欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

纳米化学论文实用13篇

纳米化学论文
纳米化学论文篇1

纳米科技是20世纪80年代末逐步发展起来的新兴学科领域,它涉及到凝聚态物理、化学、材料、生物等领域[1]。目前,纳米科技与生物技术、信息技术成为推动人类未来发展的三大主流科技,在信息技术、生物与农业、环境能源、生命医学以及航空航天等方面有广泛的应用前景。纳米科技的迅猛发展将促使几乎所有的工业领域产生一场革命性的变化。

纳米材料是纳米科技的基础,对纳米材料的学习,是适应未来社会对材料专业人才的需要。在教材的方面,一直没有一本面向研究生教学的、较系统性的纳米材料的教材。本文拟从纳米材料课程教学目的、教学内容、教学方法与手段等方面对高等院校材料类研究生专业进行纳米材料课程的教学改革进行探讨。

1 教学目的制定

课程的目的是通过课堂教学,使硕士研究生能够了解、掌握纳米科学与技术的概念、分类及其特点,了解和掌握纳米材料的基本物理和化学性能;掌握纳米材料的主要制备方法和原理;掌握纳米材料的结构分析测试方法;了解纳米材料的生物毒性和安全性;了解纳米材料在不同领域的应用现状和应用前景以及最新研究进展,以便使学生了解和把握当今纳米科学的最新研究前沿

2 教学内容的选择

目前,纳米材料正蓬勃发展,其涉及的面也越来越广泛,涵盖原子物理、凝聚态物理、胶体化学、固体化学、配位化学、化学反应动力学和表面、界面等多中学科,内容广泛[2]。随着纳米科技的兴起,也出现了很多介绍纳米效应、纳米技术应用及纳米材料制备技术文献和资料,对推动纳米科技的健康发展起了很好的作用。但是,在教材的方面,一直没有一本面向研究生教学的、较系统性的纳米材料的教材。根据笔者从事纳米材料课程教学的实践,认为要达到前面提出的纳米材料课程教学目的。课程的教学主要内容应包含以下几方面: 纳米材料的基本概念、发展史;纳米材料的分类及其特点;纳米材料的基本物理和化学性能;纳米材料的主要制备方法和原理;纳米材料的结构分析测试方法;纳米材料的生物毒性和安全性;纳米材料最新研究进展。根据教学内容特点,可以考虑将教学内容分会以下6个部分。

2.1 绪论

从纳米材料的新奇特性开始,讲述纳米材料的内涵和基本概念以及发展史。根据材料的分类方法讲述纳米材料的分类方法及特点。讲述纳米材料的基本结构单元及其特性。重点讲述纳米材料的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应等基本性能。并结合我国纳米材料研究现状和学生研究方向进行相关讨论,激发学生对纳米材料的好奇心和求知欲。

2.2 纳米材料物理化学性能

主要内容涉及纳米材料的结构和形貌特征;纳米材料的热学、磁学、光学等物理特性;纳米材料的吸附、分散、团聚等化学特性。将纳米材料的物理化学特性与结构关联,按照基本结构-基本特性-特殊结构-特殊效应-特殊功能-特殊应用这一思路,引领学生深入思考,可以起到举一反三效果。

2.3 纳米材料的制备方法和原理

按照纳米材料维数分类方法,讲述零维纳米材料、一维纳米材料、二维纳米材料、三维纳米材料的特征、制备方法和基本原理。重点讲述蒸发-冷凝法、溅射法、气相化学合成法等气相方法和沉淀法、溶胶凝胶法、微乳液法、溶剂热法等液相方法。并结合学生研究方向对相关材料和方法进行详细讨论,使学生掌握相关制备方法,为随后的研究奠定坚实的基础。

2.4纳米材料的结构分析测试方法

主要包括透射电子显微镜、扫描电子显微镜、X射线光电子能谱仪、X射线粉末衍射仪、激光粒度仪等纳米材料表征仪器。通过学习,使学生掌握纳米材料测试的主要方法和仪器,并掌握各种仪器的优缺点和适用范围。同时,也使同学们认识到纳米材料研究的高技术特点。

2.5纳米材料的生物毒性和安全性

主要包括纳米材料的生物毒性和安全性。根据已有的相关研究报道,介绍一些纳米材料的生物毒性,让学生们了解纳米材料的不足之处,掌握相关的安全操作规则,以便在随后的纳米材料相关研究中避免出现安全事故。

2.6最新研究进展

根据纳米材料的最新研究热点,如石墨烯、锂离子电池灯,讲述纳米科技领域国际最新研究动态,让学生了解国际最新研究热点。

3. 教学方法与手段

3.1 多媒体教学

针对纳米材料课程内容广泛,知识点多的特点,采用多媒体教学方式。利用多媒体教学图、文、声、像融为一体的优点,可以使教与学的活动变得更加丰富多彩,又可以将信息量大的课程内容在有限的时间内呈现给同学们。从而激发学生的学习兴趣,促进学生思维发展,丰富学生的想象力。例如,讲述纳米材料宏观量子隧道效应时,可以动画的形式展现,方便学生们理解。讲述纳米材料的制备方法时,可以通过示意图的形式展现,更容易让学生理解和掌握。

3.2交互式讨论

利用交互式讨论教学方式。根据学生的兴趣,结合课程内容,将学生划分多个课题小组,进行课堂讨论。例如,讲述微乳液法制备纳米材料时,首先让学生通过文献查阅等方式了解该方法;其次,在课堂上就该方法、原理和实践应用进行充分讨论和分析;最后老师指出该内容的重点和难点。通过这种交互式讨论,在课堂教学中,确立学生的主体地位,尊重学生的主体意识;创设民主、平等的课堂氛围,让学生充分发表自己对问题的看法,发挥学生的主管能动性,变被动接受为主动探索;使学生的创新意识、创造性思维能力得到不断的发展[3]。

3.3实践操作相结合

纳米材料是一门实践性很强的课程。在课程教学中要充分与实践相结合,根据学生的研究方向,结合课程内容,安排学生进行相关实验。通过具体的实验使学生对纳米材料有更多的感性认识。涉及透射电子显微镜、扫描电子显微镜、X射线粉末衍射仪、激光粒度仪等纳米材料表征仪器内容时,结合具体情况,可安排一定时间上机观察和操作。

4 结语

纳米材料是纳米科技的基础,对纳米材料的学习,是适应未来社会对材料专业人才的需要。本文从纳米材料课程教学目的、教学内容、教学方法与手段等方面对高等院校材料类研究生专业进行纳米材料课程的教学改革进行系统的探讨,实践证明,这些举措的实施取得了良好的教学效果,为培养学生的创新思维和科研精神起到了一定的作用

参考文献

纳米化学论文篇2

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

纳米化学论文篇3

   (1)发达国家和地区雄心勃勃    

    为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(nni),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。    

    日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。    

    欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。    

   (2)新兴工业化经济体瞄准先机    

    意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。    

    中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。    

(3)发展中大国奋力赶超    

    综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。    

2、纳米科技研发投入一路攀升    

    纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。    

    美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。     

    日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。    

    在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。    

    中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。    

    就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占gdp的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。    

    另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。    

3、世界各国纳米科技发展各有千秋    

    各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。    

   (1)在纳米科技论文方面日、德、中三国不相上下    

    根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(sci)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。    

    2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。    

    在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。    

    另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。    

    (2)在申请纳米技术发明专利方面美国独占鳌头    

    据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。    

    专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。    

   (3)就整体而言纳米科技大国各有所长    

    美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。    

    虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。    

    日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。    

    在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。    

    日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。    

    日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。    

    欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。    

    中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。    

4、纳米技术产业化步伐加快    

    目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。    

    美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

    美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。ibm、惠普、英特尔等一些it公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。    

    日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。    

纳米化学论文篇4

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技发表协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行发表与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

