欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

软件无线电实用13篇

软件无线电
软件无线电篇1

中图分类号TN91 文献标识码A 文章编号 1674-6708(2012)61-0179-01

1 软件无线电技术的优势

软件无线电技术具有众多的优势,归纳起来主要有以下几个方面:1)易于实现系统的模块化。软件无线电技术的基本设计思想就是模块化设计理念。利用该技术,非常实现通信系统个的模块化设计。通信系统的硬件平台和电气接口方面均严格遵循开放和统一的标准,如果需要进行维护或者提升系统性能,仅仅通过更换某一个模块便可以实现,而不需要更新整个系统;2)全面的数字化。软件无线电技术能够为我们提供优秀于当前任何一个数字通信系统的全面数字化的通信系统。这主要是因为软件无线电技术数字化处理的重点便是通信系统的基带信号、射频段以及中频段;3)功能的软件化。软件无线电技术除了必需的具有良好通用性的硬件支持平台之外,其他的各种功能均能够通过软件编程的方式来实现。一般情况下,软件编程可以实现以下这些功能,主要包括:信源编码、解码方式以及可编程的射频频段、中频频段、信道解调方式与信道调制方式等等;4)优秀的可拓展性。软件无线电技术具有非常优秀的可拓展性,不管是系统功能的拓展,还是系统功能的升级,均可以非差轻松地完成。由于软件无线电技术基于模块化、标准化、通用化的硬件支持平台,因此在硬件方面的可拓展性不大,其优秀的可拓展性主要体现软件方面。如果想要对系统进行升级或者拓展仅仅需要对相应的软件进行升级或者拓展即可,非常方便。升级和拓展软件要比改进和优化硬件电路简单许多。借助于软件工具,能够根据实际需求来实现各种通信业务的拓展。

2 软件无线电的关键技术

之所以软件无线电具有传统数字电台无法比拟的优势,其中应用了诸多关键技术。也正是由于这些关键技术的应用,可保持电台功能以及款频段的灵活性。以下将对几种关键技术进行具体分析:1)开放式体系结构。在软件无线电系统中,硬件设计建立在开放式总线结构基础上,硬件与软件均处于开放状态,例如电气接口与物理接口,根据通用的模块标准进行设计。目前,基于通信的开放结构标准基本建立起来,但是软件无线电技术中的适时数字信号处理、高性能信号处理等相关标准尚处于初级探索阶段;2)中频处理。在发射端的中频处理中,基本实现已调基带信号和中频信号的转换,这种转换功能主要通过计算离散时间点来实现。对于接收端的中频处理部分,如宽带数字滤波,可以从业务波段中选择,恢复到中等带宽的用户信道,并将信号转换为基带。通过滤波以及频率交换的复杂程度,体现中频段对处理能力的需求状况,这一功能需要通过数字办法来实现;3)实时软件处理。在软件无线电系统的多工作技术实现过程中,应实时纳入全新功能软件。虽然当前存储器的容量已经比较大,但是所有软件存储其中仍承受较大压力,因此软件无线电系统可以通过特定的用户入口端实现实时新功能软件的装载,通过重新分配、组构软件资源,重组软件功能,这就要求通信协议以及软件的通用性、标准性;4)开放式总线结构。传统的硬件平台结构属于流水线式,在这一结构中,各模块采取实际硬件电路互连形式。一般情况下,各个模块之间紧密耦合。如果系统涉及到功能的改变,就需要增加或者减少某一个模块,这就会带来结构中的变化。但是由于不具备开放性,因此也无法满足软件无线电技术的要求。鉴于此,人们在PC技术发展中受到启发,提出了基于总线互连的系统,在相应系统中应用VME总线标准。尤其在软件无线电系统中,通过应用VWE总线标准,进一步支持软件无线电的扩展性、开放性平台发展;5)宽带模数(A/D)或者数模(D/A)转换。在软件无线电系统中,最理想的ADC位置应该与射频天线尽量靠近,以此更精准地接收模拟信号,实现数字化转换,最大限度获得可编程性。在A/D或者D/A技术转换中,应考虑以下几点要素:量化噪声、采样方式、采样效率、数值与效应等。当前,在软件无线电系统的A/D或者D/A技术中,最大的困扰就是ADC采样速率难以满足软件无线电的高精度、高速率要求,将成为今后努力方向。

3 软件无线电技术在4G发展中的应用

随着3G技术的日益发展与成熟,目前已经在市场运营中取得一定成绩。当前,国际电信联盟(ITU)已经着手准备“第四代移动通信标准”的制定,并逐渐达成共识,将移动通信系统与其他系统相结合,如WLAN、无线局域网等,4G技术应运而生。随着4G技术的产生,数据传输效率将进一步提高,并可提供更丰富、更广泛的任务,最终实现局域网、广播、电视、商业无线网络、蓝牙等无缝衔接、兼容发展。在发展4G的诸多关键技术中,软件无线电技术是承载4G发展的桥梁。随着各种先进技术的交叠发展,更利于降低开发风险,因此未来发展的4G技术必须满足各种类型产品的需要,软件无线电技术恰好满足产品多样性需求,既可降低开发4G的风险,又支持更多系列产品的开发。另外,由于软件无线电技术减少了硅芯片的应用,可有效降低成本,更利于推广使用。在4G技术的网络支持方面,由于通信系统选择的是基于IP全分组形式基础上的数据传输流,因此IPv6将成为下一代的网络协议。总之,随着计算机技术、通信技术以及微电子技术的快速发展,必然能够有效解决软件无线电技术发展中遇到的困难,让软件无线电技术在未来4G通信技术中获得更好的发展空间。

参考文献

软件无线电篇2

一、软件无线电的优势

1.具有降低开发成本和周期的作用

传统的无线通信系统在对技术和产品进行开发时,针对的只是单一的标准,从标准相对稳定到设计和开发专用芯片,再到产品设计和实现需要一年以上的时间,开发周期长,开发成本高,同时这种情况也导致标准制定过程中,许多新的技术都无法得到合理的应用,限制了新技术的发展和应用,也使商用产品和当时技术水平之间存在着较大的差异。而软件无线电的应用,能为技术和产品的研究和开发提供一个新概念和通用无线通信平台,在很大程度上缩短了开发周期,降低了开发成本,使产品能够和技术水平同步发展。

2.具有优秀的可拓展性

软件无线电技术具有非常优秀的可拓展性,主要体现在它能极其轻松地完成系统功能的拓展与升级,但是由于网络无线电技术是以模块化、通用化、标准化的硬件支持平台为基础的,所以它在硬件方面能够拓展的空间并不大,其优秀的拓展性主要集中在软件方面。

另外,软件无线电技术也为系统的升级和拓展提供了便利,只需要对相应的软件进行升级或者拓展就可以了,而且与改进和优化硬件相比,升级和拓展软件要简单得多;最重要的是,借助软件工具可以根据实际需求来实现各种通讯业务的拓展。

3.具有极强的灵活性

软件无线电技术具有可重配置性,从而在很大程度上增强了其灵活性。目前,从基带信号到射频信号已经实现了完全的数字化,这就使得软件无线电技术可以通过更换软件模块来适应多种工作频段和多种工作方式。

同时,良好的多频段天线和可控制的多频段和多功率的射频转换能力,使得软件无线电对复杂的环境需求具有良好的适应性,可由软件编程来改变 RF 频段和带宽、传输速率、信道接入方式、业务种类及加密方式、接口类型。

二、软件无线电技术在军事通信中的应用

无线通信之所以在现代通信中占据着重要的位置,与其设备简单、便于携带、易于操作等特点是分不开的,也是这些独有的优势使其被广泛应用于各个领域,以军事领域为代表,它是各军种、各部队中必不可少的重要通信手段,

软件无线电这个术语最初是被美军提出的,当时正处于海湾战争时期,多国部队各军种进行联合作战时,在互通互联的操作上遇到了难题,不仅通信互通性差,反映速度慢,而且宽带太窄、速率也太低,使得联合作战的关键技术受到了严重的影响,由此美军开始制定具体的计划来研究基于数字信号处理器、软件可编程、模块化、多模式并具有波形重新配置能力的通用软件无线电台――易通话,此电台几乎具备了美军所有使用过的电台包括话音通讯电台、数据通信电台的所有功能,实现了不同种类无线电台之间的通信。

软件无线电台从其诞生至今,已经成为能使不同国家或者说同一国家的不同军种之间相互通信而没有障碍的新技术。自20世纪70年代开始,可编程软件无线电台正式被列入研制项目中,目前已经取得了突破性的发展,有不少的数字式软件可编程无线电台已经被投入使用并且收效甚好。

另外,传统的数字电台以硬件为主,软件无线电台在许多关键技术上对其进行了改进,例如:对模数转化器进行了改进,使其转换率和动态工作范围得到了大幅度的提升;对嵌入式处理器进行了改进,提高了其处理的速度和能力,使数字信号处理器能够完成调制解调器的功能;对以编程技术为目标的技术进行了开发,使软件的功能性独立于基础硬件之外。总之,随着科技的迅速发展与进步,无线电台将有望使军用电台获得新的定义。

三、软件无线电技术在移动通信中的应用

软件无线电概念从提出至今,已经从最初的军事领域开始向民用领域扩展,但是在民用通信方面却存在着许多的问题,例如:新老通讯体制并存,增加了不同体制系统在互联方面的复杂程度与困难程度;各种通讯设备大量涌现,使无线电频谱拥堵情况越来越严重;传统的以硬件为基础的无线通信系统已经难以满足新时展的需要。只有采用软件无线电技术才能对这些问题进行有效解决,下面就从三方面来介绍软件无线电技术在移动通信中的应用。

1.用于蜂窝移动通信系统

在蜂窝移动通信系统中,软件无线电的发射与其他系统相比较,有所不同。

它在发射前,要先对可用的传输信道进行划分,探测传播路径,对适合信道进行调制,将电子控制下的发射波束指向正确的方向,选择合适的功率,做完这些才能进行发射。至于接收也同样如此,它能对当前信道和相邻信道的能量分布进行划分,也能对输入传输信号的模式进行识别,通过自我适应抵消干扰,对所需信号多径的动态特征进行估计,对多径的所需信号进行相干合并和自适应均衡,对信道调制进行栅格译码,然后通过FEC译码纠正剩余错误,最大限度的降低误比特率

2.用于设计多频多模的移动终端

对于不同的标准需要用不同的软件来适应,需要通过软件设置的调整来改变信道接入方式或者调制方式。

软件无线电技术可以设计出灵活的通信终端,使不同制式的移动网络能用同一部终端,不仅为用户提供了极大的便利,也在一定一定程度上降低了运营商的成本,促进了移动通信技术的持续发展。

3.用于第三代移动通信系统

软件无线电技术在第三代移动通信系统中的应用主要包括三方面:

(1)为第三代移动通信手机与基站提供了一个开放的、模块化的系统结构;

(2)产生了各种信号处理软件,包括:各类无线信令规则与处理软件、信道纠错编码软件、信号流变换软件、信源编码软件、调制解调算法软件等;

(3)实现了智能天线结构,包括DOA在内的空间特征矢量的获得、每射频通道权重的计算和天线波束赋形。

四、结语

总之,软件无线电技术有着传统数字无线电所无法比拟的优势,在将来的发展和应用上一定会越来越广泛,特别是在第四代移动通信的普及和推广道路上,软件无线电技术一定会贡献越来越多的力量。

参考文献

[1]陶玉柱,胡建旺,崔佩璋.软件无线电技术综述[J].通信技术,2011,01:37-39.

