欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

电网通信论文实用13篇

电网通信论文
电网通信论文篇1

电力通信网是电网发展的重要支撑平台,电力通信网的发展速度与电网发展水平密切相关。本文定义ΔC为电力通信网发展裕度指标,v1表示电力通信网实际发展速度,v2表示电力通信网理论发展速度,且满足如下关系:(1)ΔC可用于综合反映各阶段、各地区、各层级通信网的综合发展水平。不同地区的电力通信网发展裕度评估结果可以直接反映通信网发展水平的差异以及满足电网发展需求的程度。如果ΔC为负,则说明该地区通信网支撑电网发展存在一定的压力,通信网对电网发展的适应性较差,其通信网建设必须加强;反之则可以说明其建设规模过度,存在一定的投资浪费。基本分析思路是:v1可以通过参考文献[1]提供的计算方法,由历史数据直接求得;需要建立能够直接反映电力通信网发展水平的指标体系(规模因子S)和电网对通信网发展水平产生影响的指标体系(影响因子F);通过建立灰色关联度分析模型,科学地揭示各相关指标之间的内在客观关联规律,从而推导出电力通信网发展速度的理论值v2;通过计算裕度指标ΔC评估各地区通信网综合发展建设水平。

3基本方法与应用步骤

(1)建立电力通信网规模因子集公司电力通信网由骨干通信网、终端通信接入网组成。骨干通信网的建设投资主要取决于光缆线路(OPGW、ADSS)、传输设备(SDH、OTN、PTN等)、业务网设备(路由器、交换机、会议电视系统、软交换系统)。终端通信接入网的建设投资又分为10kV通信接入网和0.4kV通信接入网两部分。通信接入网建设投资取决于接入网光缆线路(ADSS、沟道光缆、光纤复合低压电缆等)、接入网光通信设备(EPON、工业以太网交换机)等。本文列出了12项通信网规模因子(S),见表1。(2)建立电网对通信网发展水平的影响因素集电力通信网建设的根本目的是满足电网安全生产和公司经营管理的业务需求,并保持适度超前。因此,电网的建设发展直接影响通信网的建设发展水平。其中,变电站数量、输电线路长度和营业网点数量将直接影响通信网建设规模,而公司售电量、营业收入、供电可靠性等指标作为电网影响通信网发展的经济因素和可靠性因素。本文列出了13项电网对通信网发展水平的影响因子(F),见表2。在表2中,骨干网光缆长度指10kV以上的所有光缆的总长度;接入网光缆长度指10kV光缆的总长度。骨干网站点具体包含:1000/800kV变电站、750/500kV变电站、330/220kV变电站、110kV变电站、66kV变电站、35kV变电站、地(市)供电公司、县级供电公司、直属单位、营业网点和本级直调电厂。接入网站点是指20/10kV站点(包括开闭站、环网柜、箱式变电站、杆上变压器、柱上开关等)。“√”表示某一影响因子指标直接或者间接地对骨干网或者接入网的规模因子有影响。如35kV及以上变电站数(F1)和110kV及以上高压线路长度(F12)是直接影响骨干网建设规模的主要因素;而20/10kV站点数(F2)和10kV线路长度(F13)是直接影响接入网建设规模的主要因素。(3)影响因子与规模因子的灰色关联分析模型本文以2011年、2012年、2013年的通信网和电网的基础数据为依据,具体步骤和分析方法如下。

4实例计算与结果分析

以某省公司为例,以下说明通信网与电网发展适应性的量化评估方法。首先由《国家电网公司“十二五”通信网规划执行月报》中提取2011-2013年的通信网建设规模基础数据,建立通信网规模因子集S={S1,S2,S3,…,S12},以国家电网公司近3年的社会责任报告中提取电网的发展数据,建立电网影响因素集合F={F1,F2,…,F11},详见表3。其次,经过数据归一化处理后,计算通信网规模因子和电网影响因子之间的关联度,计算结果见表4。由表4可以看出关联度值均大于0.7,说明所选因子集间指标关联度较大,所选指标比较合理。表中还可以看出,同一影响因子对不同规模因子的影响程度是不一样的。其次,根据关联度排序可以得到关联度权重,关联度权重反映了影响因子对规模因子影响的程度。以骨干光缆长度(S1)指标为例,对湖南和北京两个不同地区的骨干通信网光缆长度的影响因素的关联程度不一。对于湖南省电力公司,变电站设备容量(F6)、售电量(F4)、资产总额(F8)是影响骨干网光缆规模的主要因素,而对于北京电力公司,35kV及以上变电站数量(F1)、线损率(F11)、资产总额(F8)和城市供电可靠率(F9)是影响骨干网光缆规模的主要因素。而公司资产总额(F8)和输电线路长度(F5)对两个地区的骨干网光缆建设规模的影响程度是一致的。最后,通过计算发展裕度指标,反映电力通信网的整体发展状况以及各个指标的协调发展情况,“+”表示通信网建设规模超前电网发展水平;“-”表示通信网建设规模滞后于电网发展水平。如图2所示,由于该省电力公司“十二五”期间大力建设终端通信接入网,因此,通信网络接入光纤覆盖站点数(S9)发展较为超前,其发展裕度值为1.9;此外会议电视覆盖骨干网站点数(S5)和综合数据网覆盖骨干网站点数(S6)均较其他指标值超前发展,分别为0.38和0.29,这与该公司近几年部署会议电视系统、加强综合数据网覆盖面的技术政策密切相关,因此计算结果符合当前电力通信网建设现状。此外,还可以对各地区、各省公司综合发展情况进行横向比较,以指导公司总部掌握所辖各区域的网络的差异化发展现状,为通信网规划决策提供指导依据。