纳米化学论文篇5

前言

纳米材料与纳米技术是21世纪最令人瞩目的前沿科技研究热点之一,纳米科技的蓬勃发展对众多研究领域,乃至人类社会的生产生活产生了广泛而深远的影响,纳米材料的应用和产业化已经成为世界许多国家相继研究和开发的重点。《纳米材料》是高等院校一门重要的新设课程,具有前瞻性、创新性、专业性和实践性强的特点。《纳米材料》及其相关的课程也是许多高等学校材料学化学专业的本科生或研究生的专业基础课程,本课程的开展有助于让学生了解纳米材料与纳米科技的发展方向,提高学生的创新性思维能力,引导学生开展纳米科学前沿课题研究,培养潜在的科研人才,同时,对《纳米材料》的教学也提出了较高的要求,因此需要认真思考和研究。

1.教学内容改革与优化

目前的教材多是围绕着纳米材料的基本概念和基本特性、表征方法、制备技术、纳米材料在各个领域中的应用情况以及功能纳米材料等内容编写,而其中的内容很多都已过时,比如在碳纳米材料这一部分内容时,十前年的主要内容是针对富勒烯和碳纳米管的讲解,而今天,该部分的内容可更多的偏向于目前研究较为热门的层状石墨烯材料。此外,材料表征方面的内容在本课程中占有相当大的篇幅,直接讲解纳米材料的表征特性使学生不能深入的理解,教学内容上有必要加入适当课时讲解较常用的表征手段的原理和分析方法,如X-射线衍射,扫描电子显微镜,透射电子显微镜,红外,拉曼等的分析手段。

2.教学手段改革

纳米材料涉及的课程范围较宽,有些章节较为抽象,学生首次接触常会遇到知识过于抽象不便于理解的问题,因此传统的教学模式已不再适应当前培养高素质人才的需要,针对这样的问题,应利用多媒体数字化资源如动画来辅助教学,利用当前各种模拟软件如3DSMAX或PHOTOSHOP将抽象的纳米材料的制备及生长过程进行直观展示模拟,激发学生的学习兴趣。此外,先进的仪器设备是科学研究的重要基础,本学院拥有高分辨透射电子显微镜、热场发射扫描电子显微镜、X射线单晶衍射仪、电化学工作站等设备,需借助这些良好的教学科研基础条件,引导学生参与科研活动,培养学生科研素养,为今后继续深造和走向工作岗位打下基础。

3.教学模式改革

在教学实践中,采取“分组教学”模式,即学生以10-15人为一小组,在既定大课题方向内,由学生自主查阅文献资料,选定具体研究题目,设计实验方案,并与导师探讨方案的可行性。学生在教师的指导下独立完成一种纳米材料的合成制备,对性能测试的结果进行分析,并完整独立撰写实验报告。这种方式将加强学生从理论上学习和理解并能拓展到实际的应用中。这种综合性、多样化的教学模式不仅能加强学生对理论课程的理解的重视,并能极大的调动学生的积极性和创造性,锻炼学生的独立思考能力、动手能力、创新能力、分析解决问题的能力及团队精神。

4.考核方式的改革

纳米材料课程的专业性和前瞻性都很强,常规的考核方式达不到反应学生学习能力和掌握程度的效果,相反地,概念性的知识点较多,一味的要求學生通过记忆背诵的方式来达到考试要求,一方面增加了学生的学习负担,另一方面学生也难以深刻理解所学知识点。卷面考试虽有必要,此外应加入撰写论文的考核方式。该种方式能够督促大三学生对上学期所学的文献检索课程的掌握利用,还能在查阅文献完成论文的同时,丰富与纳米材料课程相关的前沿知识,增强了学生论文写作的思路和方法,对大四的毕业论文的规范写作提前得到了锻炼,为今后的科研工作打下基础。

结语

纳米材料涉及范围广,发展日新月异,通过开展教学与实践及科研相结合的教学模式,提高学生们的学习兴趣,培养学生的独立思考能力、创新能力及团队精神。在以后的教学实践中将进一步加强改革创新,为学生的全面发展和综合素质的提高不懈努力。

参考文献: 

[1]白春礼.纳米科技及其发展前景[J].新材料产业,2001,4:8-11. 

[2]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社,2010. 

纳米化学论文篇6

生物传感器(Biosensors)是一门集化学、生物学、医学、物理学、电子技术等诸多学科于一身的交叉学科[1]。近年来, 随着纳米技术(Nanotechnology)和功能纳米材料(Functional nano-materials)的迅速发展, 生物传感器的性能已提高到一个新的水平[2]。基于功能纳米材料的生物传感器呈现出体积更小、检测速度更快、灵敏度更高和可靠性更好等优异性能, 在临床诊断、工业控制、食品和药物分析、环境监测以及生物技术、生物芯片等诸多领域有着十分广阔的应用前景[3,4]。 因此, 21世纪的第一个十年被称之为“传感的十载” [5]。在这10年中, 该领域的发展非常迅猛, 平均每年约有2000篇相关论文在国际杂志发表, 2011年度在国际杂志刊载发表的相关论文已超过3000篇,其中包括Nature Communications, Journal of the American Chemical Society, Analytical Chemistry, Angewndte Chemie International Edition, Chemistry-A Europe Journal等知名期刊。国内相关领域的研究紧跟国际发展的步伐, 取得了较好的研究成果, 2011年度国内期刊刊载相关论文60余篇, 其中在《分析化学》和《中国科学:化学》(中英、文版)上近40篇, 在很大程度上推动了国内生命分析学科的发展。

2 基于功能纳米材料的生物传感器的研究现状

不同纳米结构材料的生物功能化是生物传感器研究的主要亮点和重点[6]。国内在该领域的研究发展也十分迅速, 在2011年度中国期刊刊载发表基于功能纳米材料的生物传感器的论文中, 纳米材料结构涉及二维纳米膜[7~18]、一维纳米管[19~31]和零维纳米粒子[32~46], 其中研究工作以零维纳米粒子和二维纳米膜居多;分析对象广泛, 包括DNA、大肠杆菌内毒素、癌胚抗原、氨基酸、葡萄糖、酶、唾液分泌性免疫球蛋白 A、IgG、细胞\, 基因、谷胱甘肽、过氧化氢等;传感器类型有电化学传感器、表面等离子共振(SPR)传感器、石英晶体微天平(QCM)传感器和光学传感器, 其中多数为电化学传感器, 在其它类型传感器方面的探索研究还有待进一步加强。

2.1 二维纳米膜

二维纳米材料中最具代表性的是纳米超薄膜。国内研究利用不同的制备技术(如自组装、电化学聚合及滴涂法),制得不同的纳米超薄膜,建立各种生物传感器。如Zhang等[7]通过静电组装的方式将双链 DNA 膜组装到纳米 SnO2半导体电极上, 然后使用一种DNA双链嵌入剂, 即Ru(bpy)2(dppz)2+作为光电信号分子, 根据电极的光电信号的变化, 研究光电传感器中纳米材料对DNA的损伤, 为纳米材料的毒理学研究奠定了理论基础。刘艳等[9]利用阳离子型聚合物聚二烯丙基二甲基氯化铵(PDDA)和功能化的带负电荷的多壁碳纳米管(MWCNTs)及石墨烯(GR)之间的静电吸附, 通过层层自组装的方法在GCE的表面制备了均一、稳定的(PDDA/GR/PDDA/MWNTs)5 多层膜。由于GR和MWCNTs均具有良好的导电性能, 可以提高H2O2的氧化反应中电子传递的能力。该电极对H2O2的氧化显示出较好的电催化活性, 对H2O2响应灵敏度高, 检测范围宽。在此基础上可进一步对膜进行修饰, 如对生物分子的固定, 有望研制出灵敏度更高, 抗干扰性更好的生物传感器。

