欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

纳米科技论文实用13篇

纳米科技论文
纳米科技论文篇1

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

II.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。

IV.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

纳米科技论文篇2

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

II.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。

IV.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

纳米科技论文篇3

牙科复合树脂的填料绝非单一种类、单一粒径的材料,而是具有一定分布梯度,且不同种类粒子相互配合的系统。牙科复合树脂所含的填料能增加机械强度,降低热膨胀系数和聚合热,其粒度、粒度分布、折光指数、所占体积百分比、X线阻射性及硬度、强度等都会对材料的性能及临床表现产生影响。目前,颗粒型陶瓷粉或玻璃粉是主要的填料类型,纤维(晶须)填料的研究和应用也有报道,但相比前者较少。应用理化性能更加优良的填料来增强机械性能是发展的方向。已用于增强牙科复合树脂的纳米颗粒包括纳米二氧化硅[1]、纳米金刚石[2~4]、纳米氧化锆[5]、纳米氮化硅[6]、纳米羟基磷灰石[7],纳米氧化钛[8]、纳米三氧化二铝[9]等。这类纳米填料的研究较多,且大多数牙科产品厂家都有自己品牌的纳米树脂问世。纳米纤维增强如纳米碳管、短纤维和晶须是目前许多学者所提出的复合树脂填料的新成员,都被用于牙科复合树脂的增强和性能改善,但基本都处于基础研究之中,而尚未应用于临床阶段。这里所讲的纳米纤维增强复合树脂,是指以纳米纤维为另一类填料与颗粒填料共同增强的口腔充填用复合树脂材料,所以这类材料中含颗粒与纤维两种填料。口腔临床中使用的还有一类单纯使用的纤维增强树脂基(多为环氧树脂基)材料,典型的产品为牙体加强用的纤维桩。文章主要讨论前者目前在口腔中的研究现状。有学者为了更加明确研究目的和可能机理,也会以环氧树脂为基体或只加入纤维填料进行研究。碳化硅晶须和氮化硅晶须是近年来研究较多的用于牙科复合树脂的晶须种类。其他增强牙科复合树脂表面硬度和断裂强度的纤维(晶须)包括氧化锌晶须、钛酸钾晶须、硅酸盐晶须、硼酸铝晶须、尼龙纤维、碳纳米管等。

纳米技术降低牙科复合树脂的聚合收缩

Condon等用不含甲基丙烯酸功能化的硅烷代替含有甲基丙烯酸功能化的硅烷对二氧化硅纳米颗粒表面进行处理,获得无粘接性的纳米颗粒将其添加到复合树脂中,发现其具有与气孔相似的效果,分布于树脂基质中的纳米填料通过局部塑性形成应力释放点,可以有效地降低聚合收缩[10]。Condon在另外的研究中用非粘接性的纳米填料、粘接性的纳米填料和无被膜填料来降低聚合应力。研究表明,纳米填料添加到杂化型复合树脂可以有效降低聚合应力(降低31%),在一定的体积含量水平(10%),非粘接性纳米填料具有更好的降低应力作用,在只含有纳米填料的复合树脂,亦具有相同的效果[11]。八面的倍半硅氧烷,是具有直径0.53nm的纳米笼结构,是一个轻量级、高性能的混合材料,其结构通式为(RSiO1.5)8。SSQ聚合物显示出优良的介电和光学性质,并已广泛应用,如在应用程序中的光致抗蚀剂、耐磨涂层、液晶显示元件、电子电路板的绝缘涂层和光纤涂料等。SohMS等将SSQ加入复合树脂中制成符合材料,SSQ可以显著降低树脂的聚合收缩量,并同时增加树脂的硬度和弹性模量[12]。Garoushi等将半互穿聚合物网络加入由玻璃纤维增强的复合树脂,发现复合物的聚合收缩率下降[13]。此后,又将纳米SiO2颗粒加入上述复合物中,除了发现加入纳米粒子后可使聚合收缩降低外,他们还发现聚合收缩的降低与纳米粒子的添加量和聚合温度相关[14]。

添加纳米材料增强复合树脂的抗菌性能

体内外实验表明,复合树脂比其他充填材料更易引起菌斑沉积,因而更易引起继发龋。继发龋也是临床中复合树脂充填失败的重要原因之一。因此,如果能将抗菌剂加入复合树脂中,使其具有缓和持久的抗菌性能,将非常有利于其性能的提高。BeythN等将季铵盐聚乙烯纳米粒子以低浓度(1%)添加到复合树脂中,发现在不影响其机械性能的基础上可以保持1月以上的抗菌性能[15]。Jia等将Ag+、Ag+/Zn2+吸附到纳米SiO2表面,添加到复合树脂中,发现对大肠杆菌和S.粪菌都具有良好的抗菌性能,而且后者的效果更好,抗菌效果随接触时间延长和添加剂量增加而增强[16]。Xu等将熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐加入牙科复合树脂中已达到自修复的目的[17,18]。四针状氧化锌晶须具有抗菌的作用。宋欣等将四针状氧化锌晶须加入复合树脂中,发现其在提高树脂机械性能的同时也能赋予复合树脂材料较强的抗菌作用,是制备抗菌性复合树脂的较优选择[19]。Niu等也将其加入复合树脂中,以使复合树脂获得抗菌性能和增强的机械性能[20]。Chae等将纳米银颗粒加入聚丙烯腈中并用电纺技术制成纳米纤维,以使所制备的纤维具有抗菌性能[21]。

纳米技术对牙科复合树脂机械性能的改善

1纳米颗粒增强牙科复合树脂

钟玉修、倪龙兴等将纳米金刚石作为填料加入复合树脂中,并对其性能进行了一系列的研究,认为适当比例的金刚石填料可以提高复合树脂的机械性能[2,3]。胡晓刚等将纳米金刚石用硅烷偶联剂进行表面改性后添加到复合树脂中,发现改性金刚石的增强作用明显优于未经改性的金刚石,同时金刚石的加入也改善了树脂的韧性[4]。王君等将纳米氮化硅加入复合树脂并用紫外光照进行固化处理,发现纳米氮化硅含量为1%时,体积收缩率仅为4.92%,而拉伸强度增加了近100%[6]。王云等将经过硅烷偶联剂KH-570进行表面处理后的纳米羟基磷灰石加入树脂基质中,研制出能够达到临床要求的修复性纳米羟基磷灰石复合材料,并检测其机械物理强度[7]。笔者研究组曾将纳米TiO2粒子在表面处理后加入复合树脂中,制备纳米复合树脂,并根据国际标准化组织标准测试其力学性能,发现表面处理增强了纳米TiO2与复合树脂基质的相容性,添加表面处理后的纳米TiO2粒子对树脂起到增强增韧作用[8]。目前各大牙科产品厂商几乎都研制出自己品牌的纳米树脂,所加入的纳米级填料以纳米二氧化硅为主,如3MFiltekSupreme系列、Dentsply的ceramX、Heraeus的VenusDiamond系列、Kerr的HerculitePrécis、Bisco的Reflexion、Pentron的ArtisterNanoComposite。但也有例外的,如IvoclarVivadent的IPSEmpressDirect用的是纳米氟化镱。这些经过纳米技术改良的复合树脂,厂家都宣称具有更好的强度、耐磨性、可抛光性、更低的聚合收缩率以及更好的美学性能。

2纳米纤维(晶须)增强牙科复合树脂

纳米科技论文篇4

纳米磁性液体在旋转轴中的应用

一般而言,对于静态的密封比较容易解决,通常可以采用塑料、金属、橡胶等材料制作的O型环当做密封的元件,将其密封。但对于动态的密封,特别是旋转条件下的密封则一直没有好的解决方式。在高速、高真空条件下一般不能进行动态密封,而纳米磁性液体则带来了一种新的解决方式。纳米技术对磁性液体在旋转轴中的应用取得了很大的促进作用。我国南京大学已经成功进行了多种磁性液体的制成,比如硅油、水基、烷基、二脂基等。而在磁性液体的应用方面,电子计算机的硬盘在防尘密封方面就普遍采用了磁性液体。而在剂的制造方面,对新型剂的制造也起到了较大的促进作用。

纳米科技论文篇5

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

二、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

三、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

四、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

纳米科技论文篇6

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

纳米科技论文篇7

在2009年9月号的《欧洲呼吸杂志》(European Respiratory Journal)上,首都医科大学附属朝阳医院(下称朝阳医院)医生宋玉果及其同事发表研究论文称,上述女工“所患的可能是‘一种与纳米材料有关的疾病’”。