电网通信论文篇2

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。

(七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

电网通信论文篇3

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。中国-七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

电网通信论文篇4

一、加强通信电源管理的专业化

随着通信网装备水平的逐步提高,电源也同样处在大量引进新设备、淘汰旧设备的时期,同时为配合维护体制全专业、大配套的改革,用了许多新的维护手段,出台了许多新的维护管理办法。所以在通信网的各级管理层次及建设、维护方面都应该有独立的电源专业管理机构和人员。因为通信电源不仅是一个专业,而且是一个包括多种系统和学科的大专业,由其他专业的人员来兼管电源专业是不科学的,也是不专业的。因此,要管理和维护好现代化通信网,电源专业同其专业一样存在着维护人员素质、水平亟待提高的问题。要解决这一问题可以采取以下一些措施:

加强日常及定期管理,根据新设备、新技术的采用及新的网络体系结构重新制定和完善各项规章制度。

在新建工程时,要从工程设计、方案会审、工程实施到验收竣工各个阶段积极参与和把关。继续搞好技术练兵,加大培训力度。引进电源专业的高素质人才。

二、加强通信电源安全可靠运行的管理与维护

通信电源安全可靠运行是由多种因素和环节所决定的,它与设备质量、工程勘察与设计、运行方式选择、建设管理、运行维护管理等各环节相关。其中对于设备选择、方案设计、工程管理等环节尤其要加强重视和管理。一个先天不足的通信电源系统将造成通信安全的巨大风险和后期人力、物力、财力的巨大重复投入。

2.1动力电源

动力电源设备是所有通信设备运行的动力之源,其运行状态直接影响到通信业务能否有效提供。在日常设备运行中,常存在高压电源单引入、逆变电源不稳定、UPS应用不当等问题,为此应做好以下工作:

机房的高压宜采用双回路供电,即两路不同的变电站输入,以确保供电不间断。对于给机房通信设备供电的交直流电源列头柜,也应采用双路供电,以保障业务设备用电安全。

逆变电源与整流电源应采用一体化设备,以保障安全供电,易于监控,同时可减少设备投资,降低维护工作量。目前,一些通信机房为部分设备提供220V交流电时,采用2KVA~6KVA的UPS(另带有220V蓄电池组)供电,单机工作不可靠,成本高。建议使用逆变且与整流功能一体化的电源设备,其结构为:在整流电源机架的空余子框中插入1KVA~1.5KVA逆变模块,1个子框一般插3~4个,逆变模块均流输出,实现N+1容量冗余,这样不会因某个模块出现故障而影响正常供电。逆变模块的运行监控由整流电源的监控模块统一实现,从而可节省机房空间。由于共用原有的-48V蓄电池组,省去了UPS必须另带其他型号电池组的费用(以16个单体65AH电池为一组,约需1.5万元)及其维护,并减少了动力环境监控系统的协议转换节点(约需0.4万元),6KVA的逆变器(4个1.5KVA模块)比同容量UPS少2万元,因此1个机房就可减少建设投资及运行维护成本约4万元,同时可大幅度减少维护工作量,设备运行也更安全可靠。同时建议在机房新建通信项目时,不应另购小的UPS/逆变器,而应使用机房原有的大UPS交流电源,以保障设备用电可靠,减少故障环节。