软件无线电篇3

2.1GPP波形组件划分

组件化的波形开发是软件无线电的一个重要技术优势[4],是提高波形可移植性,提升硬件资源使用效率的技术基础,对于提高波形开发的模块化程度,加速新波形的开发进度都具有十分重要的作用。一般来说,GPP上的组件包括但不限于逻辑链路层组件和无线网络层组件。

2.2GPP硬件抽象层的设计

硬件抽象层为各异构处理器上的通信波形组件屏蔽与硬件相关的接口,做到通信波形与硬件平台的分离[5],实现通信波形的跨平台快速移植。在GPP上,硬件抽象层与波形组件之间通过CORBA进行交互。GPP硬件抽象层也实现了核心框架的逻辑设备(CF::Device)接口[6],还封装了接口、控制、路由表维护、中断管理及标志位管理等功能模块。

2.3GPP通信波形组件的设计

这里以无线网络层组件为例进行介绍。无线网络层组件端口示意图,User即无线网络层组件的使用者,可以为逻辑链路层组件或使用无线网络层组件的其他组件。WirelessNetDataConsumer继承自OctetStream接口[7],通过该接口获得上行和下行数据。WirelessNetControl继承自Resource接口,实现通信波形的参数控制和状态监控。WirelessNetCtlConsumer接口为无线网络层组件控制接口,实现一系列的参数配置工作。

软件无线电篇4

目前无线电监测技术己经成为一个重要的研究课题。无线电监测技术中包括信号调制识别和定位。信号调制识别和参数估计的基本任务是在多信号环境和有噪声干扰的条件下确定出接收信号的调制方式和其信号参数,从而为进一步分析和处理信号提供依据。调制方式是区别不同性质通信信号的一个重要特征。随着通信技术的发展,信号在很宽的频带上采用不同调制参数的各种调制样式。如何有效的监视和识别这些信号,在军事和民用领域都是十分重要的研究课题。在军事领域,信号调制方式的识别是对敌方通信进行干扰或侦听的前提,一旦知道了调制类型,就可以估计调制参数,从而有针对性的制定侦察和反侦察策略。调制识别技术还有助于电子战最佳干扰样式或干扰算法的选择,以保证友方通信,同时抑制和破坏敌方通信,实现电子对抗的目的。

1信号调制识别技术

目前,通信信号的调制识别技术大致可分为如下两大类:一是判决理论方法,它基于假设检验理论,利用概率论去推导一个合适的分类规则。由于判决理论是基于假设检验的,它能够最小化平均风险函数,在这个意义上讲,它提供最优的方法。但即使对于一个简单的信号形式,最优分类器的完全数学表达式是非常复杂的。它还需要构建一个正确的假设并且仔细分析,这一点也是十分困难的。二是统计模式识别方法。这种方法一般由两部分组成,其一是特征提取,它的作用是从接收到的信号中抽取区别于其他信号的特征参数;另一个是模式识别,它的作用是根据提取的特征参数确定信号的调制方式。由于这种方法不需要一定的假设条件,可以实现信号的盲识别,比较适合于截获信号的处理,因此在实际的调制识别中,我们大多采用这种方法。目前统计模式识别方法在调制识别中可分为如下几种形式:

(1)基于过零点取样的调制识别方法;Hs ue 提出了利用信号过零点的时间间隔和相位差的直方图分类CW、MPSK和MFSK信号。(2)基于 AR 模型的调制识别方法;As s ale hlg 提出了利用 AR 模型提取信号瞬时频率和瞬时带宽作为特征参数实现数字调制信号的分类方法;LiuMing- quan 将AR模型提取的瞬时频率和瞬时带宽参数用于同时多个数字信号的调制识别;戴威将接收信号分成四大类:噪声,幅度调制,频率调制,相位调制,利用AR模型提取参数可实现80%的识别率。(3)基于小波变换的调制识别方法;K.C.Hol使用连续小波变换,第一次利用时频方法进行调制识别;N.P.Ta 用小波和小波包对 FSK、PSK、ASK调制方式的进行识别;K.C.Hol 利用信号的小波变换和信号幅度归一化后的小波变换实现 PSK、FSK、QAM 信号的调制分类;SangWoocho 使用连续时间小波变换和线性预测编码 LPC 对 BPSK、QPSK、FSK信号进行分类识别。

2 LOS误差识别与抑制方法

2.1实际信道环境对时差定位的影响

在实际信道环境中,如果辐射源和基站之间电波传播的视距传播(L0S)路径被建筑物阻挡,电波只能以反射、折射等非视距LOS 方式进行传播。采用TOA和TDOA技术对辐射源进行定位估计时,NLOS情况与有LOS 路径情形相比,TOA测量值中会产生一个正的附加超量时延,TDOA测量值中也会对应产生一个误差分量。将这种具有较大误差的TOA或MOA测量值应用于辐射源的定位估计,必然造成定位算法性能的显著下降,无法取得辐射源位置的最大似然估计,使估计位置出现较大偏差。

2.2一种抑制 TDOA估计中 NLOS误差的新方法

当主站和辅站都受到NLOS 影响时,NLOS 传播对TDOA测量引入的误差,是两个均值服从对数正态分布的随机变量的差,其值与MS和职的距离有关,当MS 距离主站近时,主站受到的NLOS 影响小,辅站受到的NLOS 影响大。同理,当辐射源离辅站近时几,是负偏的。当主站和辅站只有一个受NLOS 影响时,TDOA测量值也存在正偏和负偏问题。该问题和TOA中的超量时延,只是正偏不一样,如果能够将TDOA测量值的正偏或负偏修正到零偏就可减轻NLOS 的影响。

3软件无线电的关键技术

3.1宽带智能天线技术

作为软件无线电硬件出入口,对于理想的无线电系统,天线应该覆盖要求的所有无线通信波段。目前技术无法达到相应要求,但人们可采用组合式多频段天线,来尽量弥补缺陷,因此使用宽带智能天线被看作能够实现多频段天线系统的最佳方案。随着科技发展,很快 RF 微型机电系统,是一种高度小型化的器件,这种器件的研究成功,可使宽带实现可重构天线的设计方案成为可能。通过软件无线电以及智能天线相互渗透、相互促进的作用,可在将来无线通信中得到广泛应用,也会使得这种技术得到推广,将在其他无线电技术领域达到科技创新的最终目的。

3.2高速数字信号处理部分

此部分包括基带处理、调制解调以及数字上下变频等方面。其中分为解扩和解跳在内两部分,这部分功能在于可实现对单片可编程器件要求更高,使得各器件能够更好地结合在一起,以至于完成更多功能。若在单片可编程器件无法满足处理能力时,可用多个芯片并行处理的方式,提高运算能力来解决此问题,需要注意的是,数字下变频中难点是数字下变频和滤波以及二次采样,还有分离所需要的信号等问题。

3.3高速A/D和D/A转换

软件无线电结构具有的基本特征,是对模数及数模转换器的要求很高,其中重要的是采样速率以及采样精度。所以对于A/D和D/A转换器而言,安装位置至关重要,近射频端。此特性也直接反映软件的软化程度。如果 AD/变换器的动态范围在100~120dB之间,同时最大输入信号频率在1-5GHz 之间,就会符合理想的软件无线电标准。然而采样速率是由信号带宽决定的,所以采样速率一般要求在信号带宽的2. 5倍以上。此外通过采取多个A / D并联使用的方法,达到进一步提高器件性能的目的。

4结束语

软件无线电的提出与发展,标志着无线通信的发展从硬件到软件的飞跃。它的灵活性体现在它可以按照需要任意改换频率、改变调制方式和和接收不同类型的信号以适应各种体制和协议。采用基于同一硬件安装不同的软件模块来实现不同性质通信功能的设计思想,利用软件无线电技术实现的具有多种工作方式的手机,不仅可以和现有的移动通信网互连,而且可以和卫星等其它移动通信网互连。随着计算机、微电子及智能天线技术的发展,软件无线电必将成为21世纪无线电通信领域的核心技术。

软件无线电篇5

在现实生活中,软件定义无线电技术在军事方面的应用不断地发展研究,各国为了早日实现军事化的软件定义无线电技术,加大了对软件定义无线电的研究。目前,软件定义无线电技术已成为未来军事通信发展的趋势。①

1 软件通信体系结构

1.1 硬件体系结构

软件通信体系中硬件体系结构采用了面向对象技术,通过面向面向对象技术的概念对系统内部的典型模块进行划分,要求实际系统一旦实现,必须将其详细的、完整的接口进行公开。软件开发人员可以通过公开的接口,对硬件的性能和容量以加载特定的波形,第三方则通过公开的接口,提供系统内部模块,方便了新技术的插入。