这大概是全球首宗关于纳米颗粒可能致命的临床毒理病例报告。论文的发表,在国际学术界引发了一场小型“地震”。无论那些与纳米技术有关的学术会议,还是科学新闻网站和科学家博客,中国女工之死和纳米安全都是激烈争论的话题。

喷涂车间悲剧

从研究论文披露的情况看,七位女工的年龄在18岁至47岁之间,平均不到30岁,在车间工作的时间从5个月至13个月不等。患病之前,她们的身体健康状况良好。

2007年1月至2008年4月期间,这几位女工被送到朝阳医院职业病与中毒科救治。这个科室专业水准较高,其医生经常被派往中国各个地方,协助处理血铅超标、重金属污染等职业安全事件。

女工们的症状比较类似。所有病人的肺部都受到严重损害,并且有胸腔积液,脸上、手上和胳膊也都出现了严重的瘙痒皮疹。其中,有四位女工体内的器官组织还面临缺血缺氧的危险。

无论对于患者,还是对于医生,治疗过程都令人煎熬。胸腔积液反复出现,常用的治疗方法均告失效。

最终,一名19岁的病人在接受外科手术16天之后去世;另外一名29岁的病人在症状出现后的第21个月,死于呼吸衰竭。

负责诊断和治疗这些女工的,是朝阳医院职业病与中毒科副主任医师宋玉果。根据医院网站的介绍,他多年来从事尘肺、有毒化学物中毒的诊治和临床研究。

宋玉果及其同事开始追究女工们患病的原因,并将嫌疑对象锁定为那个印刷厂车间的工作环境。

该车间所使用的原料是一种象牙白色的聚合物材料――聚丙烯酸酯混合物。聚丙烯酸酯作为一种黏合剂,广泛运用于建筑、印刷和装修材料中,被认为毒性很低。不过,为了让材料更加结实和耐磨,制造商有时会加入硅、锌氧化物、二氧化钛等金属纳米颗粒。

1纳米等于1米的十亿分之一,大致相当于人头发丝直径的数万分之一。通常,粒径在100纳米以下的材料,均被称为纳米材料。

七名女工和一名男工被分为两组,每天工作8个至12个小时。工人们每天要将大约6000克聚丙烯酸酯混合物,用勺子涂到机器的底盘上;这些混合物随即被高压喷射装置喷涂在聚苯乙烯材质的有机玻璃板上;然后,有机玻璃板在75摄氏度至100摄氏度的温度下被加热烘干。

车间只有一扇门,没有窗户。喷射装置附带有一个燃气排气口,对喷涂过程中产生的烟雾起到一定的排除作用。

女工们发病以后,来自中国疾病预防控制中心、北京疾病预防控制中心、当地疾病预防控制中心的流行病学专家,以及朝阳医院的医生,对这家印刷厂的工作环境进行了调查。

在喷射装置燃气排气口的吸气口中,专家们找到了累积的尘埃粒子。女工们发病前五个月,燃气排气口发生了故障。由于室外温度很低,车间的门也经常被关闭。专家们推断,在这期间,车间内的空气流动非常缓慢甚至处于静止。

这些工人都是工厂附近的农民,没有任何职业安全卫生知识。她们所得到的惟一用来保护自己的工具,就是棉纱口罩。而且,她们工作时只是偶尔戴戴。

据工人们反映,在喷涂过程中,经常会有一些原料喷溅到他们的脸上和胳膊上。惟一的一名男性工人在工作三个多月后离开,并没有显示出任何症状。在其他车间工作的工人,其中包括女工们的亲属,也没有出现类似症状。

研究论文没有透露这家印刷厂的名称及其所在地区。在朝阳医院的办公室,宋玉果也谢绝了《财经》记者的采访。

女工之死谜团

在女工们的肺部和胸液中,均发现了直径约30纳米的颗粒。而这般尺寸和形态的颗粒,同样存在于她们接触的喷涂材料之中。

此外,女工们出现了罕见的非特异性间质性肺炎,以及奇特的肺部增生组织――异物肉芽肿等症状。这些症状与纳米材料毒理的动物实验结果相似。

宋玉果及其同事因此认为,很可能是纳米颗粒导致这些女工发病甚至死亡。

但不少专家对这一结论持有保留态度。

9月1日至3日,在北京举行的中国国际纳米科技会议上,多位专家提及宋玉果及其同事的论文。

美国纳米健康联盟(Alliance for NanoHealth)主席、得克萨斯大学医学中心教授毛罗法・拉利(Mauro Ferrari)告诉《财经》记者,这篇论文非常重要,但他不认同作者关于纳米颗粒导致工人患病和死亡的分析。

法拉利说,要确定纳米颗粒与疾病之间的关系,首先应该分析纳米颗粒的组分,确认这些颗粒来自工作环境;即便病人肺部的纳米颗粒来自工作环境,在没有对照试验的情况下,也很难证明这些纳米颗粒一定是女工患病的罪魁祸首。

他还强调,这家印刷厂的工作环境恶劣而封闭,有毒化学品和气体充斥其中,工人们又没有好的保护措施。这些因素对于工人患病和死亡究竟有怎样的作用,都值得推敲。

对于论文中的一个推论――纳米颗粒进入工人身体的途径是吸入和皮肤接触,中国科学院纳米生物效应与安全性重点实验室主任赵宇亮表示,这并不总是正确的。他强调,通过吸入方式进人体内是可能的,但是纳米颗粒穿过皮肤直接进入生物体内的证据还很少。

美国麻省大学洛厄尔分校健康与环境学院助理教授迪米特尔・贝罗(Dhimiter Bello)因故取消了行程,未能到北京参加此次学术会议。但他通过电邮对《财经》记者说,在工人肺部和工作环境中都发现纳米颗粒,只能说明纳米颗粒有可能是一个致病因素。实际上,从论文提供的信息来看,并不能排除其他的可能致病因素。例如,喷涂过程中用到的聚合物材料在高温下的降解产物,也可能是主要或者惟一造成女工患病的原因。

在贝罗看来,这场悲剧或许不应归咎于纳米颗粒,而应怪罪车间内原始的、不人道的工作条件,“这是一次警醒,无论(悲剧)是否与纳米颗粒相关,工作场所的暴露条件都应当被控制在安全范围内。在这方面,中国还有很长的路要走。”

美国加州大学洛杉矶分校纳米毒理研究中心主任安德烈・内奥教授(Andre Nel)也说,在这起事件中,工人们没有得到应有的生产安全保障,政府部门应该负起监督的责任,以保证生产过程中不会产生对人体和环境有害的物质。

实际上,论文本身也承认了研究存在局限:由于缺乏环境监测数据,无法弄清印刷厂车间纳米颗粒的浓度;纳米颗粒的组成也不清楚。

此外,令宋玉果及其同事疑惑的是,究竟是特定的纳米颗粒,还是所有纳米颗粒都有可能致病?如果的确是纳米颗粒导致那些女工患病,对其他在工作中也会接触纳米颗粒的工人来说,又意味着什么?

如今,关于女工之死的研究论文已经成为了纳米技术研究者们的一个热点话题。据《财经》记者了解,欧洲和美国还有科学家打算组成一个专家小组,到中国开展调研,并希望取到样品回去研究。

诱人前景与安全隐患

不管纳米颗粒是否被确认为几位女工悲惨命运的元凶,纳米技术的安全性问题都因此再度引发各界关注。

纳米技术正在走进人们的生活。从一桶涂料、一瓶防晒霜到一件衣服,都有可能用到纳米技术。

纳米材料颗粒小、表面积巨大,会显示出很多独特的物理化学性质,从而在电子、光学、磁学、能源化工、生物医学、环境保护等领域有巨大的应用前景。例如,很多纳米材料都可用作涂料,替代那些强毒性的化学物质;用碳纳米管等纳米材料改良电池,可以推动电动汽车的发展,使电力更持久等。

纽约一家名为“卢克斯研究”的市场分析公司称,2007年销售的纳米技术相关产品,价值约1470亿美元。到2015年,这一数字可能突破3万亿美元。

纳米技术在展现出诱人前景的同时,其安全性问题也进入了人们的视野。

随着纳米材料的大规模应用,研究人员和工人容易暴露在纳米颗粒浓度较大的实验室或生产车间之中。此外,普通公众也可能暴露在纳米颗粒之下:涂料、化妆品等产品中用到的纳米材料,可能在产品损坏或分解时释放。

这些纳米颗粒物可能经过呼吸道吸入、胃肠道摄入、药物注射等方式进入人体,并经过淋巴和血液循环,转运到全身各个器官。

根据多项流行病学研究,空气中的细颗粒物,尤其是纳米级别的颗粒物,浓度的大量增加会导致死亡率的增加。伦敦大雾曾经导致居民大量死亡,就是一个被经常引用的案例。

那么,人造的纳米材料进入人体后,是否会导致特殊的生物效应,并对人体健康构成危害呢?从理论上说,纳米物质由于尺寸小,与常规物质相比更容易透过人体的各道屏障;由于表面积大,也可能有更多毒害人体的方式。