2.2蓄电池

蓄电池作为直流(直流系统)或交流(UPS系统)不间断供电的保证,在整个系统中最为关键。电池不但在交流系统或整流器出现问题时保证不间断供电,而且还要在市电正常转换时提供保证。如果电池丧失容量,即使对前端的交流高低压系统、整流系统等配置管理得再好,在一次正常的市电转换中,都可能造成失电而引致通信故障。因此,应把蓄电池的维护管理作为一项重点工作来抓。目前阀控式密封蓄电池以其体积小、电压稳定、无污染、重量轻、放电性能高、维护量小等特点,而成为通信电源系统的首选电池。但在实际使用中,达不到理论预期寿命的比比皆是。

2.2.1影响阀控式蓄电池使用寿命的主要因素

阀控式蓄电池全浮充正常使用寿命在10年以上,理论上可到20年,但在实际使用中,影响阀控式蓄电池使用寿命的因素很多,主要有:

环境温度。环境温度过高对蓄电池使用寿命的影响很大。温度升高时,蓄电池的极板腐蚀将加剧,同时将消耗更多的水,从而使电池寿命缩短。蓄电池在25℃的环境下可获得较长的寿命,长期运行温度若升高10℃,使用寿命约降低一半。

过度充电。长期过充电状态下,正极因析氧反应,水被消耗,H+增加,从而导致正极附近酸度增加,板栅腐蚀加速,使板栅变薄加速电池的腐蚀,使电池容量降低;同时因水损耗加剧,将使蓄电池有干涸的危险,从而影响蓄电池寿命。

过度放电。蓄电池过度放电主要发生在交流电源停电后,蓄电池长时间为负载供电。当蓄电池被过度放电到其电压过低甚至为零时,会导致电池内部有大量的硫酸铅被吸附到蓄电池的阴极表面,在电池的阴极造成“硫酸盐化”。硫酸铅是一种绝缘体,它的形成必将对蓄电池的充、放电性能产生很大的负面影响,因此在阴极上形成的硫酸盐越多,蓄电池的内阻越大,电池的充、放电性能就越差,蓄电池的使用寿命就越短。

2.2.2阀控式蓄电池的正确使用和维护

蓄电池应放置在通风、干燥、远离热源处和不易产生火花的地方,安全距离为0.5m以上。在环境温度为25℃~0℃内,每下降1℃,其放电容量约下降1%,所以电池宜在15℃~20℃环境中工作。

要使蓄电池有较长的使用寿命,应使用性能良好的自动稳压限流充电设备。当负载在正常范围内变化时,充电设备应达到±2%的稳压精度,才能满足电池说明书中所规定的要求。浮充使用的蓄电池非工作期间不要停止浮充。

必须严格遵守蓄电池放电后,再充电时的恒流限压充电恒压充电浮充电的充电规律,条件允许的最好使用高频开关电源型充电装置,以便随时对蓄电池进行智能管理。

新安装或大修后的阀控式蓄电池组,应进行全核对性放电实验,以后每隔2~3年进行一次核对性放电实验,运行了6年的阀控式蓄电池,每年作一次核对性放电实验。若经过3次核对性放充电,蓄电池组容量均达不到额定容量的80%以上,可认为此组阀控式蓄电池寿命终止,应予以更换。

结语

虽然通信电源不是通信网的主流设备,但它却是整个通信网中最重要、最关键的设备。必须看到,通信电源是整个通信网的能量保证,它的作用是整体性和全局性的。在日常维护工作中,要引起足够的重视,明确工作重点,抓住工作重心,确保重点系统的安全运行,减少因电源引起的通信故障,降低故障的影响程度,从而确保通信网的安全畅通。

电网通信论文篇5

1 何谓电力通信和智能电网  

1.1 智能电网 

电网智能化可以看做和智能电网是一个概念,它的建立基础是高科技智能系统、庞大的集成网络以及高速双向的通信网络。智能电网可以有效的保证电力系统安全高效的运行,同时还可以更好地保证在安全的环境中,电力系统可以长期而高速的运行下去。智能电网主要具有以下四个方面的优点:首先是形式方面的优点,电网智能化对各个不同的发电形式之间产生的矛盾具有良好的缓解作用,不同的发电形式都可以同时的存在于智能电网之中;二是在用户需求方面的优势,电力通信系统在电网智能化的支持下更加的稳定而高效,同时也保证了其安全性,这些都和用户对于优质电能的需求是完全符合的,所以很受到用户欢迎;三是运营方面的优势,之后智能电网的建立打破了以往的电力市场和结构,为这种长期以来一成不变的格局带来了新的变化,通过市场中形成的良性竞争,来提高电力市场在运行方面的效率;四是能源利用率方面的优势,智能电网对于电力的损耗更低,这就相当于是提高了能源的使用率,对于环境造成的污染和影响自然也会更低。 