电化学聚合法在二维膜的制备中因其简单、快速的特性得到广泛应用。张志军等[10]以电化学聚合苯胺(ANI)/邻氨基苯甲酸(OAA), 制得在中性溶液中具有导电性的聚(苯胺-邻氨基苯甲酸)(PAOAA)共聚物膜, 随后负载Cu2+通过配位作用固定过氧化氢酶, 实现了蛋白的有效固定, 并保留了蛋白质的活性, 为传感器表面生物分子的有效固定提供了新途径。张玉雪等[11]利用循环伏安法将新蒸单体吡咯和羧基化WMCNTs聚合到电极表面, 通过生物素-亲和素体系固定探针, 制备了一种电化学DNA 生物传感器, 成功实现了对沙门氏菌毒力基因invA 的特异性基因片段的快速检测, 在食品与环境安全、临床基因诊断、药物筛选分析等领域有很广泛的应用前景。Zhang等[12]在玻碳电极(GCE)表面电聚合了一层邻氨基苯甲酸, 通过共价方法将抗-CEA(Ab1)捕获在聚合物膜表面。固定有Ab1的电极和结合有碱基磷酸酶标记的抗-CEA(Ab1)的金纳米粒子(AuNPs)复合物, 实现了对CEA的双催化信号放大的夹层检测法, 分析灵敏度提高了近百倍, 实现了CEA的高灵敏度电化学检测。

滴涂法也是二维膜材料制备过程中常见的方法之一。汪红梅等[15]依据慢性粒细胞白血病BCR/ABL融合基因的碱基序列, 设计了一种新型发夹结构锁核酸(LNA) 探针, 将该探针滴涂在金电极表面形成一超薄LNA探针膜层, 对慢性粒细胞白血病基因片段表现出良好的电化学响应信号, 有望在临床慢性粒细胞白血病基因的早起诊断中得到应用。

在2011年度国内基于二维功能纳米膜作为分子识别元件在生物传感器中的应用的研究工作中, 二维纳米膜的制备方法多以电聚合和滴涂法为主, 只有很少一部分工作使用自组装的方法制备二维纳米膜。然而, 自组装是目前制造纳米材料最方便、最普遍的途径之一, 特别对于制造结构规则的功能纳米材料, 自组装已经显示出独一无二的优越性。因此, 今后应加强研究自组装功能纳米材料在生物传感器领域中的应用研究。

纳米化学论文篇7

制备二氧化钛纳米管的措施包括下属几种,(1)水热法(2)模板法(3)阳极氧化法,模板法能够制备有序的二氧化钛纳米管,不过其工艺繁琐、生产率不高。水热法制备出的二氧化钛有序度不高。阳极氧化是在钦基片上生长二氧化钛纳米管的措施,制备工艺便捷,利用调节氧化电压以及电解液密度等数值能够有效控制管长以及管径。 阳极氧化的电解液包括有机电解液以及无机电解液,分析显示无机电解液为最有延伸性的电解液。

1. 实验

钦片作为阳极,高纯度石墨片为阴电极。阳极氧化前通过离子水、乙醇以及丙酮进行超声洗涤。阴阳电极之间的间距不超过四 厘米,电解液容器为五百毫升烧杯。和稳压稳流电源进行串联,在二十八摄氏度室温中予以阳极氧化。氧化后取出钦片通过离子水与乙醇清进行洗涤,洗涤后让其自然风干。

选择每升十毫克浓度的三十毫升甲基橙模拟废水作为光催化目标物,通过退火后的二氧化钛纳米管序列作为催化物。通过功率为六瓦的紫外光灯作为光源放到液面十二厘米的位置,间隔十分钟取一个样通过分光计在四十毫米位置测检甲基橙初始溶液吸收性,通过光照后溶液吸收度,按照下述甲基橙降解率公式进行计算:D=(Ao-A)/Aox100%。

2. 实验结果及分析

2.2.1 样品外貌特性.

图1是质量分数在百分之零点二一的氟化铵与百分之零点二一的水与丙三醇混合的溶液中以差异化电压阳极氧化制的二氧化钛纳米管序列扫描电子显微镜影响。其中A.B.C.D样品制备的阳极氧化电压分别为六十瓦,六十五瓦,七十瓦,七十五瓦。上图结果显示,纳米管孔径大小伴随阳极氧化电压的提高而增加,A的纳米管管径大概一百六十纳米,B的管径大概 一百七十纳米,C的管径大概一百就是纳米,D的管径大概贰佰贰拾纳米。

图2是在室温环境下通过质量分数百分之零点二一的氟化铵与百分之零点二一的水以及丙三醇混合的电解液中通过七十瓦电压阳极氧化二百四十分钟制备出的二氧化钛纳米管序列退火前后的图谱,其中A曲线显示没有退火的二氧化钛纳米管序列只有钦基底的衍射峰,这从侧面印证退火前的二氧化钛是没有整体形态的。而B则表示样品在三百八十度退火后发生了尖锐的锐钦矿衍射峰,这也从侧面印证无定形二氧化钛转变成锐钦矿二氧化钛。C印证了在温度提高至四百八十摄氏度后锐钦矿峰值比三百八十度曲线更加尖锐。D则显示了伍佰捌拾摄氏度退火处理后,二氧化钛纳米管阵列锐钦矿衍射峰逐渐缩减同时带有金红石衍射峰。通过曲线E我们发现曲线的衍射峰是金红石衍射峰同时转化的十分尖锐,锐钦矿衍射峰弱化,这印证了二氧化钛通过锐钦矿晶型转型为金红石晶型,在退火后主要是金红石晶态的二氧化钛。通过公式D=K入/co (其中,K是Schemer一般数,其值不超过0.89,D是晶粒大小,B是积分半高宽度, 则?兹表示衍射角,入为X射线波长,为0.154056 纳米)因此能够计算出锐钦矿晶粒在三百八十摄氏度,四百八十摄氏度,伍佰捌拾摄氏度,六百八十摄氏度退火处理后的大小分别是:二十三点四 纳米,二十五点六纳米,二十九点八纳米,三十七点以纳米。印证了晶粒伴随温度增加而变大。

图3为在室温环境下通过质量分数百分之零点二一的氟化铵与百分之零点二一的水以及丙三醇混合的电解液中通过其实瓦电压阳极氧化二百四十分钟制备成的二氧化钛纳米管序列退火前后的紫外能够显示出反射光谱图。通过上图能够看到在紫外光位置通过四百八十摄氏度二氧化钛退火的吸收率最强,吸收率最低的为伍佰捌拾摄氏度退火的样品,这与高温度退火纳米管序列的坍塌有直接联系。在可见光位置通过三百八十摄氏度退火样品吸收率最佳,四百八十摄氏度退火的二氧化钛最低。这与退火后样品外表二氧化钛薄膜变成近蓝白色有直接关系,差异化的退火温度样品外表为差异化的蓝白色。

图4为质量分数百分之零点二一的氟化铵与百分之零点四二的水以及丙三醇混合的电解液内通过差异化的电压阳极氧化一百八十分钟制备出来同时没有通过五百摄氏度退火处理样品的光催化结果。通过上图我们能够看到两小时降解率的多少和电压数值有联系,电压越强降解率就越高。阳极氧化电压七十瓦,八十瓦,九十瓦,一百瓦在两小时对应的降解率为百分之七十九点八,百分之八十三点二,百分之八十六点九 , 百分之八十九点二,这是由于电压高时候制备的纳米管的孔径大、管长度延伸,比表面积提升。因此光催化活性增加了。

参考文献

[1] 朱伟庆;王树林;;阳极氧化法制备TiO_2纳米管机理及有机电解液应用[A];颗粒学前沿问题研讨会――暨第九届全国颗粒制备与处理研讨会论文集[C];2011,18(03):312-315.

[2] 迟煜E;李广忠;张文彦;康新婷;荆鹏;;TiO_2纳米管的制备方法研究[A];有色金属工业科学发展――中国有色金属学会第八届学术年会论文集[C];2012,17(06):622-627.

[3] 王岩;吴玉程;秦永强;崔接武;郑红梅;洪雨;王庆平;;电压条件对快速组装TiO_2纳米管阵列速率的影响研究[A];第七届中国功能材料及其应用学术会议论文集(第6分册)[C];2010,14(02):297-299.

