性无法保证;单个用户仅配置单根天线,当系统中用户数较少时,频谱效率仍然较低;上行链路的信号检测和下行链路的预编码传输涉及高维矩阵求逆运算,系统实现复杂度高;FDD系统中所有用户瞬时信道信息获取困难,存在着FDD系统的适用性问题。能否突破信道信息获取的“瓶颈”问题,在基站侧仅知部分信道信息时,实现多用户共享空间无线资源和高性能高鲁棒性低复杂度的大规模MIMO无线传输,是有待解决的重要问题。

无线传输技术论文篇8

0引言

在信息、网络、无线等技术不断发展背景下,无线数字传输技术由此产生,并在各个领域中得到广泛的应用。无线数字传输技术主要由传输模块、传输协议及传输频率等组合而成,通过发送传输模块,明确传输协议,合理使用传输频率,以保证无线数字传输技术的有效应用。同时无线数字传输技术具有成本较低、组网灵活等优点,因此受到各行各业的青睐。本文就无线数字阐述技术在监控、微波、WIFI、报警等方面的应用进行以下分析。

1无线数字传输技术有效应用

1.1在微波方面的应用

微波传输技术主要有两种模式,即为数字化微波和模拟化微波。1)模拟化微波。模拟化微波传输技术主要是把视频信号调制于微波通道内,并利用无线系统发射,监控中央控制室可以利用无线系统来接收微波通道发射出的视频信号,然后再将原有视频信号解调出来。模拟化微波传输技术具有不延时、无压缩性损耗、视频质量高等优点,但是只能实现点至点单一性传输,在多样化传输中无法应用。同时由于模拟化微波不存在调制校准功能,所以其抗干扰效果较差,当无线信号处于较为复杂的环境时,将对其传输过程造成严重的影响[1]。模拟化微波传输技术的频率相对较低,波长较长,绕射较强,对其他信号容易造成干扰,现阶段应用较少;2)数字化微波。数字化微波传输记住主要是对视频信号中的编码进行压缩,然后将其调制于微波通道内,通过无线系统发射,再通过无线系统来接收信号,利用微波对视频编码进行解压和扩展,以获取原有的视频信号,是现阶段我国应用较为广泛的微波传输方式。数字化微波具有伸缩性好、多路传输,建构简单、通信率高等优点。与模拟化微波相比数字化微波监控点较多、抗干扰性强、保密性好、传输距离较远、容量较大等优点,能够适用于干扰源较多的复杂环境中。

1.2在WIFI方面的应用

IEEE802.11是初期制定和应用的无线局域网的标准,并实现了办公局域网和校园局域网,使得用户间的终端能够无线接入。但是其能够实现数据存取功能,速率仅限于2Mbps,已经不能满足现代化传输距离及传输速率的要求。所以在无线数字传输技术的基础上,对无线局域网的标准进行优化和改善,其中802.11b,即WIFI应用较为广泛。通过WIFI传输系统,能够实现手机、电脑用户终端无线接入,成为一种新型的上网方式。WIFI无论是在抗干扰性、带宽及保密等方面都具有良好的应用优势,网管功能较强,能够为规模化组网系统实现提供重要的技术支持,能够满足带宽视频传输的需求[2]。同时WIFI信号为100m,传输范围较广,传输速率较快。随着网络技术和无线技术的发展,很多通信运营商都把WIFI作为发展战略,以提高自身经济效益,促进自身发展。在运营商级对WIFI需求情况下, IEEE802.11无线局域网标准将WIFI与基站控制设备进行哟小的结合,并形成智能化的分布系统,实现了大规模的WIFI基站和终端组网,使得WIFI向着区域化方向发展。WIFI无线带宽较高,单一性WIFI基站无线带宽能够得到300Mb帕,其中有效的无线带宽传输在200Mb帕以上,能够提高图像传输效果,应用效果优于光纤传输系统。

1.3在监控方面应用

随着无线数字传输技术在监控方面的有效应用,形成无线视频监控系统,使得安防行业向着数字化、智能化及高清化的方向发展,有效的促进了安防行业的发展。随着无效视频监控系统的不断发展和应用,监控设备能够和无线数字传输系统相连接,使得视频监控从区域化开始想局域化方向发展。同时无线数字传输技术在监控方面的应用,实现了移动性监控功能,例如公交车监控系统、出租车监控系统等,有效提高了视频监控的效率和质量。以往无线视频监控系统主要以移动或者联通等宽带网络实现和应用监控系统,但是在应用过程中容易出现时间误差或者编码误差等问题,而无线数字传输技术在视频监控中的应用,主要以WIFI传输模式,并由若干个网格、网状模块组合成无线网络系统,使得网络带宽的稳定性得到有效的提高[3]。传统的视频监控系统布线区域存在难以布线或者不能布线的问题,对监控工作造成很大的困难,而无线数字传输技术在视频监控中的运用,能够使得网络覆盖率大大提高,并扩展到整个城市区域,避免监控盲区问题的产生。