电网的智能化为供电系统的自动化带来了可能性,通过有效的实时监控供电的各个环节,对于发电厂的电流传输有稳定作用,从而保证了用户端电器的信息,同时电网智能化可以在第一时间将用户端电器上的信息以及电流反馈出来,这样就更便于进行电网资源的配置,达到了优化资源使用率的目的,对于远距离或者大规模电能输送中的障碍也得到了有效地解决。所以综合来说我国的电网智能化建设对于资源的节约以及能源结构的改良都是具有积极的意义的。 

2 电力通信技术在新形势下的发展 

2.1 即时信息系统 

即时信息系统的英文缩写为RIS,主要作用是处理和分析电网中的运行数据,即时信息系统离不开互联网技术的支持,其辅助工具是国家的电力数据网络,然后将电力信息通过即时通信系统在社会上进行公开,这样可以更好的实现对保障信息的隔离以及安全防护工作。 

2.2 EMS系统 

EMS系统的主要作用是对信息数据进行集合分类,首先通过电网的采集系统以及监控系统来获得那些数据并保证其准确性和实时性,然后再将这些数据按照紧急程度和使用程度来进行分类处理,优先把紧急数据传输给即时信息系统,不同的传输接口自身的信息传输速度也是不同的,这样就可以保证实时数据的传输处理工作足够及时,不会发生冗余数据干扰紧急数据处理过程这种情况。 

2.3 电能计量系统 

智能电网在电能计量系统方面的要求是十分高的,除了保证具有常规的测量功能以外,还要求可以对电能的计量系统可以做到分时段的双向计量以及累计储存,对于电费的计算和电能的控制来说,这两个功能意义都是十分重大的。除此之外电能计量系统还需要具备一系列其他功能,比如自动采集、对数据进行远距离传输以及存储、预先作出处理以及最后统计分析等,只有实现了这些功能,才能更好地做好智能电网的建设工作以及新的能源网并网。 

2.4 需求端管理 

如今电能用户和智能电网都是采用无线公网的通信系统来进行信息交流的,所以说终端用户的数量会比较多,换句话说就是电网节点过多但是业务量却并不多。如果我们采用CDMA技术或者GPRS技术来进行二者之间的信息交流,在掌握用电户情况的时候可以更加的及时并且有效,这也正是目前电网智能化的发展趋势。 

3 电力通信技术在智能电网各领域中的应用 

3.1 在用电领域的应用 

在用电领域范围应用的通信技术具体可以表现在三个方面,输电及用电的信息采集、高级计量管理以及互动营销管理。根据这些情况我们可以得知选择通信方式的形式上要保证正确,这也是应用电力通信的重点所在,在进行通信网络构建的时候要运用正确的选择,保证信息采集、电网以及用户三方面都可以实现良好并且高效的互动。 

3.2 在输电领域的应用 

智能电网实现了电力传输的远距离、大容量以及低损耗,使得电网对于清洁能源的消化能力更加提升,从而保证电力资源可以实现跨省区进行优化配置,对于我国电力工业布局的优化具有非常重要的作用。我国在建设电网智能化的过程中对输电线路也有一定的技术要求,即挖掘其输送能力和状态监控。这里所说的状态监控包括很多方面,比如基础信息环境信息、智能输电线路系统、运行管理信息、灾害预警信息等多个方面。对于不同机构、不同装置以及不同单位都可以采用合理的通信方式,选择灵活的接入系统来实时监测信息数据,从而做到数据的统一和融合。 

3.3 在变电领域的运用 

变电站的可视化和自动化运行是在变电领域应用通信技术的重点内容,尤其是目前我国的智能变电站已经逐渐普及,在每个地区都有智能变电站的出现,所以变电站的可视化和自动化运行就成为了电网智能化建设中的核心内容。不仅可以提供严谨的数据信息和控制对象给智能电网,同时还可以采用不同的控制保护技术以及通信技术的来将其在智能变电站中得到有效应用。 

3.4 在配电领域的应用 

智能配电网作为智能电网的重要组成部分,其基础是安全性能和可靠性能都十分高的通信网络,以及灵活、可靠而高效的配电网网架结构,可以灵活地对故障进行处理甚至自愈,可以满足诸多的要求,比如说提高电能质量、高渗透的储能元件及分布式电源接入等。智能电网技术将很多现代技术比如现代通信、计算机、测控以及高级传感等进行了集成和融合,对于配电系统的集成、自愈、互动、兼容以及优化等方面的要求都可以完美实现。 