纳米化学论文篇8

一、微纳米制造技术课程的背景及特点

微纳米科学与技术已成为一种战略性的、占主导地位的技术,被中国机械工程协会列为影响我国制造业发展的问题之一。微纳米制造技术通过在微纳米尺度范围内对物质的集成与控制,创造并使用新的材料和装置,以实现不同功能的机电或机光电一体化智能系统,涉及电子、机械、光学、物理、化学、材料、制造、生物、信息等多种学科,是制造技术的融合交叉新领域。教育部已经将微机电工程列为机械工程一级学科的五个二级学科之一,相当多的高校陆续开设了相关课程。《微纳米制造技术及理论》作为微机电工程研究的入门课,提高其课堂教学的质量,逐步开展实验教学是非常有必要的。我们在精品化教学内容的基础上,在教学实践中探索了微纳米制造技术及理论课程的虚拟实验与模拟科研教学法,并取得了较好的课堂效果。

二、精品化课程内容

《微纳米制造技术及理论》作为一门导论类课程,内容涵盖了微机械加工、半导体加工、纳米制造和生物制造等种类繁多的微纳米加工方法,且各制造方法的相关性不强,给教学带来了极大的挑战。结合本校特点,我们编排的课程内容从分子操作到纳米加工、从生物制造到仿生制造、从微细机械加工到微细特种加工、从集成电路工艺(IC工艺)到MEMS(微电子机械系统)构成了结构对称的多学科制造技术。在体系编排上从纳尺度制造到微尺度制造、从低维低复杂度制造到高维高复杂度制造、从探索前沿到实用产业构成了循序渐进的知识体系。总体内容涵盖了机械、材料、电子等工程学科知识及物理、化学、生物等基础学科的理论,培养了学科交叉创新的意识。

教学内容组织首先强调“由理及表”,即从原理到应用、从理论到实际,同时强调内容来源的“鲜活性”,即紧密跟踪国际前沿最新科学研究成果,紧跟国家战略需求,最终使学生达到微纳米制造技术基础理论学习和工程应用等综合能力的培养。

三、探索虚拟科研情景教学法

(一)虚拟科研情景教学

技术发展有不以人的意志为转移的内在驱动力,在讲解某项微纳制造技术时,可以通过讲解该技术发明前的客观需求、相关技术和理论发展水平来引领学生的思维,使学生站在研究者的角度去思考如何创造一种“新”的微纳加工方法来解决面临的“历史”问题,从而引出具有内在逻辑必然性的该项微细加工技术。例如在讲解深硅等离子刻蚀技术时,我们首先讲解加速度传感器的历史现状,为提高其灵敏度,亟需高深宽比微纳结构的加工方法,而当时的硅化学刻蚀方法,无法实现高深宽比的微纳加工;等离子加工技术和理论已在集成电路加工中获得应用,如何开展基于等离子刻蚀技术的高深宽比硅加工成为当时的热门研究课题。学生从科学探索的角度和教师一起从化学原理的角度分析基于“SF6+O2”的加工方法,逐渐引出在通用的BOSCH深硅加工工艺。这种基于虚拟科研情景再现的授课方式,不但提高了学生的注意力,还使学生从一个研究者的角度去思考问题,轻松掌握了该微纳米制造技术的用途、原理和特点。

(二)多媒体辅助虚拟实验教学

微纳米制造技术及理论课程知识涵盖面广、信息量大,而教学时间仅有32个学时,如何提高课堂效率成为一个重要问题。除了突出重点,在微纳尺度效应、微机械切削原理、体微硅制造、表面微加工等方面深入讲解外,在装备原理、工艺过程等方面通过多媒体等手段增加形象认识是非常有必要的。例如,光刻过程包含清洗、烘干、涂胶、前烘、对准、曝光、后烘、显影、显影检查、显影硬烘等多步工艺,我们在研究生课的讲解中采用了传统的讲授方法,由于多数学生对相关工艺过程不了解,既不容易抓住重点,也不容易提起兴趣。而在留学生课的教学中,在给学生讲授了光刻的基本原理的基础上,我们采用了播放光刻过程实景录像,穿插关键点讲解的教学方式,这样既提高了课堂效率,又吸引了学生的兴趣,加深了理解的形象化程度。

(三)虚拟科研的考核方式

在《微纳米制造技术及理论》的课程考核中,过去我们多依赖闭卷考试的方式,闭卷考试能考察学生对基础理论的掌握,督促学生在课后进行重点内容的复习和掌握。而在本轮的改革尝试中,我们增加了要求学生写一个课程总结的考核方式。这份课程总结不是对本课程主要内容的综述,而是针对某一项微纳米制造技术的现状综述,并给出一个利用该种加工工艺制作某种新型微结构或微器件的创新性提案。虽然多数学生的提案可行性不大,但至少达到了使学生站在一个科研工作者的角度去了解并利用微纳米制造技术的教学目的。

(四)微纳米制造课的实验教学

通过虚拟科研实验的教学方式,虽然能在一定程度上增加学生的直观认识,但给人最深刻的认识一般还是从实践中获得的。《微纳米制造技术及理论》作为一门实践性很强的课,实验教学是一项重要的教学环节。但本校尚未设立微机电系统工程专业,也没有相关教学实验中心,因此开展实验教学难度很大。为此,本教学团队克服困难,采取特定时间开放科研环境,与教学并用的方案,安排了三堂精彩的实验课教学。首先为使学生对微纳米制造以直观的认识,我们在实验室展示了基于仿生制造技术的功能表面、基于生物制造技术的功能颗粒、基于微机电系统技术的微传感器等成果,并给学生展示了相关的实验环境、加工设备及原理。为进一步加深学生的认识,我们分组进行了光刻工艺试验和溅射工艺试验,使学生体验并认识到加工过程中的难点和技巧,给学生留下了深刻的印象,加深了对课堂知识的认识。此外,通过与半导体加工条件较好的科研单位合作,以创造更优良的教学参观环境,相信能使学生获得更深刻的认识,促进微纳米制造工程实践能力的培养。

四、结语

微纳米制造技术发展迅速,制造学科高年级本科生或研究生具有掌握微纳米制造的基础知识,了解其最新的发展动态及技术现状的强烈需求。要在有限的课堂时间内把丰富的微纳制造相关内容讲授给知识背景和研究方向各不相同的学生具有极大的挑战性。我们从精品化教学内容以增强内容间的逻辑性、开展虚拟科研实验教学实现教学与科研的融合、改善实验条件加深学生感性认识等三个方面做了初步探索,并取得了一定成效,力争为微纳米制造领域的教学改革和学生培养做出贡献。

参考文献:

[1]中国机械工程学会.中国机械工程技术路线图[M].北京:中国科学技术出版社,2011.

[2]张海霞,赵小林,译.微机电系统设计与加工[M].机械工业出版社,2010.

纳米化学论文篇9

中图分类号:N031 文献标识码:A 文章编号:1006-026X(2013)10-0000-02

1.纳米技术的定义

纳米技术是一种创新的技术,它在非常小的范围之内之内,来进行对原子,分子的研究,并利用其来进行发展和创新的一门技术,纳米机器人,纳米马桶,人类通过电子显微镜看到的微观的人体细胞,病毒等等。利用纳米技术制作的材料又与我们经常使用的材料有很大的区别,它发展了吸附等的一系列功能。那么这种新型材料的出现,也将会利用到人类生活的各个方面,带来了技术创新。

2.纳米技术为人类带来的便利

纳米技术的发展为科学技术的发展带动了新的改革,纳米技术的发展也推动了医学、艺术等方面的发展。医学中产生了光学传感设备,对于骨质修复作用产生了重要的作用,同时纳米技术在药物输送方面产生了重要作用,纳米技术在艺术层面也产生了重要的影响,纳米画等作品。纳米技术不仅从技术层面关心人类,而且从人的综合状态中予以提升。

2.1 纳米技术带来了科技层面的改革

例如,纳米技术制作的微型器械,按照人类的操作任意运动,将微小的颗粒,划分成原子或者分子,再按照自己的想法任意拼接,这些器械不仅可以按照人类的想法任意工作,而且具有自我还原的能力。纳米材料是一种新型的材料,这也体现了从认识―实践―认识的客观规律。人类之所以能制作出纳米仪器,利用纳米材料的主要原因是人类对于纳米世界认识的比较深入全面,然后再利用纳米材料制作出纳米设备,这也是令一个再认识―实践―认识的过程,推动了从不断认识到实践的过程,体现出了发展是靠不断运动的哲学道理。