硬件体系结构除了要对所有无线设备系统内部硬件模块的组成进行定义,还要给出所有无线设备内部硬件的物理属性。当无线设备系统内部硬件物理属性符合条件时,这些硬件设备就可以应用到实际平台硬件模块,具有统一性,针对所有的通信设备来说都是通用的,实现了硬件模块设计的实用性与通用性,节约了系统成本。未来无线通信系统发展主要以软件为主,而现代无线通信系统是由软件与硬件相结合来实现无线通信的功能。因此,为满足无线通信系统未来发展的需求,硬件模块要具有一定的可扩展性,这可以确保在原有硬件模块基础上,通过增加新的功能或者在已有的硬件模块中增加新的硬件模块来实现新的技术,既保证了硬件模块统一性,又增加了硬件模块内在的灵活性,满足软件无线电发展的需求。②

1.2 软件体系结构

在软件通信体系中软件与硬件所承担的功能不同,根据软件在通信体系中所承担的功能,可将软件体系结构由上到下分为应用程序、核心框架、公共对象请求体系中间件和嵌入式实时操作系统四部分。其中核心框架、公共对象请求体系中间件以及嵌入式实时操作系统三部分共同构成了软件体系结构中的核心内容,也是软件体系结构中一个通用的软件平台。软件平台的构成给开发人员和波形的设计带来了新的要求与限制,有利于实现波形从一个无线通信系统到另一个无线通信系统的移植。

1.3 安全体系结构

软件通信体系中安全体系结构,为了保证在不同的无线通信系统能够相互通连与相互操作,是为了确保用户的信息在传输、发送、处理以及存储过程中的完整性与机密性。在安合体系结构中,整个系统的安全功能是由一个通信保密模块、红边处理器以及黑边处理器三部分共同来完成的,而非一个边界分明的安全模块来单独完成。③

2 软件定义无线电系统

软件定义无线电系统又称为软件无线电系统,是一种可以通过软件进行编辑,实现全部功能的无线电,具有较高的灵活性与通用性。用户通过软件无线电系统,对动态修改配置对系统中的网络装备与软件更新设备进行修改,从而获得更好的服务与性能。软件定义无线电系统是通过一个简单的终端设备,运用软件重配置功能来支持各种不同种类的无线系统与服务的新技术。固定或者移动的软件定义无线电设备,都能让用户通过改变软件改变接收与发送的特征。移动无线电系统与改变运行模式的软件定义无线电设备相互通联,并且能够同时在多种公共安全频带中工作。

软件定义无线电系统不仅具备基本的无线通信功能,还具有以下三个方面的功能:一是通过软件定义无线电系统能够升级系统所装载的软件,以此来达到对系统的升级与功能的更新。④二是软件定义无线电系统可以支持不同电台系统的相互通联,达到不同独立运行的电台系统能够互传信息。三是软件定义无线电系统主要以软件为主,解放了硬件通信业务传输方式,通过软件定义无线电系统所装载不同软件实现动态配置系统功能。

3 软件定义无线电的发展

软件定义无线电技术采用现代化高端软件进行操纵与控制,具有高自动化程度与较强的扩展能力,打破传统依赖于硬件发展的通信体系。软件定义无线电体系的发展是通信领域的第三次革命,经历了从固定通信到移运通信,模拟通信到数字通信的改革。

软件定义无线电技术作为现代通信行业新技术,在未来的无线电通信应用中有良好的发展前景,可能成为未来无线电通信技术的支柱。软件定义无线电技术可以多频段多模式的手机、卫星通信、智能天线以及蜂窝移动通信系统、无线局域网等各个相关的应用领域。

4 总结

随着科学技术的不断发展,软件定义无线电系统在各个领域中得到了广泛的应用,无线通信体系朝着通信数字化、智能一体化的发展。由于我国目前无线通信体系硬件水平的有限,导致软件无线电通信还达不到理想的要求。针对软件通信体系与软件定义无线电系统的研究,可以预见,软件定义无线电技术可能成为未来通信行业发展的核心内容。⑤

注释

① 范建华,王晓波,李云洲.基于软件通信体系结构的软件定义无线电系统[J].通信技术,2011,51(8):1031-1037.

② 刘献,张栋岭,陈涵生.软件定义无线电及软件通信体系结构的规范[J].计算机工程,2009,30(1):95-98.

软件无线电篇6

1.2软件平台

数字广播电视系统中的软件无线电技术采用的是分层软件体系,其包括DSP指令、函数库、信号流变换库、小波与滤波的变换、调制算法库、编码算法库、信道纠错编码库及各种无线电信令规程库等。

1.3关键技术

现代的无线电已经是将计算机、通信等技术融合为一体的新技术。首先,宽带多频段是其核心技术,软件无线电技术的工作宽带一般是1Mhz到3Ghz,如果其天线采用传统方法,由于天线长度的影响,会对信号的传输产生影响。其次,采用数模和模数技术,将两者的转换器靠近天线,并将其移到RF前端,对较高频段的信号进行数字化,这个过程需要对工作宽带和模数采样频率进行较高的要求。另一方面,环境的复杂性对模数转换器的速率和宽带都提出了较高的标准,要求其动态范围较大,在宽带达到要求时,也应注意ADC是否具有较高的采样率。最后,DSP技术和高速数字处理技术也是软件无线电的核心技术之一,数字信号在经过模数转换器处理后,DSP软件将继续对其进行处理,因此说软件无线电技术的关键是数字处理能力。硬件技术和软件技术是影响无线电技术的重要因素,目前软件无线电技术在实际中的应用由于受到硬件技术的限制,特别是在木块分化方面,因此应加强硬件技术的改进,为软件技术提供一个广阔的发展平台。

2数字广播电视系统中软件无线电技术的应用

数字广播电视的基本原理就是将模拟信号转变为数字信号,实现其完美过渡。将A/D变换器靠近射频天线以尽早获取模拟信号,随后将其转化为数字信号是软件无线电技术的基本思路。无线电技术以数字广播电视为载体,在产生数字信号后,利用数模转换器将信号转化为模拟信号。软件无线电技术以较强的灵活性,通过升级去完成对一些关键技术的突破。

2.1DRM的发展

由于数字化媒体的快速发展及调频广播竞争的加强,许多机构已经开始了调频广播数字化的技术实验。由于当前数字信号和模拟信号同时存在,可以借助无线电技术对模拟设备进行研制。随着无线电技术的发展,为了提升无线电广播的质量,可以将数字广播与资源有效结合起来。

2.2DRM中无线电技术的应用

由于广播的宽带较窄,信号的动态范围较大,在实际应用中对其方案的选择应慎之又慎。可以对一个宽带变频模块进行增加,将其增加到A/D/A天线间,使信号由全频变为中频带,然后对中频带信号的预定功能进行实现。

2.3DRM发射机中软件无线电技术的应用

相比较接收机,发射机的研制显得更为复杂,发射机一般包含三个独立的子系统,其中的调制子系统和数字编码负责对数字信号和相位的处理,而模拟处理子系统则更多的被应用于调相符号或幅相符号的转换上,功率放大以及信号的发射则依靠发射子系统来实现。

2.4数字电视接收系统

当前广泛采用的是中频数字化结构,其原理是通过多频段的天线将数字信号传送到RF部分,随后经过模数转换器和数模转换器的转换,再经过数字上下变频器,其将信号传送给DSP进行处理。在以软件无线电技术为基础的数字电视接受系统,首先要通过模拟变频对信号进行处理,使其与模数转换器的信号相适应,经过模数转换器的处理后,其输出为基带信号,然后数字变频对宽带内的信号进行正交变频,使其成为与信号带宽相适应的数字信号,这种信号要能够被HDTV处理。在实际中,为了提高数据的处理速度,常常采用较多的处理器模块。而在软件无线电技术中,都是采用软件对算法进行处理,通过软件的升级来增加新的功能,而HDTV接收机正是以软件无线电原理为依据,在此基础上,其不仅可以产生能够适应多种编码速率的数字电视信号,而且其自身的系统升级能力也较强。HDTV实现新制式的播放方法对软件无线电技术降低成本具有较大的帮助。

2.5软件无线电技术中的实际应用

在互联网和3G时代,信道调制方式会极大影响数字广播电视的发展,因此需要引进新的无线通信技术。当下用户需要的是多层次配置,而软件无线电技术中正是一种优质资源,依靠其实现各种业务的最佳配置,改变以往的追求统一性的调制方式,努力建立一个开放性的平台,通过平台上软件的升级来实现业务的各种特征。

软件无线电篇7

随着社会的发展,无线电频谱已经成为无线通信领域极为重要的资源。伴随社会无线通信业务的极速增长,当前无线电频谱资源已经接近匮乏。频谱资源的高效利用作为无线通信技术当前亟需解决的问题,同时其也成为制约无线通信发展的阻碍。基于无线通信技术的需求和科技的进步,认知无线电技术由此产生,其能够对周遭电磁环境进行感知,同时通过无线电描述语言与通信网络进行交流。认知无线电通过参数的调整,将环境与无线电参数进行匹配,以确保通信系统的可靠性及频谱资源的高效利用。

1 认知无线电的概述

1.1概念

针对于认知无线电的概念解释,其中最具代表性的是Mitola、FCC、ITU-WP8A及John Notor等人和组织提供的认知无线电概念。

Mitola认为认知无线电是为保障个人无线数字助理及网络侦测用户需求且为这些需求提供适合的无线电资源,认知无线电是软件无线电的一种,同时综合应用软件、应用界面及认知等性能[1]。

FCC将认知无线电定义为通过运行环境的改变来控制发射机参数的一种无线电[2]。

ITU-WP8A将认知无线电定义为能够感知并了解操作环境,自主调整操作参数的一种无线电。

John Notor认为软件无线电不是实现认知无线电的必须条件,同时认知无线电不是软件无线电的发展,两者间属于重叠关系[3]。

1.2特点

(1)认知能力。认知无线电能够由工作环境感知到周遭信息,由此来标识频谱资源的使用状况,由此来重新选择频谱资源的适应工作参数。根据瑞典皇家学院使用的认知循环得知,认知无线电的任务主要包含三个方面:频谱感知、频谱分析及频谱判定。其中频谱感知主要用来检测可使用频段及频谱空穴现象;频谱分析主要用来分析估计频谱获取的频谱空穴特点;频谱判定主要根据频谱空穴的特征及用户的需要进行传输数据的选择。