3.5 在安全领域的应用 

电网通信论文篇6

2.1基于云计算的客户价值预测电信通信网络在客户价值预测方面的运用非常频繁,通常会涉及到方方面面的问题,并伴有大量的计算,工作量相当巨大,但如果将云计算应用到其中,根据客户的基本信息进行分析,并根据相关数据进行分析,从而挖掘出客户深层次的信息,并利用分为点的正对新入网的企业用户的信息进行预测,该种预测方法较之传统的预测方法,大大降低了预测的误差。对客户价值预测的基本流程如下,有选择性的将客户的通话记录或者短信进行截取,然后将各字段进行拼凑链接,接下来调出客户的档案信息,根据其年龄、区域和性别对客户群体进行划分和分析,对于不符合要求的客户筛选出局,但注意通话时长是整个过程最主要的参考依据,并结合分为点对通话记录进行有效分类。举个例子,如果我们采取的分位点位n-1,那么以此为中心,将客户群体划分为n类,并根据划分的类别对通话记录进行存储,然后进行bayesian模型的相关训练,最后利用测试集对所测试出来的效果进行对比政策,以便保证预测的准确性。

2.2基于云计算的好友推荐用户的相似度和熟悉度是电信通信网络在利用云计算进行好友推荐的主要依据,据不完全统计得出,该种计算方法的应用逐渐深入并得到了很大的发展,云计算主要是通过客户的熟悉度对二度好友进行查找和分析,将兴趣爱好等相同批号的好友进行归类,如此,便能够得出二度好友的相关相似度和熟悉度,然后利用加权算法低朋友的属性进行分析,从而得出较为准确的客户喜好信息等,同时,我们所要清楚的是,在进行该种方法计算过程中,云计算会根据电信数据库中的基本信息和特点将客户的交流频率和通话时长进行提取,利用二度好友的熟悉度和相似度对其进行计算,最终综合各方面的结果,得出总的推荐度,然后才会将该相似度推荐给用户,大大增加了好友推荐的准确性和实用性。好友推荐的计算流程基本如下,起初,电信通信网络会利用云计算对所有一度好友间的熟悉度和相似度进行一次全面的计算和预测,然后根据一度好友的计算数据推断出二度好友的关系,并且根据得出的一度好友的属性和性格特征对二度好友的熟悉度进行计算,最后通过对各用户的基本属性和好友相似度算出总体的推荐度,并根据相关要求和推荐度的高低有针对性的为客户进行好友推荐。

2.3基于云计算的电信社团特征结构化存储及验证对于云计算在电信社团结构存储方面的计算方法主要是将用户一个月内的通话记录录取并对其进行系统的分析处理,然后根据社团内部的基本特征进行具体分析,从而提出适合本社团的存储方案,再利用通话网络对相关信息进行验证,最终实现社团特征基本信息的分类和规划,从而实现信息在结构中的再次存储,为二次数据的分析提供方便,在此过程中需注意的是,在对方案进行验证时,其研究对象必须是社团本身,在对采集的数据进行比较分析后,还需要与之前的数据进行比较,从而得出综合数据,便于更好的对各类特征进行统计。其中具体的操作流程如下,首先最主要的工作任务就是对社团本身所存在的属性进行全面统计,在没有属性统计的情况下记得对单属性进行必要的统计,接着才是对各项统计数据进行必要的分析处理,根据实际的需求制定出切实可行的统计数据分析情况,再就其做一个一致化处理,最后将结果存储到存储结构中去。

电网通信论文篇7

配电通信网络承载的业务内容比较广泛,有用电信息采集业务、配电自动化业务。其中,在电信信息采集业务中,有包含诸多业务,例如双向营销互动业务、视频通讯业务等等。这个时候的网络构架应该根据不同的网络业务需求进行搭建,需要满足实时性、安全性的组网技术要求。因此,在进行信息系统平台搭建时,应该融入多网融合,这个融合可以包含专业的营销管理系统,将该整个系统纳入配电通信网内,进行科学规划,这样可以将配电信息快速传输到用户营销侧,使得用户及时掌握电网运行情况,从而进行用电调整。用户接入网中的数据通过光纤、宽带无线和电力线载波通信方式接入配电通信网。配电通信网中的lOkV变电站负责接收用户用电信息。在整个输变电络中,有诸多组成,像配电室、开关站以及环网柜等等。选择自动化配置和自动化配变检测。当下,配电通讯网络,一般选择的是“光纤为主、无线宽带为辅、公网为补充”组网方式,这个方式最大特点是将大量的数据汇集在通信骨干网中。营销系统结合以后,就可以更加紧密关注变化。而且可以将更多注意力转移到用户中,了解用户的需求,根据实际需求,进行配电调整,实现电网运行水平提高,保障精细化、合理化以及高效化管理目标实现。