2.2 纳米技术体现了物质和意识的关系

物质决定意识,意识对物质有反作用。人类推动了纳米材料的发展,最主要的原因在于人类对纳米世界有了非常客观的认识,了解了它的运动发展规律,通过人类对于纳米世界的学习和研究,来创造出纳米材料,而这种材料的创造体现了物质决定意识,意识对物质起到了发作用。

2.3 纳米技术同时体现了由量变到质变的一个过程

物质的质变有两种来源,一种形式是量变达到一定程度就会产生质变,质变的另一种形式就是在总量不变的前提下,内部组织自己行的排列与组合,从而产生质变,纳米技术一方面是利用纳米结构的特点而生产的一种纳米材料,另一种就是利用原子,分子中间的距离变化,重新组合,而产生的质变生产的纳米材料,这就体现了由量变到质变的过程,

2.4 纳米技术加强了人们对于排列结构的认识

原子,或分子之间的距离,位置不同就会形成新的不同的物质,纳米技术也就是利用了这一特点,而形成的技术。纳米技术完成了从生物到非生物的跨越,在医学上生产出新的微型仪器,置放在人体中代替,或者弥补人体某些部分脏器的功能,通过改变人体细胞的组织结构,利用纳米技术孕育出新的生命,

3.纳米技术带来的消极影响

纳米就会造成人类社会的危害,人类的想象和发明没有边界,纳米技术的产生就是对原子分子进行重新的排列组合,在这种非常方便的状况下,纳米技术也会生产出任何东西,这是一件可怕的事情,在这种没有节制的的状态下,纳米技术就像病毒一样无限蔓延开来,可以想象一下,我们周围到处存在着纳米仪器,有有利于人类发展的仪器设备,医药用品,也有限制人类发展的纳米病毒,学生利用纳米仪器来应付考试,小偷利用纳米仪器进行偷窃,人人都有纳米设备防身,这是一件多么可怕的事情。

人类如果过度依赖技术,就会将人类和技术之间的关系发生改变,不是技术为人类服务,而是人类对技术的崇拜,人的思想会随着发生改变,产生混乱和偏执,基本理论的缺失。

技术会导致人缺乏用自己的思维,一味的对技术产生依赖心理。有些观点认为纳米技术可以解决任何问题,此观点认为,所有的物质存在方式都是按照自己的规律存在的,万事万物的存在都有自己的规则,相互之间也有自己的的特点,遵循着某种法则,依照纳米技术的原理,人类社会的存在方式也可以任意组合,相互之间可以打乱,再进行新的排列组合,有的观点认为,人的思维,与任何一种社会存在进行排列组合,所有的存在都可以依照纳米技术的存在方式来进行发展,有机界和无机界,非生物和生物,任何物种都可以排列组合,有些组合还没有实现,得依据纳米技术的发展状况,需要进一步学习研究。更有甚者认为人的思维是由大脑控制的,为了改变人的思维方式完全可以像纳米技术那样,将人的大脑细胞与大脑结构重新进行排列组合,这种思想是非常可怕的。

依照这种推论,我们要想让刚种的树苗,瞬间长大,完全可以改变它内部细胞生长结构,要想让刚出生的婴儿长大,改变他的细胞排列结构,要想让养的家禽快速长大,只要改变体内细胞的排列结构,这是一件多么可怕的事情,况且这种言论还没有成立,纳米技术的无限制发展就会对人类社会带来危害,使人的思维发生错乱,

这也是一种拜物的想法,一味的抬高技术的发展,而降低了人的主观能动性,人服务于技术,技术是最高的物质,失去了人在社会中的主导地位,虽然这样的想法没有办法去证明它的合理性,但也很难证明它的不合理性,但是能够确定的是,如果按照这种状况发展下去,人类社会的发展将会被阻挠。

4.面对纳米技术的优劣是该如何解决

根据纳米技术的发展而产生的一些消极理论,我们必须做一些考虑,针对性的提出一些意见,来限制其肆意发展。阻止其危害人类社会。纳米技术的发展一方面促进了人类社会的发展,为人类的医学,艺术,技术各个方面提供了积极地影响,而另一方面纳米技术的肆意发展又导致了人的异化,对人类社会的发展产生了阻碍,这种现象也是不可避免的,事物的发展总是存在这两面的,如果利大于弊,它就是正面的,可继续发展的,如果弊大于利,就要引起人们的反思,那么从纳米技术的发展状况来看,它更多地是造福人类,但是在它为人类带来方便的同时又对社会的发展产生了阻碍。对于这一利大于弊的现状,针对于它的利弊我们一方面要改变人的观念发扬正面的力量;另一方面,应该采取一些相关的政策措施,针对性的阻碍它的负面影响。

4.1 改变人们的观念发扬正面力量

在科技不断发展的今天,从人的本身开始,从知识文化层面,提高人本身的素养,对科学技术重新认识,树立科学的文化精神。只有这样,当新的的技术出现时,就不会出现违背科学文化而出现的不合于人的伦理道德的事情,人类尊重科学知识,但不盲目崇拜,对科学技术的态度,要合理保护。只有这种科学知识观念扎根在人的脑海中,任何消极的观念都不会滋生,另一方面,科学技术的发展的最要的目的,是以为人类共同利益而服务的,我们应该分出什么任务是共同的,这就需要对人类自身修养的提高与丰富,当面对共同利益时,联合起来,共同发展,当科学技术不符合人的共同利益时,人的自我修养自我意识,就可以提醒自己,科学技术的发展危害到人的共同利益时,要知道杜绝其发展,人的思想也是一步一步完善起来的,科学技术也在发展的阶段,虽然人类很难预测科技发展的后果,但由于人类有基本的科学素养,基本的科学文化,人类在面临科学发展的时候,最基本要做到的是科学技术的发展要与人类社会的发展,相互协调。

科学技术是一种被人类用来创造的东西,是人类达到某种目的的手段或者媒介,是人类可以掌控的东西,在这个时候就对创造者有要求,创作发明者本着为人类共同利益的原则,选择性的发展科学技术哲学,纳米技术也一样,当它符合人的共同利益的时候我们大力发展,当它没有边界肆意发展,为社会的发展总成阻碍,危害人类的共同利益,违反公共道德,反人类的基本素养,创造者就要摒弃它,限制其发展,当然在不同的年代,各个国家对于科学技术发展,纳米技术的发展的衡量标准是不一样的,在这个时候,首先纳米技术的发展要符合当时,符合国家的需求,符合人们的共同利益,不能超越人类的道德底线,不同年代,不同国家的国情,科学技术的发展,要和当时国家的人们素质,国庆的发展相互协调,整体性推动人类发展的历史进程。始终不能违反人类的共同需求,和人性发展的基本素质的本质要求。

4.2 纳米技术的发展应从政治、教育、法律等方面来约束和规范

从政治方面国家应该出抬相应的政策引导纳米技术的发展朝向符合国家利益,人民根本利益的方向发展,明确规定杜绝哪些科学技术的发展。最大化的实现人民根本利益的。要杜绝不良技术的发展滋生,不仅仅要依靠政策的导向,严重的情节要依靠法律的武器,彻底消灭不符合人类发展规律的科技发展,有些人为了自己私利,不顾人类发展的根本利益,利用科学技术,发展生产一些危害人类的利益,危害社会健康的一些科技,在这种情况之下,国家的法律应该做出明确的规定,对于这类,危害人类,危害社会发展的行为,予以法律的制裁。目前我们的国家正处于发展中的阶段,以上说的政策导向。和法律法规还需要一个发展过程,科学技术,尤其是纳米技术的发展是一个新型的事物,人类对它的了解是一个非常模糊的状态,所以难免会造成一些违背大众基本文化原则的事情,所以人类要树立这种科技发展的文化观,在每朝每代,社会舆论,难免是人类发展的一个催化剂,我们应该树立正确的舆论导向,人人心里树立正确的和意识,引导科学技术从正确的方向发展,当科学技术,违背大众舆论的时候,人类要积极站出来,对不良的发展想象造成压力,时刻朝向正确健康的方向发展。

结语:纳米技术是一种新型的科学技术,是科技发展的一场革命,它将人类带进了另一个新的先进的世界,它的发展造福了大众,另一个新的光明的世界已经到来,任何事物的发展都有双层的利害关系,纳米技术的发展也如此,人类不能被异化,要树立对科学技术发展的认识和基本素养,并通过政治、文化、法律等一列的约束和导向,使科学技术朝正确的方向发展,造福人类。

参考文献:

[1]阵垮泉.纳米科技探索[M].北京:清华大学出版社,2002.