朝阳医院的宋玉果在8月31日《健康报》发表文章说,相关的动物实验研究发现,许多纳米物质具有明显的毒性,其中研究较多的为碳纳米管、纳米二氧化钛等。一些纳米物质还被认为可致动物肺脏、肝脏、肾脏和血液系统等损伤。

对于与纳米物质相关的疾病,宋玉果称之为“纳米相关物质疾病”。当然,他也表示,公众不必为纳米物质相关疾病感到恐慌,不是所有纳米颗粒物都有毒性。

动物毒理性实验的结果,也不能简单地推到人的身上。但由于科学界对纳米安全性的研究刚刚开始,几乎没有任何相关人体毒理性资料――这也是宋玉果及其同事的论文引起国际科学界高度关注的一个原因。

中国科学院纳米生物效应与安全性重点实验室主任赵宇亮告诉《财经》记者,目前开展过安全性研究的纳米材料只有十几种,还非常有限。但他相信,随着研究队伍的壮大和研究投入的加大,将来必定可以从大量的数据积累中寻找到一些规律。

在国际上,纳米安全性研究的热潮大约始于2003年。《科学》和《自然》等著名学术杂志纷纷发表文章,探讨纳米材料与纳米技术的安全问题:纳米颗粒对人体健康、自然环境和社会安全等是否有潜在的负面影响。

这之后,各国明显增加了纳米安全性方面的研究。美国的国家纳米技术计划(NNI)将总预算的11%投入纳米健康与环境研究。欧盟每年支持三个左右与此相关的项目,每个项目的经费规模在300万至500万欧元之间,而欧盟各个国家还有自己国内支持的纳米安全性项目。

中国在极力推进纳米技术研究和产业化的同时,也开展了纳米安全性的研究。其中,中国科学院在2001年就开始筹建纳米生物效应与安全性实验室。科技部在2006年启动了为期五年的国家重点基础研究发展计划(即“973”计划)项目“人造纳米材料的生物安全性研究及解决方案探索”,经费2500万元,首席科学家由赵宇亮担任。

不过,赵宇亮告诉《财经》记者,与美国和欧盟相比,中国在纳米安全性研究上的投入只是“一个零头”。

政治决策与公共参与

中国科学家在纳米安全性方面的研究工作,得到了国际同行的认可。其中,在每年召开的与纳米毒理学相关的国际会议上,几乎都会邀请中国科学家作大会报告。赵宇亮还与其他科学家共同主编了第一本纳米毒理学英文专著。美国纳米健康联盟主席法拉利称,中国科学家是纳米毒理学研究领域的领导者之一。

不过,令赵宇亮感到尴尬的是,美国国家纳米技术协调办公室的官员曾经问他,包括美国、欧盟、英国、日本等很多国家的相关管理部门,都发表了对于纳米技术安全性的调研报告、方针和策略,为什么中国没有?对此,赵宇亮不知如何回答是好。

在美国和欧盟,纳米技术及其安全性已经成为政治家们关心的话题之一。它们的环保部门、国家科学与技术委员会,以及其他政府研究机构,会通过白皮书等文件形式,发表政府层面对于纳米安全性问题的见解。

其中,2001年,美国在国家科学技术委员会之下建立了国家纳米技术协调办公室,负责协调政府层面之间的纳米研究计划。而纳米研究项目的成果,会通过这个办公室反馈给其他政府机构,帮助科学研究去影响政府决策。

2009年3月,美国食品药品监督管理局(FDA)还了一份有关纳米技术的合作倡议。该局将与纳米健康联盟旗下的八个研究机构合作,以加快建立保障纳米医疗产品安全可靠的有效体系。法拉利告诉《财经》记者,在实验室研究结果与安全性评估的关联,以及纳米技术相关药物的审批等方面,美国食品药品监督管理局都做了很多工作。

相比之下,纳米安全性在中国似乎局限于科学研究的阶段,政府部门仍然保持沉默。

对于纳米技术的研究和产业化,各国都在积极支持。其原因正如美国《环境健康展望》杂志所称,科学界普遍认为,纳米材料和纳米技术对于社会是十分有益的,能够提供更好的药物、更强更轻的产品、对环境更友好的能源和环境技术。

与此同时,为了获得公众对于纳米技术发展的支持,各国也需要在纳米安全性方面进行更多的研究,同时鼓励公众参与。在中国纳米国际科技会议的闭幕式上,法拉利也特地呼吁加大公众在纳米安全性研究上的参与程度。

实际上,关于纳米技术发展的“风险预防”原则,在欧洲和美国等地正深入人心――人们希望在纳米技术等新技术的风险出现之前,尽可能地提前进行防范和干预。而公众及早参与到纳米技术研究和政策的讨论,是“风险预防”实践的关键环节之一。

纳米科技论文篇8

1 概述

纳米科学技术(nano scale science and technology)作为新兴的学科[1],在人类社会进入世纪之交的关键转变年代,在世界范围兴起,发展迅速,前景诱人,国际竞争已经开始。人类对自然世界的认识始于宏观物体,又逐渐认识到原子,分子等微观粒子,然而对纳米微粒却缺乏深入的研究[2]。原子是自然界的基本组成单元,原子的不同排列方式使自然界物种丰富多样化。1959年,著名的物理学家诺贝尔物理学奖得主查德・费曼说:“如果有一天可以按人的意志安排一个原子,将会产生怎样的奇迹。”纳米科技则使人们能够直接利用原子、分子制备出包含原子的纳米微粒,并把它作为基本构成单元,适当排列成一维的量子线,二维的量子面,三维的纳米固体。纳米材料有一般固体都不具备的优良特性,所以有着广阔的应用前景。钱学森指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将引起21世纪又一次产业革命。” [3]

1.1 基本概念

纳米(Nanometer)又称毫微米,是一种长度单位。1纳米等于10-9m(十亿分之一米)。上田良二教授于1984年从测试的角度给纳米微粒下了一个定义:用电子显微镜(TEM)能看到的微粒称为纳米微粒[4]。纳米技术是1974年在东京由日本精密工程学会(JSPE)和国际生产工程研究学会(CIRP)联合主持的会议上由日本东京科学大学机械工程教授谷口纪男提出的[5]。纳米科技(Nanost)是一门在0.1nm~100nm范围内对物质和生命进行研究应用的科学。这是一种介观区域(宏观和微观之间的连接区域)进行开发研究的新技术。它使人类认识和改造物质世界的手段和能力延伸到分子和原子。纳米科技涉及到物理学、数学、化学、生物学、机械学、信息科学、材料科学、微电子学等众多学科以及计算机技术,电真空技术,扫描隧道显微镜及加工技术,等离子体技术和核分析等各种技术领域,是一门综合性的新兴科学技术。

1.2 纳米科技的发展历史

纳米科技是20世纪科技领域重要突破它的发展经历了孕育萌芽阶段,探索研究阶段和应用开发阶段3个时期。

1)孕育萌芽阶段。费曼设想在原子和分子水平上操纵和控制物质。1860年,胶体化学诞生之日,对粒径约(1~100)nm的胶体粒子开始研究,但由于受研究手段限制,发展缓慢;

2)探索研究阶段。30年后,1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩召开,同年《纳米生物学》和《纳米科技》专业刊物相继问世。这标志着一门崭新的科学技术-纳米科学技术,在经过30年的曲折道路,终于诞生了。费曼的美妙设想成为现实了[6];

(3)应用阶段。1993年,开始进入蓬勃的发展时期,20世纪末获得许多成果,达到预期目标可能还要经历10~20年的努力。

1.3 纳米固体的基本特征

纳米固体的重要特征,决定了纳米科技具有划时代意义。这些特性有如下4个方面[6] :

1)表面与界面效应。纳米微粒尺寸小,表面积大,所以位于表面的原子比例相对增多。尺寸与表面原子数的关系见表1。当物质粒径小于10nm,将迅速增加表面原子的比例,当粒径降到1nm时,原子几乎全部集中到纳米粒子的表面。由于表面原子数增多,使得这些原子易与其它原子相结合而稳定,具有很高化学活性,表面吸附能力强,扩散系数增大,塑性和韧性都大大提高;

表1纳米微粒尺寸与表面原子数的关系

2)小尺寸效应。当纳米微粒的尺寸与光波的波长相当或更小时,周期性的边界条件将被破坏,电,光,磁,声,热力学等特征均会出现小尺寸效应;