3电力营销与用户接入网网络架构

电力营销以及用户接入网过程中,已经形成一体化的信息通信平台,这平台能够发挥出巨大作用。可以实现对于户接入网监控目的,进行监控家用电器用电情况以及开关情况。最终的信息会于无线传感网将其智能反应在外网上,这些信息的积累是实现主动营销策略最关键依据。这个过程中,应该保障信息传输准确性和实时性。使用多个智能表计将其集中连接起来,实现对小区内用电信息进行采集,集中器会将前端设备进行屏蔽,给予统一的连接接口,最终传输到上层变电站中,这样就可以整合整个小区用电信息,并且可以快速传输给电网。

电网通信论文篇8

孝感供电公司配电网各数据采集点采用ONU将信息传送到最近的有光纤资源的OLT站点,通过光纤以太网传回主站。配网自动化通信系统涉及主城区及7个县市公司77个变电站(包括规划在建变电站)所对应的10kV馈电线路上所有开闭所、环网柜、柱开、箱变、配电室、柱上变等配网结点。对这些配网结点的一次设备进行升级改造,增加DTU/FTU等监测控制设备,在局端构建主站系统等。配用电通信网主要承载业务可分为基础业务和扩展业务两类。

2.1基础业务

配电自动化配电及变电站监控、馈线自动化对于通信速率要求不高,300bit/s可以满足要求。电力负荷控制采用GPRS/CDMA等公网方式的可做到主动上报。负荷监控对于通信速率要求较低。远程自动抄表远方抄表和计费系统对通信速率的要求较低,一般采用集中器对几百户居民电能表数据汇集打包的方式进行传输,每日96点,每15min传一次,基础字长按1kbit计算。

2.2扩展业务

电动汽车充电站测控信息电动汽车充电站信息接入带宽比照公变检测、负荷监控的带宽需求。每日96点,每15min传一次,每次传输数据包按1kbit计算。分布电源测控信息分布电源接入带宽比照配电及变电站监控通信速率要求,300bit/s才能满足要求。智能用电小区智能用电小区业务可分为基本业务和增值业务,智能用电小区建议按用户正常浏览网页带宽需求估算,采用不小于1M通信速率的接入方式。业务汇聚点典型数据测算模型和需求业务带宽预测详见表2~3。依据上述分析,业务汇聚点配用电通信需求预测带宽=基础业务带宽(2Mb/s)+扩展业务带宽(变量×单点带宽)+预留带宽。

3规划目标

2014年起孝感配网自动化通信将采用光纤通信和无线公网方式,作为配电自动化通信网络的基本方案。(1)2015年完成供电B区配电自动化“三遥”、光纤覆盖率为60%,用户年平均停电时间不高于5h;供电C区配电自动化“二遥”、光纤覆盖率为40%,用户年平均停电时间不高于12h;供电D区配电自动化“二遥”、无线公网覆盖率为20%,用户年平均停电时间不高于20h。(2)2018年完成供电B区配电自动化“三遥”、光纤覆盖率为100%,用户年平均停电时间不高于3h;供电C区配电自动化“二遥”、光纤覆盖率为100%,用户年平均停电时间不高于9h;供电D区配电自动化“二遥”、无线公网覆盖率为50%,用户年平均停电时间不高于15h。

4技术政策

4.1总的技术政策

本次规划采用ONU通过光纤就近接入110kV、35kV站(子站)OLT,在OLT上设置三层交换机,汇聚所有信息成以太网信号接入四级通信网(SDH传输网)。具体拓扑见图1。

4.2变电站到配电变压器的通信网络技术政策

(1)对于变电站向下延伸到配电变压器的通信网络,应因地制宜采用多种通信方式相结合的原则建设。采用无线公网通信方式,可选择GPRS、CDMA、3G等方式覆盖。对于配用电光纤覆盖地区,光纤专网技术体制宜选择无源光网络(EPON)技术。(2)配电主站与配电终端应采用标准化通信规约,优先选用DL/T634.5-101/104。(3)在生产控制大区与管理信息大区之间应部署正、反向电力系统专用网络安全隔离装置。(4)有线组网宜采用光纤通信介质,以有源光网络或无源光网络方式组成网络。无源光网络优先采用应遵循以下原则:①当需要承载可靠性要求较高的配电自动化业务时,宜采用双PON口的ONU设备,EPON网络采用光路全保护方式建设。②ODN网络的设计应根据配电网架结构、台变分布情况、网络安全性、可靠性、经济性和可维护性等多种因素综合考虑。EPON系统的ODN结构设计应以总线和环形结构为主。③根据配电网架结构,应采用非均匀分光比的多级分光方式组建EPON手拉手网络,规划基本以不大于7级设计,保证后期升级扩容的需求。

5规划重点

5.1第一阶段(2015年)