1.4在报警方面的应用

在无线数字传输技术的支持下,可实现无线智能化报警系统,其主要利用磁开关、温感释放、红外线的价格运用原理,在结合网络技术下,使得报警系统功能得到有效的提高[4]。无线智能化报警系统主要有报警器、遥控器及探测器等组合而成,利用探测器能够对布防监视范围内的情况进行有效的探测,如果一旦出现安全事故,能够及时发射报警信号,并提供给值班人员具体的报警位置,以及时采取有效的处理措施,对安全事故进行有效的控制。

2 结论

随着无线数字传输技术在监控、微波、报警及WIFI等方面的广泛应用,实现了无线数字视频监控、数字化微波传输技术、无线智能化报警系统及无线网络系统,对各个行业发展均起到良好的促进作用。因此,必须对无线数字传输技术进行更加深入的研究和完善,以扩大无线数字传输领域,实现更过的无线数字传输产品。

参考文献

[1]欧秀惠.浅谈无线数字传输技术及其应用,科技致富向导[J],2011,9(12):87-88.

无线传输技术论文篇9

越来越多数字电子产品借着新科技提升本身的性能和实力。以目前发展的趋势来看,未来消费性电子产品将有两个重要的发展指标,一是使用蓝牙技术这类开放技术,以无线,局域网络,可携带式设备成为网络体的延伸。另一项则是内存规格的统一,加密以及轻量化应用。

无论您喜不喜欢,“蓝牙计划”这个名词几乎已到了无孔不入的境界,不论是商业财经台还是一般大众电视台,都不只一次以上报导这个计划的进展与新闻,话虽如此,但却很少人了解此计划的原意与来龙去脉,只知道有这样一个计划正如火如荼地进行,且声势浩大、似乎充满无限希望。可预见的,未来与蓝牙计划相关的新闻只会更多,因为计划正一步步实现中。

蓝牙(Bluetooth)简单讲就是一种电信、计算机的无线传输技术。单从字面上很难了解蓝牙是个怎么样的技术,他不像“GSM”一样可以望文生义。简单的说蓝牙是一种无线网络与消费性电子产品之通讯技术,透过无线传输和基频模块构成,其快速响应和跳频系统的特性使无线传输更佳稳定。可以应用在各种电子产品如:笔记型计算机、行动电话、数字相机和其它相类似电子产品等。

二、蓝牙的缘起

蓝牙计划基本上是一个无线传输的计划,不需要透过实质线路,在一定的距离范围内,可以传输可观的资料量,当然这种无线传输并不像行动电话那样数十公里内皆可传达,而是数十至数百公尺内的短距离无线传输。此外可传输的装置不限于手机,只要有装设蓝牙收发模块的装置都可以使用蓝牙传输,眼前的构想即是让其它的行动装置都可以使用蓝牙传输,包括PDA、笔记型计算机、车用装置等等。蓝牙计划的发起,主要是1998年5月,由Ericsson(爱立信,瑞典)、Intel(英特尔,美国)、NOKIA(诺基亚,芬兰)、IBM(国际商务机器,美国)、TOSHIBA(东芝,日本)等五家公司,共同组织一个“特别参与组织(SIG,SpecialInterestGrou)”称为BluetoothSIG,以此组织来制定一套短距离的无线传送、接收的技术规格。

三、浅谈蓝牙技术

蓝牙计划虽是1998年开始,但是蓝牙的技术根基却来自1997年制订完成的无线局域网络通讯协议:IEEE-802.11。

蓝牙基本上也是运用射频(RF)方式进行无线通讯,至于使用的频带范围,则是使用2.45GHz,这个无线电频带是全世界共同开放、不受法令限制的频带,举凡工业、科学、医疗(ISM,Industrial/Scientific/Medical)、甚至微波炉等都是使用2.45GHz的频带。

由于这个频带被广泛使用了,那么使用此频带进行通讯,绝对是很容易收到干扰的,因此蓝牙规格被设计成可跳频通讯,能够在一秒钟内进行1,600次的跳频动作,此这样的动作避免其它通讯的干扰。由于每秒1,600次的快速跳频,这也使得蓝牙无线收发的数据封包不能太长,否则不能满足如此频繁的跳频次数,所以蓝牙短封包、快速跳频的特性,也使其无线传输能抗干扰、更稳定通信。

蓝牙规格已经正式公布v1.0版,规格方面算是踏出成熟的第一步,接下来就是商品化、投入实际制造的阶段。而要让蓝牙迅速普及,就是在既有的用途装置上,追加设计蓝牙功能即可,以节省开发时间与成本,为此蓝牙射频模块就成为非常重要的一项零组件。