3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。宏观量子隧道效应的研究对基础研究及应用都有重要的意义;

4)量子尺寸效应。量子尺寸效应是指当粒子尺寸下降到最低值时,费米能级附近的电子能级变为离散能级的现象。而当颗粒中所含原子数随着尺寸减小而降低时,费米能级附近的电子能级将由准连续态分裂为分立能级。当能级间距大于静磁能,磁能,热能,静电能,超导态或光子能量的凝聚能时,就导致纳米微粒磁,热,声,光,电以及超导电性与宏观特征显著不同,称为“量子尺寸效应”。例如导电的金属在超细微粒时可以是绝缘的。

表面界面效应,小尺寸效应,宏观量子隧道效应和量子尺寸效应是纳米微粒与纳米固体的基本特征,它使纳米微粒和纳米固体呈现出许多不同的物化性质。

2 纳米科学研究的分析手段

具有原子分辨率的扫描隧道显微镜(STM),高分辨透射电镜(HRTEM),和原子力显微镜(AFM)等手段[7-9]能直接观察出纳米固体,纳米微粒,和纳米结构特征。

1)扫描隧道显微镜(STM)

扫描隧道显微镜(STM)具有原子级的空间分辨率。主要描绘表面三维的原子结构图。主要用于导电纳米矿物原子级的空间分辨率研究 ,如金属硫化物研究。

2)高分辩透射电镜(HRTEM)

高分辩透射电镜(HRTEM)空间分辨率可达0.1nm~0.2nm。主要用于各种矿物纳米级的成分,形貌,结构的综合研究。如金属硫化物,硅酸盐矿物,矿物中的出溶物以及胶体矿物研究。

3)原子力显微镜(AFM)

以扫描隧道显微镜(STM)为基础发展起来的原子力显微镜(AFM)

能探测针尖和样品之间的相互作用力,达到纳米级的空间分辨率。为了获得绝缘材料原子图像,又出现了原子力显微镜。AFM主要是用于非导电纳米矿物原子级的空间分辨率研究。如硅酸盐矿物,胶体矿物等研究。在纳米材料方面主要是观察纳米材料物质等在矿物物质表面的吸附和沉积,以及天然纳米微粒形状。

3 纳米科技理论在地学上的应用

纳米科技与地学的结合形成了以下3种学科纳米地球化学,纳米矿床学和纳米矿物学。

3.1纳米地球化学

纳米地球化学就是研究地球中纳米微粒分布,分配,集中,分散,迁移规律,以及由纳米微粒的分布及组合特征反映断裂活动,探测石油,天然气,金属矿床等。纳米物质使元素具有新的地球化学活性和新的成岩成矿模式:传统观念认为,温度越高,化学活性越大,元素的迁移能力越强,反之活性就越小,越不容易迁移。为此,作为化学性质很不活泼的金,在较低温度下,理应活性很小,溶解度偏低,很难迁移成矿。事实上却与纳米金的地球化学行为相矛盾。但如果从纳米科技理论的角度考虑,就不难理解了。纳米科技理论认为,当物质的粒度达到纳米级时,由于颗粒极其细小,表面积很大,例如SiO2,其粒径从36nm减少到7nm时,其比表面积由75增加到360m2/g[10]。巨大的表面积使大量的原子处在表面,使元素的化学反应速度和扩散速度增加很多,吸附能力增强,熔点变低,物化性质发生改变。成岩成矿温度低,因而使元素具有低温活性。粒度越小,活性越大。这使纳米级的物质具有成分相同的可见颗粒所没有的特性。产生新的地球化学活性和新的成岩成矿模式。对稀有元素,活性性质不活泼的元素,分散元素和在水中溶解度极低的元素,在低温条件下成岩成矿作用有了不同的解释思路。

3.2 纳米矿床学

相同成分的纳米微粒不同的物化性特性已使地质学家对矿床学理论中有关矿质运移,富集过程有了新的认识。传统理论认为,矿物质的运移以温差,压力差或浓度差为前提条件,而对矿物质的运移和富集又限定其必须有一定的矿化剂为载体,而未意识到同种物质如果其粒度不同则其物化性质的差别非常巨大。传统成矿理论一直认为金矿的形成是由于其离子与一定络合剂结合,在一定的温度条件下迁移到一定部位,经过各种化学反应生成自然金而聚集成矿。纳米科学技术理论认为:源岩中的原子态金只要达到纳米级,其本身首先就由于极大的自扩散系数和吸附性而扩散,迁移合富集成矿。目前为止,地学界一直对砂金为何能在低温条件下甚至使常温态下能够形成“狗头金”的事实没有定论,现在看来,很有可能是纳米级的金自身扩散,迁移,吸附的结果。这种聚集成矿作用,在内生金属成矿作用过程中可能也同样起着不可低估的作用[11]。

3.3 纳米矿物学

目前,由于科技的限制,人类对矿物学的认识,往往注重宏观矿物单体,聚合体的形态及有关特性,注重微观矿物成分及原子排列的情况,而对纳米矿物微粒,纳米矿物结构缺乏深入细致的研究。在传统矿物学研究中,把矿物看成理想的晶体点阵,但在纳米矿物学中则着重研究纳米矿物微粒和矿物结构特征以及与此有关的岩石学,矿床学,构造地质学,地球化学等地质学科。

所谓的纳米矿物就是指晶体粒度细小至纳米量级的矿物颗粒。往往是以集合体形式结合一起[12]。彭同红、万朴等人运用扫描电镜发现以下几种非金属矿晶体,具有纳米尺寸的结构:

1)沸石, 其内通道直径为13nm~113nm;

2)条纹长石、月光石、日光石,其晶间距为2nm;

3)膨润土、高岭土、海泡石,其层间距离为2nm等;

4)鳞片石墨经高温膨化后形成蠕虫石墨,形成网状结构,其孔径直径为10 nm~100nm[13]。

目前,已发现的纳米矿物资源主要分布在大洋底部及陆地。例如:海洋中的“黑烟囱”和陆地上的纳米矿物有氧化物和硅酸盐等。但受限于开采技术,目前仅其中层状结构的黏土矿物并已初步进行开发利用。纳米物质的巨大的比表面积、特殊的界面效应、临界尺寸效应及高能量状态赋其不同于普通物质的特性。例如, 普通金的沸点为2 966℃,而纳米相金则在700℃~800℃条件下熔解、气化[12]。其它纳米相金属也具有此特性。因而纳米级矿物开发利用有着广阔的应用前景。

4 结论

纳米科技的研究是国际当前的研究热点,它使人类在改造自然方面进入了一个新层次,即从微米级层次深入到纳米级层次。也使地质学科学家的认识改造自然界进入一个新层次。HRTEM,STM,AFM等测试方法的在纳米矿物学中的研究运用,一些新概念、新理论、新方法随之孕育而生,使21世纪矿物学的研究将上一个新台阶,这将促进地质科学飞速发展。

参考文献

[1]林鸿溢.北京理工大学学报,14.

[2]葛庭燧.纳米材料的结构与性能科学,1990(3).

[3]陈敬中.纳米科技的发展与纳米矿物学研究[J].地质科技情报,1994,13(2).

[4]嵇钧生.纳米技术的科技发展及趋势.

[5]刘芝.正在崛起的纳米科技[J].中国青年科技,1994(5).

[6]张立德.跨世纪的新领域:纳米材料科学[J].科学,1993(1).

[7]王大文,白春礼.扫描隧道显微术在纳米科学技术中的应用[J].科技导报,1992(4).

[8]Wickramasinghe HK.扫描探针显微镜,1991(4).

[9]林海安,郑茫,王林,等.扫描探针电子学[J].大自然探索,1993(3).

[10]姜泽春.地学领域里的纳米科学问题[J].矿物岩石地球化学通报,1995(4).

[11]银剑钊.纳米矿床学地学前缘,1994,1.

[12]李辉.西北地质,2001(2).

[13]周明芳.纳米矿物材料的开发现状及存在的主要问题[J].矿产与地质,2002,16(2).

[14]李斗星,平德海,戴吉岩,等.材料界面的特征和表征[J].稀有金属,1994(4).

[15]刘曙光.非金属矿纳米结构特征及应用[J].矿产综合利用,2002(4).

[16]曹建劲,梁致荣,刘可星,等.红层风化壳对地气纳米金微粒吸附的模拟实验研究[J].自然科学进展,2004(14).