(2)重构能力。认知无线电能够通过当前动态编程的改变从而使用不同无线传输技术来接收输出数据,基于对频谱授权用户进行干扰的基础,使用授权系统中的闲置频谱为用户提供极为可靠的服务,以上便是认知无线电重构内容的工作核心。当频谱被指定用户使用的时候,认知无线电能够通过两种应对方式进行解决:一是切换到其他空闲频段进行通信;二是继续使用此频段,但要通过改变该频段的发射速度及调制方案来避免对用户造成通信干扰。

(3)两种无线电之间的关系。软件无线电系统内部的A/D及D/A完全变更至中频,通过对系统进行采样,由中频进行数字化处理;认知无线电技术基于软件无线电采用通信协议技术,同时增加人工智能的支持,对其自身环境感知极为敏感,并能根据环境合理调整通信功率、频率及其他参数[4]。软件无线电系统具有较高的灵活性,但较于认知无线电缺乏一定智能。认知无线电能够自适应频谱环境,而软件无线电能够自适应网络环境。

2 认知无线电研究现状

2.1 DARPA

美国国防研究计划局已经对频谱资源的有效利用展开研究,关于XG计划的研究目标有以下两点:第一,研究灵活的频谱分配技术,检测频谱环境,开发频谱使用机会;第二,在软件支持的基础上研究灵活的政策机制,主要体现在定义抽象行为、操作模式对应策略;同时策略约束通过下载软件完成。

2.2 E2R

E2R是欧洲委员会的综合项目,该系统可以为多种空中接口、协议及应用提供相关的平台和所需环境,同时通过认知算法的升级和重新配置实现资源的高效利用。重新配置能够灵活的改变软件设置,以此来提高网络及设备性能。E2R系统需要实现系统功能来完成,主要包括:服务协议、安全、干扰、下载、设备重新设置、服务适应与供应、系统检测、频谱转移及动态资源管理等。当前E2R项目进程处于第二阶段进行中,其在2006年开始启动至今。

2.3 BWRC

BWRC对于认知无线电的研究主要集中在认知无线电策略及与开发相关技术上,主要的研究内容包括:认知无线电的物理层面、认知无线电多用户、试验平台、MAC设计及认知无线电规则等方面。

2.4 WINLAB

WINLAB在认知无线电研究领域中涉及到的项目主要有:开放频率使用认知无线电及认知无线电平台。开放频率的使用认知无线电项目在2004年秋天开始启动,通过与朗讯公司的科学技术合作,使用认知无线电算法和构架研究实现无线频率的开放使用[5]。主要研究内容包括频率连接调度算法的共享、定价、频谱仲裁及干扰避免机制等。

2.5 CWT

CWT在认知无线电的研究区域包含两个项目,第一,美国的无线网络实现技术―VT认知引擎,主要内容是开发并且测试认知无线电系统原型,于未被使用的TV频道实现WiFi的无许可操作,用来研究合法无线电及认知无线电之间的协作关系;第二,美国全球协作的公共安全认知无线电模型,通过建立认知无线电模型的方式来识别三种不同的公共安全波形,且相互协调[6]。

除此之外,为了保障无线网络具备更优的认知无线电技术,提高频谱的利用效率,IEEE同时制定出两种不同的网络协议,即802.11h与802.22。其中IEEE802.11h能够有效为无线局域网开放5GHz的频谱,降低无线网络的频谱干扰,实现频谱资源的共享。IEEE802.22通过运用认知无线电技术将电视广播的VHF频带频率作为宽带访问线路进行利用,由此来支持未经许可的无线设备占用未经使用的TV频带。

3 认知无线电发展前景与技术

3.1终极无线电

国内有研究学者研究出盲源分离的无线通信技术,其能够脱离感知频谱空穴,直接在随意信道上进行通信,其能够有效屏蔽信道中的各种信息干扰,准确分辨出所需信息,该种无线电被称为终极无线电。终极无线电主要通过盲源分离来实现频谱资源的高效利用,但盲源分离的基础是信号远离噪声的理想情况,实际生活中无法实现,由此终极无线电的研究仍在继续,面临诸多挑战。

3.2关键技术

(1)频谱检测。频谱检测技术主要包括单点频谱检测,其主要通过检测单个无线电节点来确定无线环境的频率占用状况;多点协同频谱检测:将多个节点的频谱检测结果统一,提高检测正确性。

(2)频谱资源分配。解决频谱资源分配紧张的方法有两条,第一,通过提高频谱资源的利用率和充分利用授权用户的频谱资源;第二,提高通信系统的运行效率,将已获得的频谱资源进行优化分配,提高利用率。正交频分复用技术属于当前有效实现频谱资源控制的主要传输方式,其能够通过频率的合理组合来实现频谱资源的高效利用,合理控制频谱、时间及功率等资源的利用。

(3)动态频谱管理。动态频谱管理同时被称作动态频谱分配,其主要通过发射端来执行。频谱管理主要通过自适应策略来高效利用通信频谱,同时能够较大程度提高无线通信的灵活性和信道使用能量,从而实现主用户和次用户间避免冲突和公平共存频谱的目的。动态频谱管理可以通过对频谱的辨认来了解频谱可用时间从而实现频谱的合理分配,频谱分配主要根据频谱节点数将频谱分配给一个或多个节点。动态频谱管理应当对节点的接受能力进行评估,同时对源节点到目标节点进行合理调整。

(4)位置感知。地理环境的差异会对无线电信号产生影响,例如,室内与室外、城市与农村、山区与平原等相比较,后者的无线电信号较前者更强一些。认知无线电技术中的定位系统和地理信息系统的结合,能够有效帮助其识别自身位置,由此根据所处环境选取适当发送频率及调制方式等。

(5)链路保持。通常授权用户进行再次通信时,认知无线电技术需要在极短的时间内将正在进行得频率空出,同时还需保障通信的连续性,以上便是认知无线电技术中的链路保持技术。诸多研究学者认为,编码技术可以用来实现链路保持技术,主要方式通过增加链路冗余达到数据冗余。但冗余数与链路可靠性并不成正比[7]。

(6)物理安全。认知无线电系统使机会方式与用户频段相结合,容易干扰到主用户,因此频谱感知必须具备极强的弱信号检测功能,主要用以检测主用户的信号,方便其切换频道。与此同时,认知无线电系统较易受到干扰与攻击,即为“模仿主用户攻击”的问题。跳频通信系统具备极强的抗干扰能力,能够有效解决无线通信的干扰问题,同时能够容许系统出现较高的扩频频段,能够与认知无线电技术进行完美融合。由此看来,在认知无线电技术中引用跳频通信技术能够为无线电系统提供物理安全保障。

3.3重点研究内容

(1)理论与应用。主要为大规模的应用提供坚实的基础,其中相对重要的内容包括:认知无线电的理论基础与相关网络技术,例如,频谱资源的合理管理、跨层次的优化等[8]。

(2)系统开发。当前,多个试验验证系统正在进行开发,一旦开发成功,会对认知无线电的基本理论及关键技术提供验证所需的测试床,能够促进认知无线电技术的使用范围。

(3)系统结合。当前认知无线电技术不应当对授权用户做出改变,授权用户与认知无线电用户一同进行工作时,势必会提高无线通信效率。当前,诸多研究已经在分析认知无线电与现有无线通信相结合的方式,有了一定成果。认知无线电与智能天线和软件无线电等相互结合的应用方式具有良好的发展前景。

(4)隐藏终端。有工程师认为,认知无线电技术能够识别其周遭的发射机,但对接收机无法识别,由此便会出现隐藏终端的问题,加之电信自由化问题,造成认知无线电技术仅能对其了解信号产生反应。认知无线电无法识别其他频段,造成一个完整的无线电感知系统无法识别频段的使用方式。

(5)频谱法律管理。当前情势下,诸多频段已经成为人类开展业务的一种手段,特定情况下,人类为获取频段的优先使用权会投入巨大资金,但是新的服务可能会干扰到基础设施,由此造成当前业务模式出现问题。

(6)频谱与路由联合选择技术。认知无线电技术能够根据周围环境的变化来实现通信频率的正确选择,通常情况下,通信频率的改变的前提是适当调整上层协议,例如,路由协议等方面。认知无线电技术根据频谱改变来正确选择频谱感知路由协议的过程需要技术人员深入研究。除此之外,认知无线电技术中的认知引擎、认知算法及通用平台等几方面内容同样值得深入探讨[9]。

4 结语

认知无线电是一种基于软件无线电的智能无线电,其能够完美展现新型的频谱管理模式,同时将自身与外界环境进行融合,以此来解决通信需求与频谱资源间的供需矛盾。认知无线电带给无线通信发展空间的同时促进了无线电的发展,其属于多种高科技技术的综合,在军事及民用领域的应用前景极为广阔。认知无线电技术在应用过程中会面临诸多难题,需要诸多技术性的突破,将其纳入实际进行应用还需要时间,该领域的诸多问题已经成为无线通信研究的重点。

参考文献

[1]杨洪宾.基于软件无线电技术的数字集群系统研究[J].科技资讯,2015,05(10):18-20.

[2]张玲.认知无线电网络中的动态信道分配技术探析[J].网络安全技术与应用,2015,04(06):52-54.

[3]郑志超.软件无线电技术的发展及应用[J].电子技术与软件工程,2015,09(12):35-38.

[4]李玲.论基于软件无线电的通信系统[J].电子世界,2013,02(11):65-66.

[5]王建秋.软件无线电现状发展及其在专网中的应用[J].信息通信,2013,04(20):253-254.

[6]郑涛,志,施Z,等.基于FPGA的软件无线电接收平台设计[J].软件,2013,04(06):26-28.

[7]赵小璞,石贱弟.一种软件无线电与认知引擎的接口实现方法[J].电子设计工程,2013,13(05):127-130.

[8]李瑞正,周威.浅析软件无线电发展现状及关键技术[J].数字技术与应用,2013,07(09):207-208.