[2]孙超.纳米技术带来的哲学思考[J].安徽农业大学学报(社会科学版):2002(61)

[3]郝春城等.纳米科技及纳米材料发展的哲学思考[J].青岛化工学院学报(社会科学版):1999(3)1.

[4]吴文新.科学技术应成为上帝吗?[J].自然辩证法研究:2000(11).

纳米化学论文篇10

纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。

纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物 FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。 加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。

2国际动态和发展战略 斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。

最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。 3国内研究进展

我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。

纳米化学论文篇11

纳米二氧化钛(TiO2)具有许多特殊性能,比如表面效应、体积效应、量子尺寸效应、宏观量子隧道四大效应[1],从而使其与普通二氧化钛相比具有许多特殊性能。

纳米二氧化钛是无机纳米半导体材料TiO2中极其重要的一种纳米材料,是一种稳定的无毒紫外光吸收剂[2],纳米TiO2还具有很好的光催化作用[3],在光照条件下能够降解有机污染物、杀死细菌。纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、光电子器件等领域具有广泛的用途。目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文对其制备方法及其应用发展进行了总结。

1 制备方法

1.1 气相法

气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米粒子的方法。

1.1.1 四氯化钛气相氧化法 此法多是以四氯化钛为原料,以氮气为载气,以氧气为氧源,在高温条件下四氯化钛和氧气发生反应生成纳米二氧化钛。该工艺的优点是自动化程度高,可以制备出优质的二氧化钛粉体;缺点是二氧化钛粒子遇冷结疤的问题较难解决,对设备要求高,技术难度大,在生产过程中排出有害气体Cl2,对环境污染严重。

1.1.2 四氯化钛氢氧火焰法 以TiCl4为原料,将TiCl4气体导入高温的氢氧火焰中700~1000℃,进行高温气相水解备纳米二氧化钛。四氯化钛氢氧火焰法制得的纳米二氧化钛粒子晶型为锐钛矿和金红石的混合型,该工艺优点是产品纯度高达99.5%,粒径小、比表面积大、分散性好、团聚程度小,可用作电子化工材料,制备工艺成熟,生产过程较短,自动化程度高;缺点是反应过程温度较高,生成HCl使设备腐蚀严重,对材质要求高,需要精确控制工艺参数。

1.2 液相法

当今制备纳米粒子液相法居多,纳米二氧化钛的制备方法也是如此。主要有溶胶-凝胶法、水热法、沉淀法等。

1.2.1 溶胶―凝胶法 溶胶―凝胶法(简称S―G法),又名胶体化学法,是被广泛采用的一种制备纳米二氧化钛的方法。其原理是以钛醇盐或钛的无机盐为原料,经水解和缩聚得溶胶,再进一步缩聚得凝胶,凝胶经干燥、煅烧得到纳米二氧化钛粒子。论文参考,液相法。与其它方法相比制品的均匀度高,尤其是多组分的制品,其均匀度可达分子或原子尺度;制品的纯度高,而且溶剂在处理过程中容易除去;反应易控制,副反应少;煅烧温度低,工艺操作简单。

1.2.2 水热法 水热反应过程是指在一定的温度和压力下,在水、水溶液或蒸汽等流体中所进行有关化学反应的总称。该法的原理是在高压、水热条件下加速离子反应和促进水解反应。论文参考,液相法。一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现反应快速转化。

2 纳米TiO2催化性能的应用

2.1 杀菌功能

抗菌是指TiO2在光照下对环境中微生物的抑制或杀灭作用。TiO2光催化剂对绿脓杆菌、大肠杆菌、金黄色葡萄球菌等具有很强的杀菌能力。在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准[5];当细菌吸附于由纳米二氧化钛涂敷的光催化陶瓷表面时,TiO2被紫外光激发后产生的活性超氧离子自由基(O-)和羟基自由基(OH-)能穿透细菌的细胞壁,破坏细胞膜质,进入菌体,阻止成膜物质的传输,阻断其呼吸系统和电子传输系统,从而有效地杀灭细菌,并抑制细菌分解有机物产生臭味物质如H2S、SO2、硫醇等[4];在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。论文参考,液相法。论文参考,液相法。

2.2 防紫外线功能

纳米TiO2既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。与同样剂量的一些有机紫外线防护剂相比,纳米TiO2在紫外区的吸收峰更高,更可贵的是它还是广谱屏蔽剂,不象有机紫外线防护剂那样只单一对UVA或UVB有吸收[6]。它还能透过可见光,加入到化妆品使用时皮肤白度自然,不象颜料级TiO2,不能透过可见光,造成使用者脸上出现不自然的苍白颜色。论文参考,液相法。利用纳米TiO2的透明性和紫外线吸收能力还可用作食品包装膜、油墨、涂料和塑料填充剂,可以替代有机紫外线吸收剂,用于涂料中可提高涂料耐老化能力。论文参考,液相法。

2.3 防雾及自清洁涂层

TiO2薄膜在光照下具有超亲水性和超永久性[7],因此其具有防雾功能,如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。如果把高层建筑的窗玻璃、陶瓷等这些建材表面涂覆一层氧化钛薄膜,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能[8]。

参考文献:

[1]卓长平,张雄.纳米涂料发展现状[J].上海化工2003 (11):33~ 36.

[2]徐国财,张立德.纳米复合材料[J].北京:化学工业出版社,2002,200(11):5~7.

[3]陈秋月.纳米二氧化钛改性的研究[M].内蒙古石油化工,1998,30 (1):51~53.

[4]Yu J.G.,Zhao X.J. Mater.Res. Bull[M].,2000,35,1293.

[5]WatanabeT.,FukayamaS.,MiyauchiM.,FujishimaA.,HashimotoK.J.Sol.Gel.Sci.Technol,2000,19(3).71-76.

[6]Zhu Y.F.,Zhang L.,WangL.,Tan R.Q.,Cao L.Li Sruf.Interf[M].Anal,2001.32(1).218-220.

[7]陈崧哲,张彭义,祝万鹏.钛、铝和玻璃上TiO2光催化膜的失活研究[M].无机化学学报,2004,20(11):12-65.

纳米化学论文篇12

0 引言

纳米线作为微机械以及纳米机械的基本构件[1],随着微机械以及纳米机械的发展,纳米器件材料各种性能的研究显得非常的重要,在纳观下研究其力学性能也成为器件材料研究的重要组成部分。由于纳米器件表面原子数占总原子数的比例大,使得表面效应对整个结构的力学性能发生了本质的影响,甚至与宏观结构出现很大的差别。因此深入研究纳米线的力学性能显得尤为重要。

对于纳米线的研究还没有完善的实验研究方法,因此分子动力学成为了研究纳米材料的重要手段。目前,国内外对金属纳米线的研究比较多[2~8],并且主要是研究无缺陷的单晶纳米线,而具有一定缺陷的纳米线的研究还很少,研究基于表面效应,且具有缺陷的纳米线的力学性能是十分有意义的。

本文采用分子动力学软件包LAMMPS研究了具有原子缺陷硅纳米线的拉伸性能,得到了其相应的应力-应变曲线,讨论了缺陷对纳米线弹性模量的影响,并研究了温度对纳米线力学性能的影响。

1 分子动力学模拟

势函数的选取直接影响原子间的相互作用力,金属原子之间一般采用Morse势和原子嵌入势(EAM)[9],Si、Ge、C可以采用SW(Stilinger-Weber)势和Tersoff势,本文采用Tersoff势进行模拟, Tersoff[10~11]势可表示为