纳米科技论文篇9

去年,我们在执行一项有关促进苏州市纳米技术及其相关产业发展的重大软科学课题时,首当其冲地遭遇到这一问题。通过文献检索与分析,我们发现,由于纳米技术及其相关产业纷繁复杂,纳米科学技术界尚未对该一问题形成共识;同时,社会科学理论界卷入纳米领域研究较少,可资借鉴的成果太少。然而,这一问题的解决将直接影响到我们研究项目的进一步履行,为此,我们设立了一个研究子课题,本文即是该子课题研究成果,在此抛砖引玉,期望不仅对苏州市,也对国内其他正在促进纳米技术及其相关产业发展的地区起到启迪作用。

一、什么是纳米技术及其相关产业

要搞清楚纳米技术及其相关产业首先要理解纳米与纳米尺度范围,以及纳米尺度范围内物质的质变特性及其意义,本节我们将据此入手,进而界定纳米技术及其相关产业的概念。

1.纳米与纳米尺度范围

纳米(Nanometer,缩写nm)是计量学中的长度单位。1纳米(nm)等于10-3微米(mm),等于 10-6毫米(mm),等于 10-9米。1—100纳米(nm)被纳米学界公认确定为纳米尺度。 通过不同物体相对尺度大小比较(见图1)及纳米尺度范围内常见球形物体大小比较(见图2),可以加深对于纳米及纳米尺度范围概念的理解。

2.纳米尺度范围内物质的质变特性及其意义

科学家发现,当物质小到1 ~100纳米时,由于其量子效应、物质的局域性及巨大的表面及界面效应,物质的很多性能将发生质变,呈现出许多既不同于宏观物体,又不同于单个孤立原子的奇异现象(白春礼,2001)。即在原子、分子及纳米尺度上,物质表现出极其新颖的物理、化学和生物学特性,该特性能被人类学习、掌握、控制和利用,从而使得人类社会现存的一切发生翻天覆地的变化。

3. 国外科学家如何理解与解释纳米技术

看一看国外科学家如何理解与解释纳米技术或许对我们会有很大帮助,以下是国外科学家对于什么是纳米技术的典型解释(转引自彭练矛,2011):

“The term nanotechnology means different things to different people. It used to cover anything from making microelectromechanical systems (MEMS) to creating designer proteins.”

“Whatever we call it, it should let us

—— Get essentially every atom in the right place.

—— Make almost any structure consistent with the laws of physics and chemistry that we can specify in atomic details.

—— Have manufacturing costs not greatly exceeding the cost of the required raw materials and energy.”

这两段英文的中文翻译如下:纳米技术术语意味着对于不同对象人群的不同事情。它通常涵盖从制造微电子机械系统到创造人造蛋白质的所有事情。然而,不管我们如何称呼,纳米技术的实质应该包括:每一个原子应被安排在合适的位置,任何相应建构应符合原子水平上的物理和化学原理,原材料和能源等相应制造成本应不是太贵。

从以上国外科学家对于什么是纳米技术的典型解释中我们可以发现,纳米技术(nanotechnology)在国外是一个约定俗成的术语,是对纳米领域新生事物科学研究、技术研发和工程应用的统称,纳米技术尚是一个发展中的概念,目前还没有被严格界定。

4. 纳米技术概念

经过上面的铺垫,现在我们可以来探讨界定纳米技术概念。对于什么是纳米技术,麻省理工学院(MIT)的德累克斯勒(Drexler)教授曾作出过一个解释:

“在分子水平上,通过操纵原子来控制物质结构,利用单个原子组建分子系统,据此制备不同类型的纳米器件”(Drexler,1990)。

而在中文语境中,谈到技术往往还牵连到科学与工程,对此,白春礼院士也有一个解释:

“纳米科技是20世纪80年代末、90年代初才发展起来的前沿、交叉性新兴学科领域,是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术”(白春礼,2001)。

白院士所指的纳米科技既包括纳米科学又涵盖纳米技术。实际上,中文语境中的纳米科技常常是纳米科学研究、技术研发和工程应用的统称。指在纳米尺度上研究物质和体系的现象、规律及其相互作用,重新认识自然界,发现新现象和新知识,并通过直接操控原子、分子结构的技术来创造对人类有用的新的物质和产品。

综上所述,可见所谓纳米技术是指涉及到纳米科学研究、材料发展和制备、器件制造以及产品开发生产之所有技术的总和。

5. 纳米技术相关产业概念

知道了什么是纳米技术以后就较易分辨纳米技术相关产业。过去的二、三十年,纳米科学技术的进步,尤其是纳米技术的应用已经和正在对人类社会的经济发展、社会进步和国防安全产生重大影响。然而,这仅仅是开始,纳米科学研究、技术发展和工程应用已经和正在引发一场新的工业革命,证据表明,纳米技术在材料、信息、能源、环境、生命、生物、军事、制造、纺织、染料、涂料、食品等产业领域都具有广泛而重要的应用。而一旦这些产业领域中纳米技术应用产品批量化、商品化和规模化,则自然形成一个个纳米技术相关产业。

二、纳米技术体系范畴

界定了纳米技术及其相关产业概念后,本节与下节我们可以转而讨论纳米技术体系范畴以及纳米技术相关产业体系范畴。

技术来源于科学,是理论知识应用于实践、解决实际问题的方法和手段,因此谈到纳米技术不能不涉及到纳米科学。尽管目前学术界对于纳米科学的内涵和分类尚存在着不同的认识和提法,但对于这一新兴领域多学科交叉特性的认识是一致的。一般而言,纳米科学可以包括纳米材料物理学、纳米材料化学、纳米材料学、纳米测量学、纳米电子学、纳米机械学和纳米生物医学等,由此也产生了按照这一体系分类的纳米技术。

然而,白春礼院士(2001)认为这种与传统学科紧密联系的分类方式无法简单便捷地勾勒出纳米科技的大致轮廓,而且各类别之间又有交叉和重叠。因此,他建议将纳米科学研究分为“纳米材料”、“纳米器件”和“纳米检测和表征”三大领域, “其中纳米材料是纳米科技的基础; 纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志; 纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础”(白春礼,2003)。据此,纳米技术体系又可主要由上述三大范畴来表达。

我们认为上述与传统学科紧密联系的分类及三个大类的简单分类都有各自的道理和应用价值,前一个分类便于整合发展纳米学科知识和实施教育培训,而后一个分类则更多地聚焦到纳米科学技术当前关键发展领域,重点特出、应用性强。若与纳米技术相关产业相联系,则我们更倾向于并将更多地采纳和应用后一个分类。

无独有偶,日本专利局《专利申请技术动向调查报告》中提供了一个与应用实际联系密切的纳米技术分类(见图3,该图由DRM咨询公司补充修改而完成),该分类基本遵循上述三个大类分类范畴,并采用图式标识了各主要应用领域中的发展状况,恰好为三大类纳米技术分类体系作了一个生动的注解,虽然尚未达到完整完善的程度,但已有很大的参考价值。

沿着三大类纳米技术分类思路继续往下走,可以得到图4所示纳米技术分类体系。其中一级状态子目录包括“纳米检测和表征技术”、“纳米材料制备技术”和“纳米器件制造技术”。而每个一级目录又可进一步产生二级目录,如纳米检测和表征技术可分为“扫描探针显微技术”和“原子级和超精密加工技术”;纳米材料制备技术可分为“化学制备技术”、“物理制备技术”和“综合制备技术”;纳米器件制造技术可分为“LIGA制造技术”、“超精密机械加工技术”、“特种加工技术”、“注塑成形加工技术”和“机械组装技术”等。需要说明的是,这一分类只是大体上勾勒了纳米技术发展现状,提供了一个整体认识把握的粗略框架。现实纳米世界中的实际情况则更为纷繁复杂,不仅存在着旁支末叶,也可以进一步细分和再细分。

三、纳米技术相关产业体系范畴

应用上述“纳米材料”、“纳米器件”和“纳米检测和表征”三大范畴的纳米技术分类思想,可以推导出纳米技术相关产业体系范畴,如图5所示:

如图5所示,首先,纳米技术相关产业可以被界定为纳米材料产业、纳米器件产业和纳米检测仪器设备产业,其中纳米材料是纳米技术相关产业得以生存发展的原始基础,没有纳米材料则一切无从谈起;纳米器件系纳米材料进一步加工组合后的产物,是延伸发展各种纳米技术应用产品的基础;而纳米检测仪器和设备则是发展纳米材料、器件及其延伸产品的必不可少的硬件手段,缺乏这些手段,事情就无法进行。

上述三者一方面构成了纳米技术相关产业生存发展的基础,另一方面,正是基于这种基础性和不可替代性,它们各自能够发展成三个供需旺盛的分支产业,并在每个分支产业下面各自生成若干数量不等的子产业。