软件无线电篇8

1.1软件无线电的发展历史在1991年美国在海湾战争中,根据实际需求,美国军方最早提出了软件无线电技术。1992年Jeseph.Mitola首先提出了软件无线电技术。1994年美国三军研制成功。1997年作为军用系统实现了联合作战,能够采用数据和语音通信。1998年参谋部解决了三军合作的通信,并研究出了无线电网关。1999年Speakeasy(Phase2)美国研发成功。三、软件无线电技术在移动通信测试领域应用的实际意义。虽然最开始软件无线电技术主要集中应用在军事方面,但是在最近的20年里,很多研发机构投资了很大的人力、物力和财力对软件无线电技术进行深入研究,致使无线电技术从军事领域向民用领域过度。主要体现在2000年的前十年一直处在研究讨论的过程中。并且也就仅有几用平台使用了此技术。随着1995年IEEE的正式推出,通信领域里应用无线电技术成了非常重要的研发内容。就在这一年欧洲也提到把软件无线电技术应用在在移动通信测试领域。到了2000年以后,由于通用硬件的水平飞跃发展,致使软件无线电技术不再单单是理论而是逐渐实行到工程上。1.2什么是软件无线电软件无线电是一种无线电广播通信技术,它基于软件定义的无线通信协议而非通过硬连线实现。频带、空中接口协议和功能可通过软件下载和更新来升级,而不用完全更换硬件。

2软件无线电的结构组成

2.1软件无线电的基本组成与传统无线电相比较,数模和模数与射频段更加接近。使用高速的DSP/FPGA代替专用数字电路和低速的DSP/FPGA相互结合做数字化的处理。为了实现横跨多个频段,可以使用一个BF模块或者在全频道和每个频段使用。也可以思考使用智能天线技术。因为软件无线电技术有统一的形式和损耗低的频段同时它还有多倍频程的频段。例如军事通信模式中作为备用模式的移动终端VHF/UHF,UHF卫星通信,HF通信。FR的特性是变频、滤波、放大功率。值得注意的是要考虑到电磁干扰的问题,因为FR在对模拟信号进行转换时问题比较突出。2.2软件无线电的主要技术现在采用的是中频数字化的软件无线电结构,主要是因为A/D、D/A及高速DSP的处理能力还未达到理想的要求。软件无线电的主要技术包括:高速宽带A/D变化,并行DSP的处理,宽带的上、下变频技术,智能天线技术,如图1所示。2.3软件无线电的主要特点软件无线电具有很强的开放性,主要体现在把以前的功能单一系统变为通用的结构。硬件根据需求升级,而软件自主更新。这样就延长了软件无线电的使用周期,同时更主要的是SDR能够兼容新旧体制电台。软件无线电还具有较高的灵活性,SDR可以建立自任意电台,这样就可以在其他电台射频,SDR选择合适的模块进行更改和升级,这样大大减少了财力的付出。

3软件无线电的应用

3.1个人移动通信随着人们对通信需求的广泛增加,这样一来就缩短了通信产品的使用周期,研发费用增加。另外,随着新通信体制的诞生,难免出现与老的通信体制并存,这样一来,通信系统就会变得多样和复杂。为了寻找更具拓展力的个人移动通信系统,软件无线电技术能够满足人们的要求。无论是基站还是移动终端都采用了无线电结构的蜂窝移动通信系统,硬件的要求简单,由软件来定义功能。这个蜂窝移动通信系统与其他系统不同,首先区分可用的传输信道,检测传播的途径。最后选择合适的信道调制,选择合适的功率,正确的方向然后再进行发射。接收和发射的道理相同,能够准确的区分相邻信道和当前信道的能量动态,自己抵消干扰,估量信号的动态特征,识别输入信号的方式,对多径信号进行均衡和合并,对调制进行解码,最后使用FEC改正其他剩余错误。此外,软件无线电技术还能够开放增值业务。从硬件发展到软件其实经历了三次变化:(1)从固定到移动;(2)从模拟到数字;(3)从硬件到软件。其实(2)到(3)演化过程中软件无线电技术发挥了很大的作用。软件无线电技术在移动通信领域确实变得更加广泛。3.2军事通信由于陆军、海军和空军为了互不干扰,所以他们的工作频段各不相同,海军(2-30MHz)陆军(30-88MHz)空军(225-400MHz)。在海湾战争中美国为了实现联合作战所以最早提出了软件无线电技术。1995年美国在SPEAKeasy的计划中研发出了MBMMR电台,这个电台满足了联合作战的需求,其主要特点具有多模式、多频段。整个无线频段几乎都被电子战覆盖,所以说电子战的特点具有宽频段,但是等待处理的信号类别较多,它的工作是被动接受。现在使用的电子战系统都是在事先预设的信号下工作,假如信号的通信方式和特征发生改变,电子战系统就没有办法很好的处理了,为了避免影响作战,研究出波形适应性好,可拓展能力强,频段宽,不仅能适应导航,还能适应雷达信号最重要的还要具有敌我识别信号。满足这些要求是现代信息战争的需求,解决这些要求的就是软件无线电技术,所以说软件无线电技术应用在电子战中有广阔的前景。

4软件无线电的发展前景

随着通信技术的进步,人们越来越需求具有兼容特性的设备,与以前的无线电设备相比较,软件无线电系统有很强的优势主要表现在:(1)适应性强;(2)灵活性高;(3)互操作性好;(4)功能软件化;(5)结构通用。这样能够支持多模式的手机和基站。能够让不同的空中接口和网络接口同时存在。相信在不久的将来能够实现蓝牙、以太网、广电网的连接和兼容。利用软件无线电技术开发出了四信道多波形样机,设计了第3代移动通信系统方案TD-SCDMA。无论是“863”还是“九五”“十五”都提出了把软件无线电技术重点研究起来,可见人们对软件无线电技术是相当重视的。我个人觉得把微电子技术、信息技术、通信技术融合在一起将会是一个新兴的具有实际意义的领域。

参考文献

软件无线电篇9

1、软件无线电概述

约瑟夫・米托拉(Jeseph Mitola)在1922年5月份举行的美国通信系统会议上第一次正式提出了“软件无线电”(SWR,Software Radio)的概念。该概念的核心思想就是积极建构一个模块化、标准化、通用化的硬件支持平台,而后借助该硬件支持平台,让宽带D/A转换器、A/D转换器与天线在最大程度上相互靠近,利用软件技术来实现各种所需要的无线通信功能,例如数据格式、工作频段、加密模式、调制解调方式以及通信协议等等,让软件无线电拥有使用灵活、通用性强、便于升级和系统联网的优势。由于软件无线电的各种功能是通过软件编程实现的,因此,假如需要对通信系统进行更新只需要添加新型软件模块即可;同时,软件无线电可以形成多种通信协议与调制波形,因此能够有效兼容以往的旧体制电台,延长了通信系统的使用寿命,降低了使用成本。

各个国家为了彻底解决通信中的互通性问题,均在积极开展研究和探索,在让通信系统充分满足互通性的前提下,还需要在保密性、抗干扰性、安全性等方面多做努力。除此之外,为了同时兼顾无线电台时展的衔接问题,通信系统还需要具有较长的使用寿命。除了软件无线电之外,还有另一设想也能够满足以上要求,即研发多功能化、多频段化的电台,并将其系列化,用以代替目前所有的电台,但是该想法需要有强大的资金支持,并且使用寿命也很难符合要求。在通信技术发展极为迅速的今天,那些系列化的电台会很快落伍。

在今天,日新月异的电子技术和计算机技术、高速发展的信号处理技术和宽带模数转换技术、具有较高技术成熟度的EDA工具和可编程器件尤其是不断提升的硬件制造水平,这些均为软线无线电提供了极大的技术便利。有鉴于此,软件无线电的物理层必须要具备非常优秀的适应性和灵活性,能够在最大程度上兼容各种操作系统,并保证各种通信功能可以正常使用。相对于传统的通信系统,软件无线电不需要考虑多标准通信问题、信道特性和介质的改变问题,总之不需要考虑硬件的更新问题以及由此带来的接口通用性问题,它在保证通信功能的同时,也有效节约了使用成本。

2、软件无线电的相关特点

软件无线电技术具有众多的优势,归纳起来主要有以下几个方面的优势:

第一,易于实现系统的模块化。软件无线电技术的基本设计思想就是模块化设计理念。利用该技术,非常容易实现通信系统的模块化设计。通信系统的硬件平台和电气接口方面均严格遵循开放和统一的标准,如果需要进行维护或者提升系统性能,仅仅通过更换某一个模块便可以实现,而不需要更新整个系统。

第二,全面的数字化。软件无线电技术能够为我们提供优秀于当前任何一个数字通信系统的全面数字化的通信系统。这主要是因为软件无线电技术数字化处理的重点便是通信系统的基带信号、射频段信号以及中频段信号。

第三,功能的软件化。软件无线电技术除了必需的具有良好通用性的硬件支持平台之外,其他的各种功能均能够通过软件编程的方式来实现。一般情况下,软件编程可以实现以下这些功能,主要包括:信源编码、解码方式以及可编程的射频频段、中频频段、信道解调方式与信道调制方式等等。

第四,优秀的可拓展性。软件无线电技术具有非常优秀的可拓展性,不管是系统功能的拓展,还是系统功能的升级,均可以非常轻松地完成。由于软件无线电技术基于模块化、标准化、通用化的硬件支持平台,因此在硬件方面的可拓展性不大,其优秀的可拓展性主要体现在软件方面。如果想要对系统进行升级或者拓展仅仅需要对相应的软件进行升级或者拓展即可,非常方便。升级和拓展软件要比改进和优化硬件电路简单许多。借助于软件工具,能够根据实际需求来实现各种通信业务的拓展。

3、软件无线电的若干关键性技术

3.1 DDC(数字下变频技术)

DDC是“Digital Down Converter”的缩写,即数字下变频技术。数字下变频是A/D变换完成之后排在第一位的需要处理的工作项目。通常而言,数字下变频主要包括数字下变频、二次采样以及滤波等三项内容,是通信系统当中进行数字处理工作量最大的环节,也是工作难度最大的环节。一般情况下,人们均抱有以下观点,即只有对每一个采样点进行一百次以上的操作才能够在比较好的程度上进行滤波等处理。我们假设基于软件无线电的通信系统的频率是10 MHz,那么采样率则必须要高于25 MHz。则单个DSP(Digital Signal Processing,数字信号处理)芯片需要具备至少2500 MIPS(Million Instructions Per Second,百万条指令)的运算水平,目前的DSP水平是很难满足这样的运算要求的。目前为了有效解决DSP预算能力的瓶颈问题,通常都将DDC(数字下变频技术)的工作交给专用的可编程芯片去完成。借助此举,软件无线电的可靠性不仅获得了保证,还保留了无线电所特有的优势。目前的DDC芯片通常具有很高的可编程能力,可以比较简单地通过改变控制参数的方式来控制信道的中心频率、二次采样率以及带宽,实现从一个带宽信号中将所需要频点和带宽的信号进行滤出的效果。