—————————

(1)

(2)

其中,和分别表示场能和键能,表示原子和原子的距离,,和分别表示对势的吸引项,排斥项和光滑截断函数。

硅单晶为面心立方体结构,x,y,z坐标轴分别对应晶胞的晶向,硅的原子质量取28.0855,晶格常数a=0.543nm,以晶胞为基本单位,建立纳米线模型如图1,共2550个原子,则其实际尺寸为

在此模型的基础上去掉中部区域

(,,)

[ZY1]内的32个原子得到具有缺陷的硅纳米线模型如图2。论文格式,应力-应变曲线。

﹡ 国家自然科学基金(10972075)和高等学校博士学科点专项科研基金(2)资助

图1 无缺陷单晶硅纳米线模型

Fig.1 Defectless silicon nano-wire model

图2 具有缺陷单晶纳米线模型

Fig.2 Defective silicon nano-wire model

[ZY2]采用Velocity-verlet[12]算法对牛顿运动方程进行时间积分,其公式为

(3)

式中,r、v和a分别表示位移、速度和加速度的矢量,为时间步长。

在积分时,步长取为0.005ps,在x,y方向取自由边界条件,z方向取周期边界条件来模拟纳米线,采用Nose-Hoover方法进行等温控制,分别对温度为0.01K和300K时,有缺陷和无缺陷的硅纳米线进行了拉伸模拟。应变率取为0.002/ps,加载应变到0.01之后再弛豫10000步,重复此加载过程直到断裂。

2 计算结果分析

计算中应力采用原子的z向应力的平均值,应变为名义应变,其表达式如下

(4)

其中,n、分别表示原子的个数、原子的z向应力,和分别为变形前和变形后的长度。论文格式,应力-应变曲线。

温度在时,无缺陷与有缺陷纳米线的应力-应变曲线如图3(a)、(b)所示,从图中可以看出无缺陷硅纳米线无明显塑性流动,硅纳米线在应变到达0.238时应力值最大,即11.6Gpa。在此拉伸过程中逐渐出现位错,并且晶格发生变化,但横截面基本保持为方形如图4(a)。随着拉伸的继续,原子晶格发生突变,应力急剧变小,并出现颈缩现象如图4(b)。当应变为0.253时硅纳米线完全断裂如图4(c)所示。

有缺陷硅纳米线的应力-应变曲线的变化趋势与无缺陷的相似,当应变为0.188时,变形如图5(a)所示,应力达到最大值9.4Gpa,即强度减小为无缺陷纳米线的,可知缺陷对其强度的影响非常大。论文格式,应力-应变曲线。因为在缺陷处,会出现应力集中,位错更容易形成。继续拉伸,应力值突然变小,进而在缺陷处出现颈缩现象,如图5(b)所示,从图3(b)可以看出,应力最小值为1.6GPa;再继续拉伸时,将出现单个晶胞被拉伸的现象如图5(c),随应变的增加应力反而增加,最后才完全断裂。

温度在300K时无缺陷和有缺陷纳米线应力-应变曲线如图3(c)、(d),在同样的加载和尺寸时,温度也对硅纳米线的强度有着很大的影响,在300K时硅纳米线的强度大大减小,弹性模量也减小。因为温度高时原子活跃动能增加,因此更易出现位错及晶格变化现象,从而使其强度降低。有缺陷的硅纳米线的断裂同温度在0.1K时的过程大致一样,也容易形成单个晶胞被拉伸的情况。

图3 不同温度下无缺陷与有缺陷硅纳米线

的应力-应变曲线

(a) 无缺陷0.1K时的曲线,(b)有缺陷0.1K时的曲线,(c)无缺陷300K时的曲线,(d)有缺陷时300K时的曲线。

Fig.3 The stress-strain curves of a silicon nano-wireat different temperatures,

(a) Defectless silicon nano-wire at 0.1K, (b)Defectivesilicon nano-wire at 0.1K, (c)Defectless silicon nano-wire at 300K,(d)Defective silicon nano-wire at 300K.

图4无缺陷硅纳米线的变形

(a) 应变为0.238,此时应力值最大,(b) 应变为0.240时,中间段截面发生显著变形,(c) 应变为0.253,即将断裂。

Fig.4 Deformation of a defectless silicon nano-wire

(a) When strain is0.238,stress reaches the maximum, (b) When strain is 0.240, the deformation ofthe middle cross section becomes obvious, (c) When strain is 0.253, the siliconnano-wire is about to fracture.

图5 具有缺陷硅纳米线的变形

(a) 应变为0.195,此时应力值最大,(b) 应变为0.205时,缺陷处截面发生显著变形,(c) 应变为0.225,即将断裂。论文格式,应力-应变曲线。

Fig.5 Deformation of a defective silicon nano-wire

(a) When strain is 0.195, stress reaches the maximum,(b) When strain is 0.205, the deformation of the defective cross sectionbecomes obvious, (c) When strain is 0.225, the silicon nano-wire is about tofracture.

3结论

采用分子动力学研究了有缺陷和缺陷的硅纳米线的拉伸性能,由应力-应变曲线得到无缺陷和有缺陷纳米线的屈服应力分别11.6Gpa和9.4Gpa;由于缺陷的存在,使纳米线的强度降低为无缺陷的79%;在拉伸过程中容易形成单个晶胞被拉伸的现象。论文格式,应力-应变曲线。同时从应力-应变曲线可以看出:硅纳米线无明显的塑性流动,但会出现颈缩现象。论文格式,应力-应变曲线。同时温度升高也会大大降低硅纳米线的屈服应力,对其强度的影响也很显著。

参考文献

[1]ZHU J, Nano Material and Nano Device[M]. Beijing: TsinghuaPublishing Company, 2003.

[2]文玉华,周富信,刘曰武等.纳米晶铜单向拉伸的分子动力学模拟[J]. 力学学报,2002, 34(1):29-36.

纳米化学论文篇13

随着我国研究生教育事业的不断发展,为国家社会经济发展输送了大量的高层次人才。作为高层次人才培养的主要渠道,研究生教育对未来社会发展起着举足轻重的作用。为了提高研究生的培养质量,必须注重研究生的教育创新,探索研究生教学的新方法,加强研究生能力的培养。

一 Seminar学习理论及其特征

1.Seminar教学法的内涵

Seminar教学法起源于18世纪的近代德国。Seminar意为“研究生为研究某问题而与教授共同讨论之班级”,也即“专题讨论会”、“研究班”或“研究班课程”,是一种结合教学活动进行的研习方式或在教学过程中开展学术研究的一种制度。Seminar通常由一名研究专家向学生提出问题或鼓励学生自己发现问题,然后在其指导下进行解决问题的活动。这种制度是以学生探讨为主的双向、多向的交流过程,是充分体现学生主体地位的教学模式。一节典型的Seminar实施的课堂一般由主持人介绍、主题报告宣讲、回应人发言、限时辩论与交流、总结与评点五部分组成。

2.Seminar教学法的主要特征

第一,教学与科研的统一。教学与科研的统一是Seminar的重要特征,教学与科研的结合在Seminar中得到充分、完美的结合。在Seminar中,教授与研究生完全改变了传统教学中的师生关系,因为教学是一个追求真理的过程,必须通过教授与研究生的研究探讨,逐步接近真理。对于选中的具体专题,教授与研究生必须明确关于这个专题前人已有的研究成果;前人已有成果的理论背景;这些理论成果有什么现实意义;如何利用别人的成果进行新的探索。这样就很好地把教学与科研完美地结合在一起,教学的过程同时也是师生共同研究的过程,二者紧密结合,不可分割。

第二,强调研究生科研能力的培养。Seminar注重研究生独立科研能力的培养。在Seminar中,教授不再以告知的方式灌输知识,转而重视研究生的独立研究及思考能力;对于每一个由研究生和教授共同确定的专题,研究生必须花费大量时间搜集资料,然后对资料进行分析整理,对前人的成果进行反思,最后提出自己的观点。这一过程是研究生独立研究的过程,可以更好地培养研究生独立学习和科研的能力,只有在研究生出现问题的时候教授才做适当的指导。