此外,鉴于纳米材料和纳米器件能够被应用到各个新兴和传统产业领域,创造出各种各样新颖独特、质量上乘、性能优异的新产品,因此,在上述三个分支产业以外,又可辨识出纳米材料应用和纳米器件应用两个分支产业。当然,这两个分支产业下面更能各自生成若干数量不等的子产业。

若从事情发生的先后次序来看, 纳米科学技术研究发展的需要首先造就了纳米检测仪器设备产业和纳米材料产业。结合纳米检测手段和纳米材料的研究创造了纳米器件, 纳米器件(如纳米传感器)的推广应用催生了纳米器件产业。接着,纳米材料和器件在各个领域的广泛应用开发出许多新颖产品和更新换代产品,从而发展出形形的纳米产品产业,并进一步促进纳米材料、器件和检测仪器设备产业的发展。这就是纳米技术相关产业相伴共生、互促共长的内在逻辑。

在现实生活中, 纳米材料产业和纳米检测仪器设备产业已经形成一定规模,发展相对成熟。处于纳米技术高端的纳米器件产业(电子/光电子器件、量子器件、以及微/纳机电系统)目前尚处在发展成长过程中,这是纳米大国共同关注、竞相角逐的领域,也是进一步发展的方向,其中属于MEMS/NEMS范畴的微纳传感器分支产业已经初具规模。同时,纳米材料和器件的应用已经渗透进入许多不同的经济和社会领域,例如,电子和信息、生物与医药、环境保护等,从而增殖衍生出发展状况各异、纷繁复杂的纳米技术产品和产业。

当然,换一个角度,如果忽略纳米技术居中扮演的角色,这一复杂逻辑体系中各个分支仍可分属于自己的母体产业,例如,纳米材料产业可归属于材料产业,纳米检测仪器设备产业可归属于仪器设备产业等等,由此也揭示了纳米技术相关产业所具有的双重产业属性。

四、结 语

以上我们通过运用相关文献资料, 进行抽丝剥茧式的逻辑分析,界定了纳米技术及其相关产业的概念, 进而揭示了纳米技术及其纳米技术相关产业的体系范畴,从而为从社会科学角度研究促进纳米技术及其相关产业发展(譬如制定技术/产业发展路线图)奠定了有关客体对象的认知基础。

当前,纳米技术与信息技术和生物技术一起并列为世界三大高技术前沿热点领域,而纳米技术又在促进信息技术和生物技术发展中扮演了重要角色,正在悄然引发着新一轮工业革命,成为国际高科技及其产业竞争的制高点。期待我们这一抛砖引玉的工作能为苏州/中国抢占这一制高点作出些微贡献。

参考文献

赵康等。《苏州市纳米技术及其相关产业发展战略研究总论》, 古吴轩出版社,2012。

杨辉。《纳米科学技术概论》(未发表PPT课件),2010。

白春礼。纳米科技及其发展前景。《科学通报》,2001/2。

白春礼。全面理解纳米科技内涵,促进纳米科技在我国的健康发展。《微纳电子技术》,2003/1。

彭练矛。《纳米科技和纳米电子学》(未发表PPT课件),2011。

基金项目:苏州市2012年度重大软科学课题,项目编号:SR201201。

作者简介:赵康(1950 –),男,江苏苏州人,博士,教授,博导,主要研究方向为公共管理、咨询学、专业社会学。顾茜茜与陈加丰均为赵的博士研究生,赵迪凡为项目研究助理。

What Is Nanotechnology and Its Related Industries

——Concept Defination and System Identification

ZHAO Kang GU Xixi CHEN Jiafeng ZHAO Difan

纳米科技论文篇10

一基础理论知识的透彻讲解

纳米材料是一种介观物质,其物理化学性质不同于宏观物体,也不同于微观原子和分子。众所周知,宏观材料的尺寸改变时其物理化学性质不会有大的改变,但当材料的尺寸减小到纳米级时,其物理化学性质会有很大的变化,显示出不同于宏观材料的物理化学特性,如量子尺寸效应、表面效应、小尺寸效应、量子隧穿效应、库伦阻塞效应、巨磁阻效应等。这些特殊性质使得纳米材料在众多领域中有着重要的潜在应用前景,因而吸引着科研工作者的研究兴趣。

我学院为本科生开设这门课程是在大学四年级的第一学期,学生已经具有了一定的无机材料理论基础和实验经验,因此比较容易理解该课程内容。任课教师在讲解时注意引导学生对已学过的知识的运用。例如,介绍纳米微粒的制备方法时先讲解学生已经掌握的液相制备法如沉淀法和水热法,让学生认识到纳米材料不再神秘,又能触手可及,可以锻炼学生解决问题的能力。

在讲解量子隧穿效应时,运用量子力学的定态薛定谔方程来推导出一维势垒金属纳米粒子内部及外表面的电子运动状态波函数,结果金属纳米粒子外表面存在电子波函数,这种现象称为“隧道效应”。即金属纳米粒子表面处存在势垒,阻止内部电子向外逸出,但由于隧道效应,仍有一部分电子穿过表面势垒到达金属表面以外,并形成一层电子云。讲解量子隧道效应在扫描隧道显微镜纳米金属探针中的应用,使学生更容易理解和记忆枯燥的理论,进而达到活学活用的目的。

我院材料专业本科生在三年级时学习了X射线衍射技术。因此在讲解纳米颗粒粒径的表征方法时介绍了学生熟悉的X射线衍射技术中X射线衍射线线宽法(谢乐公式)测定一次颗粒晶粒度的方法。

碳纳米材料中多壁、单壁碳纳米管是大家关注的纳米材料。讲解单壁碳纳米管的结构时运用石墨片的模型。石墨片可以沿不同方向卷曲,得到各种螺旋度的纳米管,根据手性矢量Ch=na1+ma2的计算,可以将碳纳米管记为(n, m)。n和m的数值确定了纳米管的电学性质。例如当n=m时,纳米管为金属型,电子沿纳米管壁传输,因此金属型碳纳米管可用作纳米回路的导线等等。讲解单壁碳纳米管的表征方法时,采用透射电子显微镜的高分辨图片HRTEM和Raman光谱中的环呼吸振动峰等来进行表征。

二理论联系实际,激发学生积极性

纳米材料是一门实用性很强的学科,具有知识更新速度快的特点。大学四年级的学生面临着找工作、考研究生、考公务员等实际状况。如果任课老师此时一味地讲解基础理论知识,会使学生觉得枯燥无用,从而导致学生听课疲劳、厌学等现象,所以讲解时要注重理论联系实际。首先讲解与日常生活紧密相关的纳米材料,单臂碳纳米管阵列、磁性液体、钛酸钡纳米片及纳米纤维等。让学生了解这是一门有用的课程,激发他们深入学习的积极性,达到事半功倍的效果。

例如,讲解单臂碳纳米管阵列的合成及应用时,借助图像和动画,生动、直观地介绍了用微点阵技术将金属催化剂固定在硅基板上,然后采用化学气相沉积法在特定条件下使碳纳米管在硅片上垂直生长,形成单臂碳纳米管阵列。因为碳纳米管具有优异的场发射性质,单臂碳纳米管阵列可用于场发射高清晰度平板显示器等。

详细讲解磁性液体的多种用途,如用于旋转轴的动态密封、剂、增进扬声器功率、矿物浮选、传感器、阻尼器件等。

广泛应用于数码产品中的多层陶瓷电容器的发展方向趋于大容量和薄层化,其主要原料钛酸钡高纯超细粉体的制备工艺备受学术界关注。任课老师查阅最新的钛酸钡纳米片及纳米纤维的制备及表征的文献,介绍给学生并进行探讨,激发学生的学习兴趣。

三注重课程在研究课题中的应用

研究合成无机材料的同学很多会用到透射电子显微镜(TEM)技术进行晶体结构表征。讲解纳米材料的结构表征时,让本科学生了解透射电子显微镜(TEM)的结构的同时掌握支持膜法制备纳米粉末样品。而且该课程的内容可能在以后的研究生学习中起到重要的作用。

在为硕士生讲解时,要求他们掌握电子衍射原理和初等结晶学等内容,并选用立方晶系材料的选区电子衍射图片具体讲解了衍射斑点的指数标定方法,让学生认识到学习该课程的重要性。准备一些与课题有关的或最新的纳米材料英文文献,分组翻译,并进行讨论,将基础理论知识与研究课题相结合,提高他们的综合能力。

四营造和谐互动的课堂气氛

笔者是一位留学回国人员,在国外攻读硕博课程期间有很多的学习体会。例如每周举行一次组会。组会具体内容有基础理论学习、课题进展报告、文献研读等。与学生一起分享自己的研究和学习的经验,讨论学习方法、学习经验,从而可以使学生有计划、有目的地使用时间,获得事半功倍的学习效果。例如,利用关键词搜索大量文献,通过泛读找到与课题有关的研究背景,再进行精读,来了解课题进展情况等。根据自己的学习经历,参考部分国外的教学模式,例如组会模式,活跃课堂气氛,激发学生学习的积极主动性。

人类的每一次进步都和一种或多种新材料的开发密不可分。新技术的产生是以新材料为基础的。纳米材料对我们国家经济振兴及国力增强,实现中国梦具有战略性影响力。因此高校为本科生和硕士生开设纳米材料科学与技术的专业课程是有必要的。纳米科技具有发展迅速、知识更新速度快的特点,任课老师要针对课程特点不断地查阅最新文献,更新纳米材料科研成果的内容。讲解时要注重纳米科技理论知识和实际应用的联系,借助图像和动画等形式,激发学生的学习兴趣。营造和谐互动的课堂气氛,以学生为主体,帮助学生做好学习规划,有效利用时间,获得事半功倍的效果。

参考文献

[1]杨志伊.纳米科技[M].机械工业出版社,2004.