3.2 宽带/多频段天线技术

我们对基于软件无线电的通信系统的天线提出的要求是,能够有效地覆盖所有的无线通信频段。显然,这样的要求还是非常高的。我们以美军为例,它曾经研发出一款几个倍频程的宽带天线,然而由于效率非常之低而最终放弃。对于绝大多数的通信系统而言,其天线只需要覆盖几个频程不同的窗口便可以,而不是一定要覆盖所有的频段;如果想要覆盖所有的频段,则可以采用组合式多频段天线的方法来实现该要求。并且,组合式多频段天线在技术上具有很高的可行性,我们以美国研制的AN-400型的超宽带叶片状天线为例,它可以覆盖960MHz至1220MHz和30MHz至400MHz的频段。

3.3 高速信号处理技术

高速DSP(Digital Signal Processing,数字信号处理)芯片是基于软件无线电通信系统的核心部件之一,其中主要的职责就是完成编码/译码、比特流处理、调制解调以及基带处理等环节的工作内容。但是高速DSP芯片也是制约基于软件无线电通信系统发展的重要因素之一,主要原因就是单个的高速DSP芯片处理能力不能够有效地完成单路数字话音调制解调和编码/译码的工作量。因此,为了应对以上问题,通常需要采用多个DSP芯片并行处理的方式来获得运算能力的提升。

4、软件无线电接收机设计思路

4.1 选择软件无线电接收机的结构

软件无线电的结构基本上分为三种:射频低通采样数字化结构、射频带通采样数字化结构和宽带中频带通采样数字化结构。其中,射频低通采样数字化结构的软件无线电,对A/D转换器的性能如转换速度、工作带宽和动态范围等提出了非常高的要求,同时对后续的DSP或ASIC(专用集成电路)的处理速度要求也特别高。射频带通采样结构的软件无线电,虽然对后续DSP的处理速度要求不高,但是这种结构对A/D工作带宽的要求(实际上主要是对于A/D中采样保持器的速度要求)是比较高的。与前两种结构相比,宽带中频带通采样软件无线电结构,不仅不需要第一种结构所要求的超高速采样,也不要求第二种结构所需的高精度、高工作带宽所要求的采样保持放大器,使A/D设计大大简化,其代价只是增加了一些前端的复杂性,综合以上分析讨论,宽带中频带通采样软件无线电结构是近期软件无线电研究中一种较可行的设计方案。

4.2 软件无线电接收机硬件设计思路

硬件电路的实现是检验理论的最有效的方法,基于软件无线电的通信系统是基于中频带通采样数字化结构的,使用专用数字下变频芯片HSP50214进行设计的软件无线电接收机,可实现模拟下变频、采样、数字下变频、信号处理和模拟输出等功能。此接收机的整体设计思路包括以下几个模块:

(1)模拟前端。此部分主要是实现射频信号的模拟下变频,将信号变换成中频,模块的主要器件可采用UV1316。

(2)中频放大A/D采样模块。此模块主要实现对信号的中频放大和高速A/D采样,器件可选用中频放大芯片MAX4265和A/D采样芯片MAX1444。

(3)数字下变频模块。此部分主要功能是从输入的宽带高速数据流的数字信号中提取所需的窄带信号,将其下变频为数字基带信号,并转换成较低的数据流。

(4)直接数字合成器模块。直接数字合成器部分可利用AD公司的AD9851芯片实现可变采样频率的合成。AD9851的功能十分强大,在本系统中用作产生数字可调的A/D芯片的采样时钟和DDC芯片HSP50214B的采样时钟输入信号CLKIN。其目的是为了满足DDC的CLKIN等于A/D采样频率的倍数关系,并且实现可变采样频率采样,增加系统的灵活性。

(5)数字信号处理(DSP)模块。本系统可应用TMS320C5402高速定点DSP芯片,它在整个系统中起着中心控制和实现数字调制解调等数字信号处理算法的功能,是整个系统的核心。

(6)D/A转换模拟功放模块。D/A转换模拟功放模块可采用MAX525芯片和MAX4298芯片,主要实现对数字信号的数模转换,并对模拟信号进行功率放大。

5、结语

基于软件无线电结构的通信信号调制解调通用平台软件,通信系统可以实现对多种模拟、数字调制解调模式的兼容,如要实现对信号其它模式的调制解调,只需基于此结构添加新的调制解调算法即可,而不需要改变系统整体的结构。

总之,在现代的移动通信系统中,信令部分已经是用软件完成,软件无线电的任务是将通信协议及软件标准化、通用化和模块化。同时,把现有的各种无线信令按软件无线电的要求划分成几个标准的层次,开发出标准的信令模块,研究通用信令框架。软件无线电的关键和重点技术使其具有相对于传统数字电台的优越性,让软件无线电技术在具有多元化功能的同时,也为电台的宽频段提供了必要的保证。

参考文献

[1]祝陈,赵虎,柯海宁.雷达信号中频采样技术[J].安徽电子信息职业技术学院学报,2009,(02):102-103.

[2]钱团结,章晓霞,陈离.软件无线电技术在数字电视中的应用[J].安徽工程科技学院学报,2002,

(01):105-106.

[3]唐睿,陈霞,谈振辉.软件无线电的数字中频技术在WCDMA基站中的应用[J].北京交通大学学报,

2005,(05):155-156.

[4]喻黎霞.软件无线电中前端数字下变频的研究[J].办公自动化,2009.

[5]王建忠.多相滤波在软件无线电中的应用[J].兵工自动化,2004,(04):222-224.

[6]陈冒银,代健美,刘作学.基于ICS-554的软件无线电载波同步[J].兵工自动化,2006,(09):256-258.

[7] Test Method for Frequency Hopping Radio Based on Software Radio[A].Proceedings of 6th

International Symposium on Test and Measurement(Volume 8)[C],2005:156-158.

软件无线电篇10

一、软件无线电技术硬件平台解析

如今,软件无线电的应用越来越广泛,在蜂窝移动通信系统中软件无线电的应用也是一个发展趋势。如我国的第三代移动通信系统TD―SCDMA中就结合了软件无线电、智能天线、全质量话音压缩编码技术与联合检测技术等新通信技术。软件无线电是一个标准化、开放式的平台,以硬件作为基础,将编写好的指令预先录入,用以操纵硬件进而实现尽可能多的无线通信功能,可以通过改变软件的方式改变软件无线电所具有的功能,并可因此减少硬件模块的数量和复杂程度,所具备的灵活性、集中性、维护性无可比拟。

我国目前的地面数字电视往往对于一些较灵活的业务难以开展,尤其是 MMDS 系统,由于其频率较高,对可移动的业务很难支撑,一部分发射台拥有较高的发射功率,对于低成本大面积的覆盖的实现是比较容易的,但对未来双向通信的实现就比较难了。 通过引入软件无线电技术可以很好地解决这些问题,从而推进无线电系统的不断发展。

数字广播电视是电视系统从模拟信号向数字信号过渡的表现,软件无线电技术是通过将 A/D 变换器靠近射频天线来尽早获取模拟信号,并将其转化为数字信号。 数字广播电视是无线电技术的载体,其数字信号产生后,需要用宽带的数模转换器将其转换为模拟信号。 通常软件无线电技术具有较强的灵活性,可以通过软件无线电技术的升级来实现一些新的技术突破, 例如,DSP 的处理能力不足等,为使软件无线电技术能够很好地与实践相结合,可以在无线电技术基础上限制一些条件来对其进行约束,这样虽然降低了系统的灵活性,但也提高了无线电技术的可实现性。

二、软件无线电的硬件平台的优点

在数字广播的发展历程中,软件无线电技术无疑是给它注入了新鲜的血液与活力,我们可以了解到软件无线电是基于总线连接方式的模块,每一个模块除了具有处理单元和存储单元外,还应具有总线接口单元,所以软件无线电的硬件平台具有一些优点:

(一)灵活性

它具有很高的灵活性,它含有很多的不同的功能模块,正是由于这些不同功能的模块,所以通过它们之间的不同组合就得到了不同的系统,用来完成不同的工作。加入了软件无线电技术以后,可以做到在不改变原有功能的基础上减少系统运行的成本,而且升级方式简单,也更加灵活。

(二)开放性

它具有开放性,软件无线电采用了标准的总线接口方式,在进行组装的时候它不必采用一定厂家的生产,少了很多的束缚,只要是能够符合国家规定的标准即可,这样就大大的缩短了生产的周期,同时也由于这种开放性,也大大的降低了投资的风险性。

(三)稳定性

它在进行功能扩展的时候比较方便,由于各个模版之间联系不是很大,所以它在增加或者减少功能的时候对其他功能产生的影响微乎其微,这也大大提高了稳定性。 在我们的工作中也能减少很多的不必要的麻烦。

三、基于软件的数字电视系统

软件无线电技术是一种新兴的无线电通信方式,其核心理念是以软件编程的模式来对原有系统进行升级换代,十分适合于广电系统的技术发展和市场需求。实践已经证明此种技术与传统的无线电相比具有难以替代的优势,所以可以预见其发展前景十分广阔。

当前,我国比较通行的数字电视主要存在着DVB-S,DVB-C以及DVB-T等制式,而且由于用户的原因,数字电视将在很长的一段时期之内同时兼容各类制式。这些情况也直接体现在我国目前的主流数字电视接收机的厂商中,当前的机顶盒也充分考虑了多种制式的现象,这也能够推进我国数字电视的推广速度,使其覆盖范围扩大,使用户的投入减少。

通过构建的数字电视系统,能够结合不一样的传输制式,来为其加载相对应的软件单元,从而实现终端与传输底层协议的匹配,已经被证实是一种比较可靠的实现方法和解决方案。目前对这种技术进行推广的主要阻力来自于成本问题,由于数字电视最终归属于普通的家电类商品,如果定价偏高则会鲜有人问津。而随着微电子技术突飞猛进的发展,不少产品的成本正在逐步降低,因此给予软件的数字电视产品最终会通过市场来反哺其研发,实现良性的循环。