蓝牙射频模块一方面要够便宜,才可能快速普及,另一方面也要够小巧,才能适用于所有的需求装置上,目前专家推估射频模块的成本必须低于5美元才能普及,而各家公司也正加紧将射频模块设计地更精小、更便宜中。

四、蓝牙技术的应用

蓝牙由于具有1-2Mbps、10-100公尺的无线通讯能力,因此蓝牙技术可以舒缓若干问题,例如可以直接利用蓝牙的高速数据传输率来传输语音,等于是把蓝牙通讯当成无线电话的功能。

另外对于小公司、小环境等,也可以省去布设实质线路的成本,以及后续线路维护的困扰。还有蓝牙可以指定隔绝与通行的通信功能,也等于可以建立无线的LAN环境、小族群通讯环境。

五、蓝牙技术的展望

(一)蓝牙收发话器对健康的好处。由于手机有高功率的电磁波,据报导证实电磁波会对人体造成伤害,所以有了蓝牙,你将可以把一个小小的蓝牙附件装在你的大哥大,然后把收发话器戴在你的耳朵(由于蓝牙应用的是低功率,所以不会对人体有任何伤害)。准备好了以后,你就把你的大哥大放在口袋里讲电话,不必把电话紧贴的脸,甚至按下收发话器上的按钮就可以直接接听来电。

(二)比一般传统式红外线传输更快,且不用对准两个传输端口成一直线。蓝牙科技在传输方面的好处就是,它能够允许两个装置,在不排成一直线的状态下,还能够以无线的方式传送数据。不像红外线传输最大的缺点是,你必须对准两个传输端口成一直线才有办法传送数据。蓝牙传输甚至无视于墙壁、口袋、或公文包的存在而可以顺利进行。蓝牙的数据传输速度比红外线传输还要快,每秒钟高达1MB。

(三)手表可自动对时间,无线下载Mp3。只要将来手表有内建蓝牙且有Mp3拨放功能,这样一来将可自动设定为标准时间,且可很方便的随时从计算机传输歌曲。

(四)其它还有很多很多,只要现在是要接线的,都有可能会被蓝牙所应用。蓝牙技术一旦普及,相信对通讯方式、产品设计、生活方式等都会有巨幅的冲击,甚至很难想象冲击的程度。不过就现阶段而言,蓝牙可能带来的便利却是可以想象的,各位可以想象家里安装一个蓝牙收发基地台,家中的计算机、电话、传真机都不用实际接线,就可以互通或连外。在公司内外务人员赶时间,只要在蓝牙收发范围内都可以传送数据,例如咖啡厅、车站等都可以。此外仓库的盘点盘查,只要带个PDA,仓库内设有蓝牙基地台,马上可以跟全省各地的仓库进行盘点加总,当然,蓝牙基地台后面有接往Internet,或是以公司专线,或VPN方式连接。另外数字相机拍完的相片,只要接近笔记型计算机就可以回传,省去记忆卡的插拔,既有计算机外设装置也都可以无线化,无线打印机、无线键盘、鼠标、摇杆。还有家中、公司都设有蓝牙基地台,则一支具有蓝牙功能的手机,在家就可以跟居家无线电话一样使用,而且是付居家电话费,在公司则变成自己的办公分机,公司替您付电话费,而在外出时就跟一般行动手机一样使用,这样真正落实一人一机终生用的理想,这种方式也被人称为三合一电话,即是居家、办公、行动电话三者合一。

六、结束语

蓝牙技术一定会飞速发展,但仍然有一些应用的细节问题需要解决,如相邻设备之间为防止信息误传和被截取,必须要用户提前设置对应频段等,严重影响蓝牙技术产品面市的速度。但相信随着一个不断完善的发展过程,蓝牙技术会为我们的未来家居和办公带来不仅仅是方便一点的革命。

参考文献:

[1]NathanJ.MullerBluetoothDemystified(影印本).人民邮电出版社。

无线传输技术论文篇10

越来越多数字电子产品借着新科技提升本身的性能和实力。以目前发展的趋势来看,未来消费性电子产品将有两个重要的发展指标,一是使用蓝牙技术这类开放技术,以无线,局域网络,可携带式设备成为网络体的延伸。另一项则是内存规格的统一,加密以及轻量化应用。

无论您喜不喜欢,“蓝牙计划”这个名词几乎已到了无孔不入的境界,不论是商业财经台还是一般大众电视台,都不只一次以上报导这个计划的进展与新闻,话虽如此,但却很少人了解此计划的原意与来龙去脉,只知道有这样一个计划正如火如荼地进行,且声势浩大、似乎充满无限希望。可预见的,未来与蓝牙计划相关的新闻只会更多,因为计划正一步步实现中。

蓝牙(Bluetooth) 简单讲就是一种电信、计算机的无线传输技术。单从字面上很难了解蓝牙是个怎么样的技术,他不像“GSM”一样可以望文生义。简单的说蓝牙是一种无线网络与消费性电子产品之通讯技术,透过无线传输和基频模块构成,其快速响应和跳频系统的特性使无线传输更佳稳定。可以应用在各种电子产品如:笔记型计算机、行动电话、数字相机和其它相类似电子产品等。