配电网B类区域:孝感地区需新建光缆643.3km,接入设备993套。光纤通讯覆盖柱上开关673台,开闭所27个,环网柜284个。实现三遥(遥信、遥测、遥控)功能,覆盖率占到96.3%。无线公网通信覆盖柱上开关38台,实现二遥(遥信、遥测)功能,覆盖率占到3.7%。配电网C类区域:孝感地区需新建光缆909.1km,接入设备343套。光纤通讯覆盖柱上开关320台,实现三遥(遥信、遥测、遥控)功能,覆盖率占70.5%。无线公网通信覆盖柱上开关134台,实现二遥(遥信、遥测)功能,覆盖率占到29.5%。配电网D类区域:孝感地区新建接入设备4套。全部以无线公网方式实现二遥(遥信、遥测)功能。覆盖柱上开关275台,环网柜1台。采集终端/智能电能表覆盖:采用光纤或无线公网技术覆盖53.8%智能电能表。

电网通信论文篇9

实现智能电网的前提条件是实现通信技术的智能化,进一步实现各种不同信息相互之间的联系,通过这样的一个智能化通信系统可以建立一个高度的智能电网。也就是说集成度高、灵敏性好,双向快速反应的通信系统是智能电网实现的基础,缺少这样的通信系统的支持,也就无从谈起电网的智能化。因此要建设智能电网,我们首先就必须的建立这样的通信系统。

1.2参数量测技术

在智能电网基本的组成部件中参数量测技术显得尤为重要,智能电网中的各项数据信息可以通过先进的参数量测技术获得,这些信息可以在智能电网的各方面使用。智能电网中使用的是智能固态表计,智能固态表计的好处与作用是可以使电力公司与用户进行很好的双向通信技术,提高包括功率因数、相位关系(WAMS)、电能质量、表计损坏、设备状况和故障的定位、线路负荷、变压器和关键元件停电确认、电能消费、预测和温度等数据。

1.3高级的电力电子设备

目前的电能损耗比较严重,其中电力电子设备的使用是其中原因之一,落后的电力电子设备会损耗相当多的电能。而要提高电能的有效利用率的措施之一便是对电力电子设备的改善。高级、先进的电力电子设备可以为用户提供高质量的电能,提高电能的利用率,能满足各种不同的电力需求。高级、先进的电力电子设备设备技术,可以极大地提高输配电系统的性能,提高功率密度和电力生产的效率。高级的电力电子设备有着重要的作用在发电和输电以及配电、用电的过程中。

1.4先进的电力电子技术

有关研究显示先进的电力电子技术的节能效果可达10%~40%,对电能的控制和变换不在采取传统的方法,而是采取更先进的电力电子器件进行变换和控制。电力电子技术的不断发展,为电能的控制和变换提供了硬件条件。目前对电力系统运行要求的不断提高,导致电力电子技术大范围的应用于电力系统发、输、配、用等各个环节。当前电力电子市场上出现了SVC为基础的柔流输电技术;高压变频电气传动技术;新型超高压输电技术;智能开关同步开断技术和静止无功发生器、动态电压恢复器的电力技术等。

二、智能电网的展望

电网通信论文篇10

1.2网络问题突出

光缆的应用主要在信息的传输上,现代化网络的发展就依靠着光缆建设的完善。但现阶段网络的高覆盖化也成为了光缆应用的一大问题,网络的传输需要大量的传播介质的支持,光缆作为最高效的信息传输介质虽然工作效率高,但其成本价格较其他种类的信息传播介质偏高,所以对于一般不要求高网速和高准确度的网络传输都不会采用光缆作为家庭网络传输介质[3]。过高的成本将减少使用光缆的用户,进一步将影响光传输网的发展。

1.3设备配置与规范不相符

电力通信中的光传输网系统中最为重要的部分就是站点网元,它是信息传输的基础,一般为110kV和220kV两种站点。光传输网中有很多的优点,它的维修十分简单,一般定期对光设备进行检查与修护就可以满足时光网传输的条件。但随着经济的不断发展与科技的不断进步使老旧的光设备配置与规范不相符,光端机的各个槽位具有宽度均匀,且可扩充到10G的能力,可因光缆与设备结构比较复杂,对于能正确合适的与卡槽相符的光缆的制作要求很高,所以造成了光传输设备配置与规范不相符的情况。