参考文献

[1] 吴金贵,管云峰. 软件无线电技术在CMMB、地面数字电视及3G技术融合中的应用展望[J]. 广播与电视技术. 2010(06)

软件无线电篇11

军用软件;软件无线电;通信技术

软件无线电的概念是1992年被提出来的,它具备了完全的数字化、模块化和全程可编程性,升级系统更加的便捷和可扩充,所以这一概念也同样带动了信息领域的第三次技术变革。软件无线电实现了军用电台还有各个网系之间的互联互通和互相操作,实现了通信系统的升级换代,变得更加经济合理。所以目前更加具备灵活性、开放性和通用型的军用软件无线电通信技术是我们国家部队通信技术研究者要不断研究的课题。

一、软件无线电的概念

软件无线电就是利用硬件建设为无限通新的平台,然后实现无线通信和个人通信功能的软件实现。软件无线电是近些年来才提出的一种概念,可实现无线通信的新体系结构,该结构具备了很强的灵活性和开放型。目前软件无线电具备了很多无线通信体制达不到的优点,所以会有很广泛的应用市场。让无线电通信技术在军事方面能够实现各个军用电台的互联互通,同时能够接入各种各样的军用移动通信网。软件无线电通信技术同样在生活中实现了移动电话通用手机、多频段多种模式的移动电话通用基站、无线局域网以及通用网关软件无线电的领域使用。无线通信产品的价值都体现在了软件上,通过软件来实现通信新系统核心产品的开发,代表了无线电领域从固定发展到了移动,从模拟发展到了数字的第三次信息技术革命。

二、国内软件无线电的技术发展和军事应用现状

我们国家目前针对软件无线电技术的研究还处于初步发展阶段,在某高新科技计划中专门针对高新通信技术制定了“软件无线电技术”的专业研究项目组,充分表示了国家针对这一项目的重视。在我们的现实生活中,软件无线电技术已经成功面向800MHz商用蜂窝移动通信、卫星通信、GPS全球定位系统等领域的应用。由于目前我军的软件无线电技术还不算成熟,所以军事通信领域的应用同样比较空白,所以相关的一些科研院所也在极力的探索现阶段的军事通信方面的应用研究,利用目前的软件无线电技术来实现多个电通,多功能的车载电台能够实现各类军用无线系统的空中转信的目标。“军用无线电网关”具备了目前国际上的先进技术水平,能够成功实现不同频段、不同体制的电台之间的互联互通现象,这也让我国军队协同通信课题的研究取得了突破性的进展。

三、军用无线电通信技术发展方向

由于军用通信系统相比起民用系统来说要求比较高,所以在技术要求也比较复杂,由于装备使用比较昂贵,很多的地域通信网络中只有英国、法国、美国等少数国家作为标准装备在使用。我国军用移动通信装备目前还处于发展阶段,部队也进一步展开开发和研究工作,针对已经具备该系统的地域通信网络不断改善工作性能,而不具备通信系统的地域通信网加大建设力度,随着技术不断开发,我军的移动通信系统将会在抗干扰性、抗侧向性、抗截获性上有很大的突破,在系统的容量、传输的可抗性上也会有显著提高。移动通信后期不再仅限于陆地使用,还要往空中发展,例如说直升机、系留气球等作为空中中心台,利用卫星转发器作为中心来空间通信,到那时我国的军用软件无线电通信将会在后期的军事领域发挥出巨大的作用。

四、军用软件无线电通信发展注意事项

目前军用项目和民用项目虽然基础技术相同,但是具体发展需求是不一样的,非军工企业就算是具备了先进的技术也不具备进入国防市场的条件,所以一项技术能不能被军事所使用,不能仅仅考虑它的经济效益,还需要更高稳定性、可靠性和先进性。军品生产国家规定了特殊的标准和规范,需要结合大量的经验积累和高超的工艺条件,实现军用标准和国家标准的双轨制度检验。由于民用技术的指标和军用产品指标有差异,所以非军工企业要想进入军工行业必须要对企业的生产设备和人员工作结构进行相应的改进,如果其中一旦出现产品不符合要求其中需要承担的损失将会非常高昂,所以高端的技术指标和企业品质,是我国军用软件无线电通信技术发展的一项最重要也最基础的要求。

结语:

我军软件无线电技术将会朝着更多模式、更数字化、灵活性高、抗干扰性强的方向发展,各类科技研究中心和技术人员还需要不断地努力,不断提升我军用软件无线电通信技术的开发和使用,为我国的军事力量增长做出贡献。

作者:王志田 单位:装甲兵学院通信侦察系通信指挥室

参考文献

软件无线电篇12

1无线电的发展历程

无线电的发展过程是:模拟电路发展到数字电路;分立器件发展到集成器件;固定集成器件到可编程器件;小规模集成到超大规模集成器件;单模式、单波段、单功能发展到多模式、多波段、多功能;各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。20世纪80年代,随着移动通信系统的领域的扩大和技术复杂度的不断提高,为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法--软件无线电,把无线电的功能和业务从硬件的束缚中解放出来。

在1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫•米托拉)首次提出了“软件无线电”(Software Defined Radio,SDR)的概念。1995IEEE通信杂志,出版了软件无线电专集。同年美国军方提出了军用的Speakeasy计划,即“易通话”计划,这个计划主要目标是设计美军新一代无线电战术电台,这种电台具有多种模式、多种速率、多种调制方式,多种接口方式和多种信息安全方式。软件无线电在过去的几年中从军方的研究逐渐被民间商用移动通信领域所重视,特别是多频段、多用户、多模式兼容及互联系统,对于未来移动通信技术特别是在我国3G通信之中的运用将会起到很关键的作用。

2SDR的概念、体系和特点

软件无线电是在一个开放的公共硬件平台上利用不同的可编程的软件方法实现所需要的无线电系统。理想的软件无线电系统是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括射频波段,信道接入方式和信道调制。

理想的软件无线电主要由天线、射频前端、宽带A/D和D/A转换器、通用或专用数字信号处理器以及各种软件组成。理想的软件无线电的组成结构如图1所示:

图1 理想的软件无线电系统

SDR的特点

(1) 可重构性,即系统功能随着需求而改变的能力。软件无线电必须在软件和硬件两方面都支持系统重构,才具有通过改变所运行的软件来定义系统功能的能力。

(2) 灵活性。即系统在不改变软件和硬件结构的条件下,对可重构的适应能力。软件无线电必须能够被精确配置成各种不同的虚拟设备,还要支持不断涌现的新技术和新功能。

(3) 模块化。即将定义系统的各个任务分解为相互独立的软件和硬件模块,这些模块通过接口以逻辑的方式连接起来形成所需要的系统功能。

3SDR在3G中的关键技术及发展趋势

3.1A/D转换技术

软件无线电的信号接收原理如图2.天线接收信号经放大,滤波和混频将射频(RF)信号变换到中频(IF),经过一级抗混迭带通滤波后由A/D转换器在中频进行A/D转换,在由数字下变频器(DDC)将IF抽样信号变换为DSP芯片可直接处理的数字基带信号,DSP完成各种所需的信号处理,并将处理结果送至用户终端。发射过程与此类似,DSP处理后的信号经插值处理变换到IF,再经过D/A转换,IF/RF变换后由天线发射出去。

图2基于软件无线电的信号接收原理

根据Nyquist采样定理:采样速率至少是模拟信号最高频率的2倍,才能保证原信号被无失真的还原。因此要求大输入信号的带宽需要A/D转换器有很高的采样频率.另外,有多路信号间的远近效应而要求A/D转换器有很大的动态范围和取样精度。目前基于软件无线电的采样技术有:过采样技术、正交采样技术、带通采样技术、并行A/D转换技术。其中过采样技术不仅可以降低前级混叠滤波器,也可以有效提高A/D转换的信噪比。而并行A/D转换采样可以有效提高采样分辨率。

不管采用哪一种采样技术,采样频率越高,可恢复的带宽潜力越大。因此软件无线电技术实现的难题和关键点就是A/D转换器的速率和动态范围。理想的SDR,A/D变换器的动态范围应该在100-120db或者16-20位。最大输入信号频率在1Ghz和5GHz之间。但是以现在的技术发展水平,不可能达到这个要求。目前A/D转换器的发展趋势是低功率损耗的单片A/D转换器,但是其分辨率的进步相对于采样速率的进步要缓慢的多。但是随着现代科学技术的进步,将超导和光采样技术应用于A/D转换器,已经成为未来的发展趋势,其中“快速单通量”RSFFQ是最具突破性的一项技术,该技术基于超导基本量子机械特性,说明了离散的量化形式中存在着磁通。在该技术中,单磁通量子脉冲代表二进制值。因为一个完整的单磁通量子代表一个脉冲,所以这种技术的性能受到输入信号最大转速率的严格限制。因此可以通过对处理速度与分辨率进行折衷的方法来达到最佳技术性能。

3.2高速处理模块DSP或FPGA

SDR能否有效实现取决于高速处理模块的数据处理速度和精度。传统的无线电设计可采用ASIC、DSP和FPGA器件的组合加以实现,而在软件无线电设计过程之中 ,DSP、FPGA和ASIC之间的功能划分也在发生变化。ASIC逐渐提供更多的可编程功能,而DSP和FPGA则开始具备ASIC的传统处理功能,三者之间的界限正变得日益模糊。因此,设计人员在设计软件无线电时,通常参照以下原则:(1)ASIC只需提供可以接受的可编程性和集成水平,通常即可为指定的功能提供最佳解决方案。(2)FPGA可为高度并行或涉及线性处理的高速信号处理功能提供最佳的可编程解决方案。(3)DSP可为涉及复杂分析或决策分析的功能提供最佳可编程解决方案。例如?北京艾科瑞德科技有限公司于2007年推出的应用解决方案FFT-SDR-V4。它采用了美国德州仪器公司最高运算能力的DSP和Xinlinx高容量的FPGA(2000万门),解决了软件无线电发展中的瓶颈技术―信号处理的运算能力问题。

FFT-SDR-V4高性能软件无线电解决方案集成了4路实时信号采集通道(每个通道105M, 14bit)和2路信号生成通道(每路160M, 16bit);同时配备了2颗Xilinx XC4VLX60 FPGA(800-2000万门)和TI TMS320C6416(1G)高速DSP芯片共同构成了高速实时信号处理单元;标准cPCI接口,兼容PCI2.2 64位/66MHz;6U标准尺寸;这些结构提供了强大的实时信号吞吐、处理和传输能力,是当今软件无线电的最佳解决方案之一。