二、蓝牙的缘起

蓝牙计划基本上是一个无线传输的计划,不需要透过实质线路,在一定的距离范围内,可以传输可观的资料量,当然这种无线传输并不像行动电话那样数十公里内皆可传达,而是数十至数百公尺内的短距离无线传输。此外可传输的装置不限于手机,只要有装设蓝牙收发模块的装置都可以使用蓝牙传输,眼前的构想即是让其它的行动装置都可以使用蓝牙传输,包括PDA、笔记型计算机、车用装置等等。蓝牙计划的发起,主要是1998年5月,由Ericsson(爱立信,瑞典)、Intel(英特尔,美国)、NOKIA(诺基亚,芬兰)、IBM(国际商务机器,美国)、TOSHIBA(东芝,日本)等五家公司,共同组织一个“特别参与组织(SIG,Special Interest Grou)”称为Bluetooth SIG,以此组织来制定一套短距离的无线传送、接收的技术规格。

三、浅谈蓝牙技术

蓝牙计划虽是1998年开始,但是蓝牙的技术根基却来自1997年制订完成的无线局域网络通讯协议:IEEE-802.11。

蓝牙基本上也是运用射频(RF)方式进行无线通讯,至于使用的频带范围,则是使用2.45GHz,这个无线电频带是全世界共同开放、不受法令限制的频带,举凡工业、科学、医疗(ISM,Industrial/Scientific/Medical)、甚至微波炉等都是使用2.45GHz的频带。

由于这个频带被广泛使用了,那么使用此频带进行通讯,绝对是很容易收到干扰的,因此蓝牙规格被设计成可跳频通讯,能够在一秒钟内进行1,600次的跳频动作,此这样的动作避免其它通讯的干扰。由于每秒1,600次的快速跳频,这也使得蓝牙无线收发的数据封包不能太长,否则不能满足如此频繁的跳频次数,所以蓝牙短封包、快速跳频的特性,也使其无线传输能抗干扰、更稳定通信。

蓝牙规格已经正式公布v1.0版,规格方面算是踏出成熟的第一步,接下来就是商品化、投入实际制造的阶段。而要让蓝牙迅速普及,就是在既有的用途装置上,追加设计蓝牙功能即可,以节省开发时间与成本,为此蓝牙射频模块就成为非常重要的一项零组件。

蓝牙射频模块一方面要够便宜,才可能快速普及,另一方面也要够小巧,才能适用于所有的需求装置上,目前专家推估射频模块的成本必须低于5美元才能普及,而各家公司也正加紧将射频模块设计地更精小、更便宜中。

四、蓝牙技术的应用

蓝牙由于具有1-2Mbps、10-100公尺的无线通讯能力,因此蓝牙技术可以舒缓若干问题,例如可以直接利用蓝牙的高速数据传输率来传输语音,等于是把蓝牙通讯当成无线电话的功能。

另外对于小公司、小环境等,也可以省去布设实质线路的成本,以及后续线路维护的困扰。还有蓝牙可以指定隔绝与通行的通信功能,也等于可以建立无线的LAN环境、小族群通讯环境。

五、蓝牙技术的展望

(一)蓝牙收发话器对健康的好处。由于手机有高功率的电磁波,据报导证实电磁波会对人体造成伤害,所以有了蓝牙,你将可以把一个小小的蓝牙附件装在你的大哥大, 然后把收发话器戴在你的耳朵(由于蓝牙应用的是低功率,所以不会对人体有任何伤害)。准备好了以后,你就把你的大哥大放在口袋里讲电话,不必把电话紧贴的脸,甚至按下收发话器上的按钮就可以直接接听来电。

(二)比一般传统式红外线传输更快,且不用对准两个传输端口成一直线。蓝牙科技在传输方面的好处就是,它能够允许两个装置,在不排成一直线的状态下,还能够以无线的方式传送数据。不像红外线传输最大的缺点是, 你必须对准两个传输端口成一直线才有办法传送数据。蓝牙传输甚至无视于墙壁、口袋、或公文包的存在而可以顺利进行。蓝牙的数据传输速度比红外线传输还要快,每秒钟高达1MB。