第三,注重研究生的互动与合作,师生关系平等融洽。Seminar是以小组讲座的形式进行的,这种形式为研究生的交流合作提供了多向互动的平台,它可以全方位地调动小组成员的参与热情,在激烈的探讨中激发小组成员对于问题的不同见解,促进研究生发散性思维的形成,从而激发研究生对此类问题的连锁反应,形成良好的探讨氛围。在探讨的过程中,由于教授不是以权威方式作用在讨论过程中,因此Seminar成员之间具有平等合作的基础。Seminar为研究生之间的互动提供了必要的平台,在互动过程中小组成员之间思想的碰撞就可能形成多样的解释,而每一种思想都有它独到的价值。Seminar为参与者提供了合作空间,它将合作精神引入学习生涯,有利于实现和强化合作思想。在Seminar中教授主要的作用在于控制课堂的进程,对小组成员间的讨论做进一步的指导,并最终在讨论结束后进行总结,在这一过程中,师生之间是平等的、协商的关系。

二 纳米表面工程课程

1.课程基本情况

纳米表面工程是装甲兵工程学院硕士、博士研究生材料科学与工程专业的一门专业基础课程,在第一学期开设,学时为40课时。

通过课程学习,主要使学生了解纳米表面工程研究现状及其在民用工业和武器装备中的应用,熟悉纳米颗粒材料表面改性常用的技术方法,熟悉材料表面纳米薄膜、纳米复合涂层、纳米结构涂层等纳米涂覆层的分析和表征方法,了解各种纳米表面工程技术,重点掌握纳米硬膜技术、微/纳米热喷涂技术、纳米复合镀技术、纳米技术、纳米自修复技术等装备中已经取得成功应用的纳米表面工程技术,掌握纳米表面工程技术设计的基本原则,能够针对装备维修和再制造问题设计和选择纳米表面工程技术。

2.课程教学特点

从纳米表面工程的教学内容来看,作为一门专业基础课程,具有如下特点:

第一,涵盖内容广泛。纳米表面工程的教学内容涉及的学科专业知识如图1所示。由图1可知,纳米表面工程所涵盖的学科专业知识十分广泛。由于研究生入学前的知识结构各不相同,学习基础不一,因此学习本门课程只能针对研究生阶段的研究方向有重点地学习。而对于一名授课教师教授如此广泛的专业知识,也有很大的难度。

第二,各章教学内容相对独立,自成体系。由图1可以看出,《纳米表面工程》课程的教学内容建立在纳米材料特性及制备技术、分析技术等知识基础上,由相对独立的纳米硬膜技术、纳米热喷涂技术、纳米复合镀技术、纳米固体技术、纳米粘接技术、纳米复合功能涂料技术、金属表面自身纳米化技术等所组成。每种技术自成体系,有相对完善的理论知识、研究方法和研究成果。

三 Seminar理论在纳米表面工程课程教学中的应用

为充分培养研究生的自学能力和创新能力,我们提倡将教学过程分为课堂教学和课题研究两个部分。课堂教学主要以教师讲授、学生研究报告和课堂讨论为主,主要在课堂内进行。课题研究主要以学生分组展开与课程相关课题研究为主。教师选择课程相关领域前沿研究的热点问题,组织学生展开讨论,并选择若干具体的方向组织学生展开研究,课题研究主要在课外进行。纳米表面工程课程Seminar组织过程如图2所示。

这种激发学生主观能动性的教学过程,一方面要求研究生课前进行广泛的阅读和认真的准备;另一方面主要通过讨论、专题研讨等方式培养学生的创造性思维,在课堂上锻炼学生的自学能力、创新能力和表达能力。

下面以纳米表面工程中的纳米复合镀技术一章的Seminar交流教学过程进行说明。

1.交流内容调研

一般而言,调研内容分为基础理论调研、国内外研究进展调研、目前存在的问题或需要改进的内容调研、应用情况调研等。

第一,基础理论调研。基础理论是本次交流内容的理论基础,应该简要介绍,而且要深入浅出。就纳米复合镀技术一章而言,所涉及的基础理论包括电化学理论、电镀理论、复合镀理论、化学镀理论等基础理论,结合纳米技术的发展进行总结和梳理。

第二,国内外研究进展调研。介绍国内外相关技术的研究发展历程及最新研究进展,通过这方面的介绍,使参加交流人员对交流内容有一个全面的认识。纳米复合镀交流内容调研流程图如图3所示。

第三,目前存在的问题或需要改进的内容调研。对于交流内容中所存在的问题,交流者应该进行总结,并进行客观的表述。这部分内容也是后续交流环节的主要内容,应该列为重点,也是准备工作的难点所在。

第四,应用情况调研。纳米表面工程这门课程与工程应用结合十分紧密,其发展也是以工程应用为背景和牵引进行的。因此,对于课程中涉及的每种技术都要结合工程应用情况进行详细介绍,不要让理论变为空中楼阁。

2.交流PPT内容制作

在交流PPT内容制作方面,主张以课本内容为主线,同时加入调研内容和自己的见解。一些对交流内容比较熟悉的学生,可以根据自己的理解进行内容安排。

3.交流与讨论

第一,汇报时间。一般而言,每次交流汇报时间安排为2课时。其中汇报时间应该控制在30~50分钟。时间过短,不利于深入分析知识点;时间太长则不能为交流提供充分的讨论时间。

第二,讨论方式。讨论方式可以分为两种。一种是边交流边讨论。此种讨论方式解决问题的时效性较强,不会出现遗忘情况。另一种是汇报完毕后集中讨论。这种讨论交流方式会增强问题的针对性和系统性,也会引起讨论的广泛性。

在组织过程中,教师可以针对情况灵活选取,以提高教学效果。

4.内容完善与再交流

根据讨论情况,汇报者要进行总结,课下针对建议内容进行再调研、再学习、再总结,教师可酌情组织简短的课上交流或课下交流,确保讨论问题得到有效解决。

在纳米复合镀一章教学中,讨论的问题主要有:(1)“纳米复合镀技术”的定义;(2)纳米材料在镀液中的应用与表征方法;(3)纳米颗粒在镀层中的强化机理。

针对以上讨论比较热烈的问题,教师主要明确以下几个问题:(1)定义、理论、论据的确切参考文献;(2)参与讨论的论点的科学性与正确性;(3)对交流内容提出改进意见和建议。

5.教学效果

该教学法已经在3轮博士、硕士研究生课程中进行了试点改革。在2013级博士教学过程中,对参与教学的7名博士研究生进行了问卷调查。结果如图5所示。7名博士生中,有6人认为该种教学方式有利于所学知识的巩固;6人认为能够开阔思路,通过讨论他人研究成果中出现的问题和失误,指导自己今后的课题研究工作;所有人都认为通过该课程教学掌握了更多有效的科研工作方法。

四 小结

通过Seminar课堂教学实践,主要有如下心得体会:

第一,Seminar教学法比较适合研究生课程尤其是公共基础课程的教学。参与讨论的学生可以找到较多的共鸣点,容易引发讨论。

第二,Seminar教学法的实施离不开细致全面的准备。尽管准备工作并不是课堂教学的一个部分,但是准备工作的作用是不能忽视的,它能够直接影响课堂教学的顺利推进。前期准备工作做得认真仔细的学生,在课堂讨论的时候占据了比较大的优势,陈述也更加全面,辩驳更加有力。

第三,教师实施Seminar教学法的时候需要做好以下几个方面的工作。一是要制定一个全面的教学计划。二是在汇总整理材料的时候要认真分析。三是教师在开场介绍的时候要平铺直述,不做任何评价、不带任何观点,避免由于教师的主观好恶对参与者造成心理影响,影响学生的自我判断。同时,教师应该鼓励学生尽可能多地提出怀疑和反对意见,在讨论过程中为意见的交锋创造良好的气氛。四是要善于引导学生,驾驭整个课堂。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读