4SDR在3G中的应用前景

随着近年来软件无线电技术的高速发展和逐渐成熟,全软件无线电将占据未来移动通讯系统的核心位置,因为它可以使系统开发者完全通过软件来灵活地配置和升级无线通信系统,从而降低成本和更加快速地应对市场的变化,例如从EDGE 升级到EDGE Evolution。Octasic公司近期公布了它的首款基于软件无线电平台的GSM,EDGE 和EDGE Evolution 的基站收发机(BTS)解决方案Vcolla-BTS,该产品应用了该公司突破性的数字信号处理技术。而英飞凌科技股份公司近日与SkyTerra和TerreStar 网络公司联合宣布共同开发全球首款基于英飞凌的创新软件无线电(SDR)技术的多制式移动通信平台。这种突破性技术能够让用户采用成本相当于陆地蜂窝移动通信终端的大众市场手机,在北美地区随时随地建立通信。基于SDR技术的卫星―陆地手机,可支持多种蜂窝和卫星通信制式,其中包括GSM、 GPRS、EDGE、WCDMA、HSDPA、HSUPA和 GMR1- 2G/3G等。

SDR使得系统具有灵活性和适应性,能够让不同的网络接口和空中接口共存,能够支持采用不同空中接口的多模式手机和基站。随着SDR和3G技术的不断成熟,在不久的将来,新一代移动通信技术可以提供更有效的多种业务,最终实现商业无线网络、局域网、 蓝牙、广播、电视卫星通信的无缝衔接并相互兼容。

参考文献:

[1]杨小牛等.软件无线电原理与应用[M].北京:电子工业出版社,2001.

[2]姜宇柏,游思晴. 软件无线电原理与工程应用[M].机械工业出版社,2007

[3]陶然等.多抽样率数字信号处理理论及其应用[M].北京清华大学出版社,2007.

软件无线电篇13

软件无线电[1]是近年来由相关通信机构提出的一种新的实现无线通信传输的体系结构。它的提出目的在于解决现在无线通信领域所存在的一些问题,如:多种通信体系架构并存[2],各种行业标准竞争激烈[3],频率资源匮乏等等。特别是随着无线个人通信系统的不断发展,使得新的系统需求层出不穷,无线电产品生存周期也随之缩短,原有的以硬件模块为主的无线通信体系无法快速响应这种需求[4],软件无线电的概念也便应运而生。软件无线电的基本概念是将硬件系统作为无线通信的基本平台,而通过软件实现尽可能多的无线及个人通信功能。由此,无线通信新系统、新产品的研发随之逐步转到软件系统上,从而使得无线通信产业的产值日益明显的体现在软件上。这是继模转数、固定到移动之后,无线电通信领域的再一次重大突破,并将在新世纪形成巨大的产业价值。

系统采用4CPFSK调制解调方式[5],以ARM9和DSP处理器为核心方案。选用联拓公司的LT1801A作为核心芯片,该芯片内部集成了ARM946E+ZSP400,同时集成了大量的接口设备和丰富的外部设备。本设计的目的是搭建一个具有多种通信协议标准兼备且具备不同频段的硬件平台,该平台可利用软件架构完成各种通信功能需求,最大限度的使其成为新一代无线通信系统的大平台。平台中功能的实现首先是依靠软件控制和软件再定义,然后采用不同的软件模式实现不同的需求。所写软件可以远程再次升级更新,所设计的硬件均采用模块化结构设计便于扩展升级。

1 4CPFSK调制解调

设计中所采用的4CPFSK是一种非线性恒包络调制,具有记忆特性。4CPFSK与GMSK调制方式相比较,同时也具有频谱效率高、临道间相互干扰小的特点;4CPFSK与非恒包络调制方式(如QPSK)相比较[6],4CPFSK调制系统中选用工作在C类状态的功率放大器,可降低系统功耗。因此4CPFSK广泛应用于软件无线电系统中。FM调制器的作用就是将经过成形滤波后的采样点进行累加得到发送所需的相位值,同时这也保证了相位的连续性。

为了获得窄带输出的信号频谱以及较好的邻道功率特性,同时也具备较好的抗干扰性能,设计中预调滤波器采用平方根升余弦滤波器进行低通滤波。

2 软件无线电实验平台系统结构

软件无线电实验平台结构如图1所示,主要分为3部分:软件无线电专用基带芯片LT1801A、MMI软件平台、4FSK调制解调器以及射频前端。

基于软件无线电对于多媒体多任务处理的需求,该实验平台的MCU处理器选用以ARM946E为核心的LT1801A芯片;同时,系统必须采用软件平台来实现具体应用中不同的语音、信道编解码方式以及信令系统。

3 应用软件操作系统移植

3.1 应用软件平台系统的体系结构

应用软件平台系统的体系结构如图2所示。

一个完整的应用软件平台系统主要分为两大部分:底层驱动和应用程序(App)。两者之间通过统一的开发接口API来连接的。

3.2 启动引导程序

启动加载程序是嵌入式系统开机后运行的首个程序,其作用相当于个人电脑中的BIOS。它完成基本的硬件系统初始化,将软件系统搬移到RAM中,并将控制权转交给启动后的操作系统。

系统启动时,等待SP初始化完成后,发送消息通知MMI。MMI完成各个子模块的初始化后,运行开机画面。等待操作信号。SP发出SP_MMI_INIT_REQ消息,触发开机流程。

3.3 OSE软件模块功能描述

OSE模块位于操作系统模块与应用软件模块之间,其主要目的是隔离下层使用的不同的操作系统,完成对操作系统的各种功能的封装,可提供对外的统一接口,并提供统一的任务注册和模块启动管理,便于上层应用软件的移植和减少对底层操作系统的依赖。

3.4 驱动程序实现的基本方式

在应用软件平台系统中,设备驱动程序是指一个动态的可直接调用的链接库,它所提供的数据是底层硬件与操作系统之间,以及相关运行在目标设备上的应用程序之间的一个直观的抽象层。系统中所包含的各种驱动程序将无偿的公开相应名称的函数,以及提供各种初始化硬件和与之通信的协议。系统程序运行中使用者可通过调用LoadLibrary和LoadDriver函数实现各种所需驱动程序的加载。

4 调制解调系统控制程序

系统中嵌入式处理器和调制解调模块之间的通信方式是基于双串行接口来实现;数据传输则由通用SPI接口实现;控制的相关指令传输交由GPIO来实现;中断控制器(ICTL)用于控制所有ARM处理器中断源的模块。可以产生常规中断请求(IRQ)和快速中断请求(FIQ),同时送给ARM处理器和CPR模块;时钟功耗复位控制模块主要负责产生系统时钟和所有模块的时钟,控制系统复位,控制系统进入不同工作模式[7]。

4.1 FLASH的访问

根据系统整体设计,FLASH驱动软件模块的硬件运行平台为LT1801A中的ARM946E处理器,软件开发平台可以采用任何通用的ARM集成开发环境。FLASH驱动软件模块主要实现了对FLASH进行读、写、擦除等操作,并为用户提供了两个Block,可单独对每个Block进行操作,用户根据返回值来判断操作是否成功。用户对FLASH进行读或写操作时,可分别调用函数ADRVFlashAPPRead或ADRVFlashAPPWrite函数,输入的Block索引和地址偏移量确定了操作Block的绝对地址,输入的长度确定了一次操作的字的长度。当读或写完成之后返回操作结果。对FLASHBlock域进行擦除时,直接输入索引号即可实现此操作。

4.2 外部存储器控制器(MEMCTRL)

外部存储器控制器(MEMCTRL)将外部存储器映射到芯片内部的地址空间,当ARM总线对此地址操作时,MEMCTRL将总线上的操作转化为对芯片外部存储器操作。MEMCTRL内部的寄存器控制对外部存储器的读写参数和时序。MEMCTRL内部寄存器和外部存储器对应不同的地址区域。MEMCTRL的MEMORY可以被ARM,DMAC0直接访问和ZSP,DMAC1跨桥访问。MEMCTRL包含MEMPIPE模块,可调节读写存储器的时序。芯片的存储器IO管脚上电复位为低阻。MEMCTRL可以控制两种类型的存储器:SDRAM(SDR-SDRAM)和静态存储器SM(StaticMemory)―SRAM,FLASH和ROM。

4.3 嵌入式软件发射接收链路

操作数据经APP处理后由服务提供协议层(SP协议)分信令和操作维护两类消息送至呼叫控制层,呼叫控制层主要负责呼叫控制,支持主机实现高于第二层的功能和业务[8],为用户提供对讲机支持服务,数据链路层则主要处理多用户传输数据的共享,语音信息及用户控制信息经数据链路层交织编码后经射频模块发送出去。发送接收部分的空中接口协议模型中协议栈分成三个协议层和二个协议平面。三个协议层分别为物理层、数据链路层和呼叫控制层。二个协议平面分别为用户平面和控制平面。

5 结语

本文实现了一种软件无线电平台的设计,以ARM9嵌入式处理器和ZSP400处理器为核心。实现了基于4CPFSK调制解调方式的400~470 MHz射频通信功能。通过分析与测试,LT1801A发挥了RAM+DSP结合的优势,能够完整的实现软件无线电的应用,减小系统成本和降低系统功率。通过PC端的写频软件可实现不同频段,多通道的软件无线电系统。经测试本实验平台可以满足国家相关规定和要求,适用于多种语音和信道编解码方式以及不同的信令系统。

参考文献

[1] 杨小牛,楼才义.软件无线电原理与应用[M].北京:电子工业出版社.2001.

[2] 肖维民,许希斌,朱健.软件无线电综述[J].电子学报,1998(2).

[3] Kondo,Matsuo,Suzuki.Software.De6nedArchitectureConceptforTelecommunication Information System[M].ICC 94.NY:IEEE Press,1994.

[4] (美)米托拉.软件无线电体系结构:应用于无线系统工程中的面向对象的方法[M].赵荣黎,王庭昌,李承恕,译.机械工业出版社,2003.

[5] 樊昌信.通信原理[M].6版.北京:国防工业出版社,2009.

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读