(三)手表可自动对时间,无线下载Mp3。只要将来手表有内建蓝牙且有Mp3拨放功能,这样一来将可自动设定为标准时间,且可很方便的随时从计算机传输歌曲。

(四)其它还有很多很多,只要现在是要接线的,都有可能会被蓝牙所应用。蓝牙技术一旦普及,相信对通讯方式、产品设计、生活方式等都会有巨幅的冲击,甚至很难想象冲击的程度。不过就现阶段而言,蓝牙可能带来的便利却是可以想象的,各位可以想象家里安装一个蓝牙收发基地台,家中的计算机、电话、传真机都不用实际接线,就可以互通或连外。在公司内外务人员赶时间,只要在蓝牙收发范围内都可以传送数据,例如咖啡厅、车站等都可以。此外仓库的盘点盘查,只要带个PDA,仓库内设有蓝牙基地台,马上可以跟全省各地的仓库进行盘点加总,当然,蓝牙基地台后面有接往Internet,或是以公司专线,或VPN方式连接。另外数字相机拍完的相片,只要接近笔记型计算机就可以回传,省去记忆卡的插拔,既有计算机外设装置也都可以无线化,无线打印机、无线键盘、鼠标、摇杆。还有家中、公司都设有蓝牙基地台,则一支具有蓝牙功能的手机,在家就可以跟居家无线电话一样使用,而且是付居家电话费,在公司则变成自己的办公分机,公司替您付电话费,而在外出时就跟一般行动手机一样使用,这样真正落实一人一机终生用

的理想,这种方式也被人称为三合一电话,即是居家、办公、行动电话三者合一。

六、结束语

蓝牙技术一定会飞速发展,但仍然有一些应用的细节问题需要解决,如相邻设备之间为防止信息误传和被截取,必须要用户提前设置对应频段等,严重影响蓝牙技术产品面市的速度。但相信随着一个不断完善的发展过程,蓝牙技术会为我们的未来家居和办公带来不仅仅是方便一点的革命。

参考文献:

[1]Nathan J.Muller Bluetooth Demystified(影印本).人民邮电出版社。

无线传输技术论文篇11

随着无线通信技术的发展与无线通信业务范围的不断扩大,我们可以利用的频谱资源越来越少[1]。无线频谱作为一种可以为我们生活带来便利的宝贵资源,如何提高其利用效率是制约无线通信发展的一大难题。近年来人们越来越关注频谱资源的再利用技术。认知无线电(CR)技术是对软件无线电(SDR)功能的特殊拓展,有效解决了频谱资源无法高效利用这个制约无线通信发展的难题。

二、认知无线电技术概述

(一)认知无线电技术的概念。Joseph Mitola于1999年首先提出了认知无线电这一概念,在学术论文中对CR理论进行了描述,并在论文答辩过程中对该理论进行了详细阐述[2]。从广义上来看认知无线电的终端具有一定的认知能力,可以对所处的环境进行检测、分析和判断推理,并利用获取的结果进行传输参数调整,然后制定最佳的无线传输方案,该技术也可以称作智能无线电技术。CR技术可以自动为用户选择最佳的无线传输路径,也可以根据现有的情况主动发送信息或者延迟传输。

(二)认知无线电技术的主要特点1.认知的特点。CR可以在所处的工作环境中监测和感知信息,以特定的时间和空间为界,将部分没有被应用的频谱资源做上标记,进一步选择最佳的工作参数和频谱,这就是其认知的特点。CR认知的过程中可以分为感知、分析和判定频谱这三个部分。2.重构的特点。CR设备在所处的工作环境中可以进行动态编程,并且这些设备在收发数据过程中可以使用不一样的传输技术,在不影响授权用户使用的前提下,将感知到的空闲频谱提供给可靠的用户,这就是其重构的特点。如果频段已经被授权用户占用,CR可以运用一定的方式转换到其它空闲频段,或者通过改变调制和发射频率的方法继续使用该频段,并保障不影响首发用户的正常使用。

三、认知无线电技术的主要功能

目前CR技术的发展时间还不是很长,该技术的部分功能还没有完全实现,由Mitola 提出的认知循环还没有得到完全的应用。在设计和实现CR总体框架过程中,使用的组织架构不同其中的具体内容也有所区别。从整体意义上来说,CR系统应该具有检测、分析、调整等基本功能。

1.检测。CR由于所处的环境较为特殊,应该具备无线频谱检测的能力,并在可以应用的频段范围内全方位地进行精确检测,进一步发现可以利用的频谱资源。在这种情况下CR设备应该快速找出授权用户,并随时检测授权用户的活动情况,避免分配频谱过程中对授权用户造成干扰。2.分析。CR的分析内容有网络状态、设备性能和外部数据等,也包括对用户需求等相关数据分析。在设备检测到信息后通过分析对相关数据进行初步处理。在获取频段信息后对频点位置、用户位置和发射时间等进行分析,并研究信号通道状况、传输性能等对首发用户带来的干扰等,分析内容也有信息传输时间和带宽等。3.调整。CR设备完成检测和分析之后,根据相关的分析结果对功率控制、编解器和调制技术等进行选择和调整,并确定具体的发射时机和频点,以此保障传输过程的通畅。要完成这个过程CR设备必须有较高的性能,可以自由在不同传输方案之间进行转换,遇到突发状况能够及时停止,并在不影响授权用户的前提下提高传输效率。