[2]汪信.纳米材料化学[M].化学工业出版社,2006.

[3]徐并社.纳米材料及应用技术[M].化学工业出版社,2004.1

[4]张全勤.纳米技术新进展[M].国防工业出版社,2005.

纳米科技论文篇11

魏启明教授出生于医学世家,外曾祖父是台湾最早期西医,父亲魏正明教授为日本福冈九州大学医学博士,是著名的血管外科专家:母亲王碧云教授为日本东京东邦大学医学博士,是著名的妇产科专家:二姐魏丽惠教授也是著名的妇产科专家,现为北京大学医学部人民医院妇产科主任教授、中华医学会妇产科分会副主任委员、中华妇科肿瘤学会副主任委员、中国妇产科杂志主编、全国人大代表,曾获得中国医师会最优秀医师奖。

魏启明教授在日本国立三重大学医学部取得医学博士学位并进行了心血管外科临床培训,博士论文题目为《人工心脏在心力衰竭的应用》。然后在美国MAYO医学中心心脏科师从John Burnett教授进行研究,发现脑钠素(BNP)是心力衰竭的重要临床指标之一:文章发表在美国着名的《循环》杂志上,并被美国心脏学会评为心力衰竭研究的关键论文。魏教授在世界上第一个发现c型多肽是一种特异的内源性静脉扩张剂,在《美国生理杂志》上并引起专业领域的极大重视。魏教授将ANP和CNP巧妙地结合在一起,研究发明新型人工多肽,获得了美国和国际的专利。这种多肽具有强烈的血管扩张和利尿效果,可治疗心肾衰竭和高血压:本研究发表在著名的《临床研究杂志》(Journal of Clinical Investigation),编者按指出,这是一个具有重要临床意义的发明。由于出色的研究成绩,魏教授被MYAO医学中心评为当年度杰出研究者,获得了MYAO医学中心著名的“KENDALL研究奖”。魏教授并到哈佛大学医学院作了关于心脏血管内分泌学的演讲报告,并与美国麻省理工学院医学生物学专家一起磋商,研究开发新型的医疗技术和医疗器械。

通过对于纳米生物技术的研究并与其他科学家的广泛合作,魏教授发现这是一个有着巨大发展前景的领域,着重开展了纳米技术对肿瘤和心血管疾病的早期诊断和药物靶向治疗研究,取得了关键技术突破。由于魏教授研究成绩斐然,美国著名的约翰霍普金斯大学医学院聘其担任心胸肾疾病的纳米生物技术研究团队和研究室的研发工作。约翰霍普金斯大学医院连续20年在全美医院排名中名列第一,并拥有多位着名的诺贝尔奖大师。

主题为“纳米医药和纳米生物学前沿”的科技部第293次香山国际学术会议于2006年11月召开,与中国科学院白春礼院长、科技部张先恩司长、东南大学顾宁教授一同作为组织者的魏启明教授,被与会代表及业内同侪这样评价:具备较为坚实的医学理论基础和技术攻关实力,正在为纳米生物技术的临床应用和纳米医药产业化等方面提供理论和技术支持。

为了纳米生物技术更快在临床应用和多学科结合,魏教授牵头组织了“美国纳米医学科学院”并当选为院长,还创立出版了英文纳米医学杂志并出任第一任主编:为协调各国纳米医学的研发和法规,魏教授牵头成立了“国际纳米医学科学院”并当选为名誉院长。魏教授共刊发超过170篇学术论文并被引用次数3000次以上,获选登上美国医学名人录和国际医学名人录,也先后被聘为国内外多所知名大学的客座教授,曾于2004年应邀到中国科学院院士学术会议上做了关于纳米医学的专题报告,并曾被聘为中国科学院海外专家评审委员和中国“973”国家重大研究课题专家组成员。现任重庆市科学技术研究院纳米医学首席科学家。通过魏启明教授和其他同仁的不断努力,纳米医学领域的研究开发正在形成蓬勃发展的趋势。

纳米科技论文篇12

Abstract The significance of introducing the nano-scale concepts into theory-practical course for our undergraduate learners’ understanding of instrumental analysis of a given substance and the quantitative analysis from the theory. Combined with the experience in nanomaterial and nanotechnology of our research group, we point out how to help students really establishing clear nano-scale concept in the “Instrumental Analysis Ⅱ” (bilingual instruction) courses, which will combine theory and practice better.

Keywords theory and practice; nanomaterial; reform in education

目前全国高校的本科生已有很多的理论结合实践课程,而就化学专业尤其是分析花絮专业的学生而言,仪器分析类课程是必修的理论结合实践的课程。不论是教学中还是毕业后走上就业岗位,很多学生面临着接触或从事仪器类尤其是对材料进行表征类仪器有关工作。

早在150年前,微米成为了新的精度标准,这样的技术给人类带来了巨大的发展,也奠定了世界工业化的基础。但是,随着人们对提高材料的性能、推动高新技术发展的需求不断增长,各类材料的制备技术和表征技术也在日新月异。自1861年胶体化学建立后,科学家们开始对小尺寸的粒子(1~100 nm)展开研究,由此引出了“纳米”这一新概念。纳米(nm),又称毫微米,是长度的度量单位,1纳米=10-9米。纳米颗粒一般也就是指直径在1~100 nm范围的粒子。能够对纳米颗粒的尺寸、形貌、结构和组成进行表征的仪器有光学显微镜、扫描电子显微镜、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)等等。①而今本科教学课程中所涉及的这些显微技术虽然在学生实验室中常见,但因缺乏纳米尺寸以及原子概念的教育,所以仍有很多学生在学习中接触到这样的尺度概念时理解不清晰,这也引发了许多教学工作者对这一现象的思考。②③④

1 在本科教学中引入纳米概念的必要性

在本科学习阶段,本科生是否有必要对纳米这样极小尺寸甚至原子理论这些抽象概念进行了解呢?其实很有必要。因为不论在何种材料中,其最小基本组成(原子或分子)的存在本身就是一个不容忽视的化学概念。即使是对头发这样已知并可见的物质,本科学生不一定能准确回答其尺寸大小是多少或者什么数量级。教学实验中的常见光学显微镜虽然可以用来检查物体的轮廓及细节,但只有当该物的尺寸比光的波长还要大,才能观察到该物质,而小到几个纳米甚至原子级别则无法达到可视化。

在《Instrumental Analysis Ⅱ》双语课程中有一章节将库伦分析法这样的电化学方法理论知识与纳米级别以下的原子数目建立了关联。原题是这样描述的:“A monolayer (single layer of atoms) of Cu on the crystal face shown in the margin has 1.53 x 1015 atoms/cm2 = 2.54 x 10-9 mol/cm2. Question: What current can deposit one layer of Cu atoms on 1 cm2 in 1 s?”这个题目在问:当电流和时间一定时,在面积为1cm2中能够沉积铜原子的数目(图1为“100”晶面排列的铜原子在1cm2的个数示意图);或者一定数目的铜原子在一定的时间里能够沉积满一个单原子层/1cm2则需要的电流为多少?由于发现本科生对纳米以下的原子概念理解甚少,所以对这一量化计算显得茫然。为了培养我们的学生能够成功塑造完整的知识面和知识体系,达到学科不断发展的需要,教学人员决定在《Instrumental Analysis Ⅱ》这门课程中引进纳米以及原子尺寸的概念。