四、认知无线电技术的实现方法

(一)灵敏度高的接收器。在使用CR之前应该评估其频谱功率密度,找出正在使用的频点[3]。在测量和评估频谱功率过程中需要用到灵敏度较高的接收器,以保障可以测量到区域边缘的信号。如某小区边缘有一台数字电视机,该电视机在接收信号过程中的灵敏度就接近接收器灵敏度的最大值,而CR要想检测到这一信号其灵敏度就需要大于数字电视机的灵敏度。如果CR接收不到这一信号,可能会错误地将该频点判定为空闲,进而在分配频谱过程中对数字电视带来干扰。该技术也涉及到对授权用户状态的检测和定位等,属于频谱资源检测中的重要设备。

(二)智能处理系统。CR设备根据检测结果对无线传输情况和传输带宽选择等进行分析评估,并确定多个技术参数的重要基础就是智能处理系统。当频谱被确定之后CR需要根据授权用户的干扰限值,进一步计算自身的传输参数。干扰强度可以通过授权用户的信号带宽和传输距离这两个因素确定,通过信号带宽可以得出扰装置的噪声门限,而扰装置接收到CR信号的强度可以通过距离确定。但这种分析方法较为简单,可以让CR首先对授权用户的数据传输速率和信号类型进行初步设别,根据这些额外的数据就可以得出扰装置的准确灵敏度数值。

(三)可重复配置的CR设备。CR设备主要根据可用频谱资源和干扰强度等数据的分析,对无线电的功率和各种技术参数进行调整,以此保障不影响授权用户的情况下提高信号传输效率。CR设备具有较宽的工作频带,在选择传输参数和传输方案过程中可以运用多种方法,并且可以实现快速切换,具有可重复配置和性能高的特点。CR可以看做是SDR在检测功能等方面的拓展,从CR的发展趋势来看,未来绝大部分CR设备可能都是以SDR为基础的,而SDR也将是CR技术的一种有效实现方法。

五、结语

认知无线电技术是无线通信领域中的一项全新技术,越来越受到人们的重视。虽然目前CR技术在发展过程中还存在一些限制,但相信随着无线电通信技术的不断进步,必将为认知无线电技术提供广阔的发展前景。

参考文献:

[1]李波,刘勤,李维英.认知无线电技术[J].中兴通讯技术,2010(02).

[2]乔晓强,赵杭生,陈勇.认知无线电与频谱管理[J].军事通信技术吗,2011(01).

无线传输技术论文篇12

在油田偏远油区生产过程中,对相关生产参数及油井视频进行远程监控对偏远油井的安全生产起着至关重要的作用。但由于偏远油区装置远离油田总部,应用有线的通讯方式,施工困难且周期长、灵活性差。而无线通讯方式由于其建立物理链路简单易行,成本低,可以根据现场需求及时调整项目方案,灵活性好,系统的功能扩展方便,因此特别适合偏远油区对通信链路的要求。

2常用的无线通讯技术

目前在油田现场广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。

其中GPRS和CDMA技术中国移动和中国联通公司的主营数据传输业务,在数据传输方面有着很强的优势,即信号覆盖范围广。对于陆上油田生产区域基本完全覆盖。但由于海上油田地理位置特殊,远离陆地的基站,因此很多海上生产平台还无法为GPRS/CDMA信号完全覆盖。此外经过测试,GPRS的平均速率为20kbit/s~40kbit/s,CDMA的平均速率为80kbit/s~100kbit/s,可以满足传输小数据量的生产数据要求,但无法满足大数据量的信号(例如视频信号)远程无线传输。虽然有利用CDMA技术进行视频信号传输的案例,但效果并不理想。

数字电台用于点对点或点对多点的工作环境,能够提供标准RS-232接口,可直接与计算机、RTU、PLC等数据终端连接,实现透明传输。数传电台的传输速率从1200~19.2Kbit,传输距离20~50公里。具有抗干扰能力强、接收灵敏度高等特点。数传电台技术比较成熟,标准统一,一直以来广泛用于油田的数据遥测/数据采集与监控(SCADA)项目中。但随着GPRS/CDMA技术的日渐成熟,相应的设备价格的降低,使得在很多应用场合中数传电台被GPRS/CDMA所取代。但同时,数传电台的相关技术也在不断发展,智能化、网络化、高带宽的数传电台也不断涌现。结合数传电台误码率低、信道可靠的特点,数传电台必将成为海上油田通信技术应用的可靠选择。

扩频微波和无线网桥技术是近几年兴起的一门数据传输技术。扩频微波最大优点在于较强的抗干扰能力,以及保密、多址、组网、抗多径等,同时具有传输距离远、覆盖面广等特点,特别适合野外联网应用。而无线网桥是无线射频技术和传统的有线网桥技术相结合的产物。无线网桥是为使用无线(微波)进行远距离数据传输的点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达50km)、高速(可达百Mbps)无线组网。这两项技术都可以用来传输对带宽要求相当高的视频监控等大数据量信号传输业务。

例如,对于远离陆地且无法进行中继的海上平台,通讯链路只能通过卫星通信和短波通讯。其中卫星通信范围大,只要卫星发射的波束覆盖进行的范围均可进行通信。不易受陆地灾害影响,建设速度快,易于实现广播和多址通信等等优点。但其运行费用相对昂贵,且系统维护要求高。短波通讯以往只在军事通信、专业通信、业余通信中发挥着极为重要的作用,因其传输速率低、噪声大,电离层反射天波为主,通常不能稳定的使用固定频率工作等缺点,因此在其他领域已慢慢淡出人们的视线。尽管短波通信存在一些缺陷,但对于海上油田而言,短波通讯作为可靠性高、覆盖区域广的通信方式,用于海上平台的紧急通信及小数据量传输应该是一个比较好的选择。

3环境因素对技术应用的影响

偏远油区的环境因素以以海上油田最为特殊。海上油田除了考虑信道带宽,传输数率,传输距离,发射功率,天线要求等通信设备本身的技术参数外,在应用无线通讯技术的过程中,还必须全面地考虑海上平特的地理环境与地理条件对无线通信技术应用的影响。

3.1对信号传输的影响

可以通过选取性能好的设备或应用抗干扰措施以减少甚至避免干扰。但无线通信过程中的信号衰落问题则是普遍存在的,而且是不可避免的。由于海上油田远离陆地,与陆地之间的广阔的海域、多变的气候使得在陆上应用效果很好的技术在海上应用时没有了用武之地。

微波在空间传播中将受到大气效应和地面效应的影响,导致接受机接受的电平随着时间的变化而不断起伏变化,我们把这种现象称为衰落。从衰落的物理因素来看,可以分成以下几类:吸收衰落、雨雾衰落、K型衰落、波导型衰落、闪烁衰落等等。在各种衰落因素中,吸收衰落、雨雾衰落及K型衰落对海上油田的无线通信应用影响较大。

3.2对技术应用的影响

各项通信技术在海上油田应用中还存在的另外一个问题就是其独特的现场环境。海上平台一般空间狭小,还要考虑海上多风,平台最高点一般较低的特点。

首先是对天线安装的限制。海上微波通信受地形地貌影响,相同的通信距离要求两端天线的高度更高。对于卫星通信、扩频微波、短波通信等天线体积较大的应用,由于海上风力较大,抗风性的要求也使得设备在小平台的安装变得十分困难。

此外,对于无人值守的平台,设备必须具有高可靠性、可自动维护、参数远程设置等功能。而对于卫星通信、短波通信等要求平台上配备专业管理操作人员进行设备的管理维护,这一特点也为技术的应用带来一定的限制。

4无线网桥技术在海上平台视频监控中的应用

在实际的现场应用中,我们选取了基于5.8G无线网桥设备进行了现场应用测试。测试地点为浅海油井,测试内容为4路视频监控图像的传输。该系统具体解决方案是利用摩托罗拉Canopy5.8G无线网桥建立通信链路。在平台一侧首先通过视频服务器将模拟视频信号转化为可在网络传输的IP数据流,之后由无线网桥将信号传输到陆地端。陆地端一侧通过无线网桥进行接收后由视频监控服务器处理后,对视频信号进行录像存储及Web。相关用户可依据相应权限在局域网内进行视频图像的浏览、录像等操作。

无线传输技术论文篇13

广播电视技术,集信息,计算机,电子,空间,通讯等现代技术于一身,通过现代化的传播手段与外界交流。其中,传输技术是保障其声音,图像的重要一环。现如今,广播电视业发展多样,无论是广播节目还是频道设置,都是多层次,大规模,极为丰富的。区别于以往的有线和无线技术,数字化应用于广播电视行业,又成就其上升了一个新高度,数字技术是该行业一项重大的改革。因此,加强对其技术的深入研究和探讨,及时改进实际中所出现的问题,是新技术更加完善,符合实际要求,真正为广播电视事业的不断进步做出其应有贡献。

2 广播电视新技术包含的范畴

广播电视新技术是一个发展性的概念。广播电视的发展经历了几个重要的历史时期。广播电视技术的发展依靠多方面技术的进步。所以,广播电视新技术从广义上说就是广播电视技术在哪些方面的进步,从狭义上说主要是指广播电视具体技术的新应用。广播电视传输新技术是电子信息技术的存在方式。