2 引入纳米概念的教育方式

如何在教学中能够引入抽象的纳米概念,又能激发本科生对此概念的兴趣,是成功展开这方面教育的一个重要开始。普遍理论与具体实践相结合的“理论联系实际”原则可以达到主观和客观、理论和实践、知和行的统一。那么关于纳米的尺寸虽然小之又小,但是从人们所熟悉的头发可以引起一个人们在日常生活中所熟知的最小尺寸概念。在课堂中,首先让本科生思考“细如发丝”的问题:头发到底有多细?直径大约在哪个数量级?这一问题的抛出,引起了学生们在课堂上的热闹讨论。结果有这样几种答案:0.1-0.01毫米、1-10个微米、10-100个微米。那么在《泰山医学院学报》上的《国人头发直径的调查》⑤中一文指出:“显微镜目镜测微尺对571人的4272根头发的直径进行了测量,发现其平均直径为84.01?3.07微米。”答案揭晓后,学生们对微米概念显得饶有兴趣,并对人体眼睛的分辨率有了一定的了解。

此后,再次以学生们所熟悉的足球为例,让其讨论一个足球的大小,结果学生们很快就能给出正确答案:十几个厘米。当这个简单问题回答后,立即让其讨论我们和所有生物赖以生存的地球直径是多少。这样的例子对于本科生并不陌生,却又难以捉摸正确答案。在经过一段时间的思考后,课堂的本科生表现出强烈的求知欲望,希望能够获知答案。对于这一现象,教学者不是直接给出答案,而是将此问题上升为:如果将足球扩大上亿倍,将接近地球的尺寸,此时,本科生们对“一亿”这样的数量级有了一个模糊的概念。

实际上,一个地球的尺寸缩小一亿倍,接近一个足球的尺寸,而一个足球同样缩小一亿倍,将是一个纳米的尺寸。当这一概念在课堂上给出后,本科生们觉得震撼,深切感叹纳米尺寸的渺小同时体会到纳米尺寸的发现、发展的不易,以及对发明纳米尺寸表征技术的仪器创造者们表示由衷的敬佩。

3 对纳米概念的巩固

在理论联系实际的教学方式中介绍纳米尺寸后,进一步对原子概念进行阐述。纳米粒子也是由原子构成的。但一纳米相当于多少个原子的直径总和这一问题要结合元素周期表中具体原子的大小等因素来考虑,因为不同的原子大小不一。通过概念讲解前的提问引发本科生们的思考,再经过由大到小的尺寸数量级概念演变并结合生活中的实例,之后为了对新鲜知识的巩固,我们又设计了一些涉及到纳米及原子尺寸概念的问题。我们发现通过这些练习使得学生们对纳米尺寸和原子尺度概念的感知有了显著的改善。

4 结束语

总之,我们已经在《Instrumental Analysis Ⅱ》双语课程中引入纳米尺寸和原子尺寸,使得本科生对尺度概念有了新的认识,为日后的科研和工作奠定了一定的理论基础,学生们在本科教学中掌握了纳米尺寸和原子尺度的概念将会对其未来的探究性学习和实验活动有所帮助,同时也培养他们积极思考的好习惯。我们鼓励将本科生纳米概念教育的方式引入到教学中来。

注释

① 任庆云,王松涛,张大飞.纳米材料的结构表征方法[J].广州化工,2014.42(5):34-35.

② 李明,张晓波,李洪俊,刘亲壮.《纳米材料》课程设计探讨[J].吉林师范大学学报,2011.3:145-147.

纳米科技论文篇13

一位年仅三十几岁的学者、一连串前沿成果,刘飞博士称得起“年轻有为”。然而,与大多数年轻人不同,刘飞博士一心一意地埋首于纳米材料领域的研究工作,不沾浮躁之风。在这条道路上,他潜心向前,以“学习”的态度行于斯、研于斯,在一维纳米材料的制备、表征与物性研究的领域上取得了一系列成绩:

首先,在微波等离子体化学气相沉积(MPCVD)设备中,刘飞使用α―Fe2O3(0001)为基底,以N2和H2为反应气源,首次制备出垂直于基底生长的Fe3O4纳米金字塔阵列。这种新型Fm04纳米材料的阵列很可能在垂直方向上的高密度信息存储中有着潜在的应用,其结果发表在高水平学术杂志AdvMater上。

其次,在单温管式炉设备中,刘飞使用热蒸发冷凝沉积技术在较低的生长温度(

与此同时,刘飞利用真空下高温碳热还原法,首次制备出了大面积垂直于si基底生长的单晶的Boron纳米线和纳米管。扫描电子显微技术(SEM)研究表明所制备出的硼纳米线的长度为5um,平均直径为30nm。透射电子显微镜技术(TEM)和元素维度分布谱技术(ElementMapping)的研究结果都证明所获得的硼纳米材料具有完美的单晶四方结构,它们的生长方向为[001]。电子能量损失谱技术(EELS)研究结果也表明纳米线中硼元素的同时使用开尔文探针技术(KelvlnProbe)首次测试出Boron纳米材料的功函数为4.4eV。并利用改装后的SEM系统中的在位物性测试技术对单根硼纳米线的电导率和场发射特性进行了一系列系统的研究。研究结果表明:单根硼纳米线的电导率为1-8×10-3(n・cm)-1,其开启电场为5.1v/μm,阈值电场为115V/μm;在保持场发射电流为1.05μA的一小时稳定性测试中,单根硼纳米线的电流波动性低于22%并且当电场强度提高到59~74V/μm,单根硼纳米线的场发射电流密度更是达到了2X105-4×105A/cm2,这完全可以满足场发射领域的需要。由于Boron一维纳米材料具有高熔点(2300℃)、高电导率,并且具有独特的“三芯键”结构以及优良的物理和化学特性,所以这种新型纳米材料的发现以及进一步研究很有可能为纳米科学和技术的发展开创了一个崭新的领域。相关科研成果分别发表在知名科学杂志AdvancedMaterla/sc和Uitramzcroscopy上,并由世界上著名的德国的“Nanowerk”网站和国内知名的“科学网”网站分别进行了“Spotlight”报导和专题报导。

除此以外,刘飞使用化学气相沉积技术实现了对不同形貌AIN纳米结构(纳米棒,纳米锥和纳米火山口)垂直阵列的可控生长。为了研究其纳米结构场发射特性的影响因素,刘飞对比了不同形貌氮化铝阵列的场发射特性。实验结果表明,氮化铝火山口阵列具有最好的场发射特性表现,其阈值电场为7.2V/μm,场发射电流的稳定性测试表明其电流波动小于4%。同时,所有三种氮化铝纳米结构阵列都具有和其他很多具有优良冷阴极纳米材料相比拟的场发射特性,这表明其在未来的场发射领域具有很大的应用前景,结果已发表在ChinesePhysicsB等杂志上。

未来,战机握在手中

学习和实践中,刘飞不仅积累了丰富的经验,也形成了一套独特的科研方法和理念,解决了很多工程实际应用的问题,赢得了良好的经济效益和社会声誉,并获得一项国家专利。他是成功的,当然,成功之人自有成功之道。

1995年9月,刘飞迈入吉林大学的校门,考进材料科学与工程专业,四年的本科学习,刘飞以他的聪明和勤奋赢得了老师和同学们的一致认可,连续三年获得“人民奖学金”,并于1999年获“系优秀学生”称号。同年,他以优异的成绩毕业,却并不满足于自己当时的所学,或许是源于心底的那一份母校情结,刘飞选择留在吉林大学进行硕士研究,在材料科学学院攻读材料物理与化学专业。硕士学习期间,刘飞在于文学教授的指导下进行了磁控溅射生长巨磁阻多层膜的研究工作,并于2002年7月完成硕士论文《Cu/Fe多层膜的表面、界面微结构研究》,获得工学硕士学位,其论文获得学校研究生论文比赛优胜奖,这位年轻的硕士研究生充分展露了他在科研领域的才华。

2002年9月,刘飞考入中国科学院物理研究所纳米物理与器件实验室,师从于高鸿钧研究员,攻读凝聚态物理博士学位,2005年9月获得理学博士学位,并于2004年获得“所长优秀奖学金”、2006年获得中国真空学会优秀博士论文奖学金。

在科学的道路上没有捷径,正因为艰难才去登攀,而站得更高才能看得更远,年轻的刘飞博士没有止步于一点点的成绩,在科学之路上,他选择一路向前。自2005年9月,刘飞博士在中山大学理工学院的显示材料与技术国家重点实验室参加工作以来,包括在中国科学院物理研究所攻读博士期间,他主持国家自然基金委――广东省联合基金重点基金一项、国家自然科学基金青年基金一项、教育部博士点新教师基金一项,并且参与了多项国家“973”和“863”项目,共发表了学术论文(SCI、EI和ISTP收录)二十余篇。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读