2.1 广播传输新技术的内容

在新型广播传输技术中有两个主要内容:数字音频广播,是广播模拟技术的发展成果;电台数据广播,利用无线信号完成信息传输,通过调制解调技术来实现。

数字音频广播技术,更新了以往采用连续波形传送模拟信号的方式,将这模拟信号变为比特,这是通过将数字和压缩技术结合起来实现的,从而使广播的无线电波传输更加简单。在广播信号传播过程中,经历的阶段分别为:中波、短波到调幅广播。调频广播不仅音质极佳,纯正,其对频率的利用率也是极高的,远远优于模拟广播,此外其还增加设置了一些频道。数字音频广播是在其基础上,结合通信卫星的出现发展而来的,其比以往增加了图形扩展,有了更加强大的功能,使收音机可以不仅有文还有图形。

电台数据广播技术,是传输技术发展的有一新高度。其调制解调技术分类,排列数字信息,在极短的时间内便在全世界盛行。新型的数据广播,图文并茂,不同的国家对其设计,形成了本国语言的,独特的,符合国民要求的信息。这些信息量是非常大的,覆盖面也是非常广的,包括了新闻,娱乐,气象,交通等信息的实时报道,这些都是与人们生活息息相关的问题,完全满足了人们生活的需求。

2.2 电视传输新技术的内容

电视新技术的发展同广播一样,是一个理论与实践互相碰撞的产物。电视传输新技术包括卫星电视、有线电视、无线电视、图文电视、电视数据广播、高清电视。电视传输技术的发展是非常迅速的。在短短的时间里,实现了突破。卫星电视通过卫星进行数据传输。卫星传送扩大了我国的电视覆盖面,当前,各国的卫星技术都非常发达,各个国家之间在卫星技术应用上都互通友好。卫星电视把电视节目实现了全球化播放。卫星电视打破了电视播放受限制的约束。有线电视是通过电缆和光缆进行信号传输,电缆和光缆对信号进行分配。有线电视实现的是区域性的电视用户接受方式。

光缆是电缆的优化体现。有线电视经过多年的发展,已经拥有了成熟的有线电视体系。有线电视节目容量大,节目质量高,可以进行双向传输,最重要的是可以与网络进行连接。图无电视是一种文摘形式的电视种类。图文电视需要依靠电视解码器。图文电视的优势是大量的信息存储。图文电视可以保存大量的多媒体信息,而且传输速度很快,是比较实用的电视种类。图文电视的应用性是其最明显的优点。高清电视当前最为流行的一种电视技术。高清电视的图像清晰度是其最明显的优势。高清电视把画面对比度提升到一个新的水平。但是,高清电视需要有相适应的电视机设备。高清电视在推向市场以来,得到了人们的广泛喜爱。

3 广播电视传输新技术的具体应用

广播电视传输技术应用是一个实用性问题。在广播电视传输技术中有光纤技术、波分复用技术、SDH数字技术、微波技术、GPRS技术、动态IP传输技术等类型。这些新技术的应用,加快了广播电视行业的进步。

3.1 光纤传输技术的应用

光纤传输是近几年发展的一项新技术,主要是通过光纤的纤心折射率来实现信息传输,主要分为多模光纤和单模光纤。这项技术可以保持广播电视信号传输中一路畅通,很大程度上提高信息传输的速度。除此,该技术缓解了传播中波段矛盾的问题,促进长波,中波,短波相互协调,合理运行,达到要求。同时,该技术传输也可以保障所传输信号有良好的质量,确保其稳定,使信号传输变得较为综合。它也是一项既安全又环保,又高效的技术,是网络应用的关键传输技术,是广播电视业一项重要的发展。

3.2 波分复用技术的应用

随着技术的发展,人们对有线技术的要求不断提升。波分复用技术的产生,通过在一跟光纤中传输多个信道,是信道能够根据不同业务需要自由组合运用,极大的提高了通讯速度,扩展了网络宽带业务。该技术有着良好的兼容性和系统保留性,是信息在传输中实现了双向回传,提高了信息传播的效率,从而使得整个网络运行技术要求有了显著的提升,并一定程度上降低了网络建设的成本,促进了广播电视在网络传播上的升级与飞速发展。

3.3 SDH数字技术的应用

SDH技术是需要与光纤技术进行结合的数字传输方式。SDH具有线路传输的巨大优势,同时,在传输过程中,具有交换功能。SDH技术弥补了传统的传输技术中的单向传输的缺憾。而且SDH技术可以在传输过程中对信号进行复接,这种复接功能促进了广播电视信号传输过程中错误信息的纠正。

4 结论

这几种广播电视传输技术是促进其发展的主要动力。新技术推动着广播电视事业不断向前,使其越发的满足人们生产生活的要求。但新技术的发展还不完全,还存在着一些缺陷,因此,在技术不断发展,研究不断深入的同时,不能只注重探究其优势,还应该关注到其劣势,对存在问题进行改良,从而使整个新技术不断完善发展,真正的起到推动广播电视业发展的作用,做出其应有的贡献。

参考文献

[1]刘刚.信号编码技术在广电传输网中的应用[J].广播与电视技术,2011(07).

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读