2光传输网的优化方案、优化原则与应用

2.1光传输网的优化原则

电力通信主要的工作内容就是进行对信息的传输,所以对于电力通信来说,信息的传播速度与准确度至关重要。对于这两点最为符合要求的信息传输网就是光传输网,它主要承担整个网络的信息交流、会接与传输的作用。所以对光传输网的信息灵敏度与信息传输的稳定性与准确度的要求都很高,首要优化的就是光缆的质量问题。利用新型的单晶硅提纯技术,保证光缆的硅纯度达到正常工作的指标,并且在光缆的制造上也要严格要求其精度,进一步保证光缆的质量达到规定要求。对于网络的设计应以网格与环形为主,这两种形状能降低光在传输过程中损耗程度,同时提高了信息的传输效率。在对管传输网的容量选择时,首先考虑的应该是现有业务信息的情况,对日常统计的容量需求数据经行分析,选择对未来市场最有利的传输容量,为未来业务拓展提供优势。

2.2光传输网的优化方案

现阶段的光传输网还在不断的发展与进步,对于早现已投入使用光传输设备已存在很多实际操作性问题。若要使陈旧的设备符合现代需要的工作要求,所能实行的解决措施就是更换新型的光传输设备或对旧的设备进行改造。根据现有的人均经济水平分析,重新更换光设备对与大多数企业来说都是高成本的,同时也是对资源的一种浪费,所以现阶段对于解决光传输网的更新随度快的问题应该利用改进旧设备来解决。在网络结构重新组建的过程中,可以继续使用单向通道的保护环,只需将使STM-4与STM1并网就能做到网络重新构建。光的电路层优化就是对对设备端口的优化,选择最适合光传输的端口,提高光信息的传输效率。

2.3光传输网优化应用

光传输网在优化以后对于网络传输信息的发展起到积极的作用,在现代化企业中对网络的应用十分广泛,对于企业的宣传发展与管理都离不开网络的协助,高效而严谨的工作也离不开网络的应用。光传输网的优化将有效地提升网络运行的速度与安全性,同时也会完善网络的灵活性,从而使企业的技术与工作效率得到全面的提高,并对企业的发展起到推动的作用。

3电力通信光传输网的发展趋势

随着电力通信光传输网的不断优化,其所涉及到的领域也将更为广泛。光传输网有着其他传输技术无法替代的优势,它的高效性稳定性与准确性保证了信息的有效传播。在降低其成本与改善现有的问题后,光传输网将服务于我们日常生活的网络传播,它的传输信息高效性将改善现有网速较慢的普遍性问题,使我们日常用网也达到畅通无阻的目标。电力通信光传输网在今后的发展前景十分可观,对信息的传播发展有积极的作用。

电网通信论文篇11

随着智能配电网承载业务需求多样化,其对组网架构的要求也越来越高。通常情况下,根据配电网承载业务,可以将组网按照层次进行设计,并且保留一定的网络接口,以便提高网络可扩展性,确保未来很长时间内增加业务扩容使用。本文设计配电通信网过程中,使用了无源光网络(PON)、工业以太网、配电线载波通信、无线通信(GPRS、Wlan、3/4G、WiMax)等,将配电网组网按照层次模型进行设计算。骨干层是智能配电网的核心层,为了能够有效地保证骨干网传输信息的可靠性、准确性,通常情况智能配电网的骨干层采用专用的光纤通信进行铺设通信管道,以便能够有效地连接主站和配电台区,充分使用光传输网络链路层和业务层的安全保护功能,形成一个具有动态路由功能的IP网络层,骨干层必须保证专线专网专用,避免与其他业务混合,降低安全性能;如果其他的应用使用骨干层的网络传输线时,骨干层可以支持虚拟专用网,虚拟专用网可以与其他业务混合,实际线路混用,但是逻辑线路还是专网专用,进行智能配电信息传输。接入层采用光纤专网、电力载波线、无线通信等多种方式进行组网,并且保证接入层具有强大的可扩展功能,以便实现接入层网络智能化管理,实现配电网统一管理功能。接入层网络采用无线专网和无线公网通信时,要符合以下基本原则:(1)无线专网建设基本原则:无线专网通信系统要符合国家无线电管理委员规定;无线专网通信方式采用国际标准和多厂家支持的技术,并且具备用户优先管理功能;无线信息接入符合安全防护规定,并且具备严格的安全防护策略。(2)无线公网通信应该严格符合安全防护的基本原则,加强可靠性规定,支持用户优先级管理,并且采用专线方式与运营商网络实施可靠地连接。

3智能配电网网络核心通信技术研究

3.1PON技术PON是一种点对多点的无源光纤通信技术,通常与以太网互相结合,可以形成EPON技术(以太网无源光网络),EPON采用单纤波分复用技术,能够提供传输距离远、传输带宽高、拓扑结构较为灵活的技术,上下行信号基于同一根光纤实施传输,在接入网组网建设中,已经得到了广泛的发展和应用,EPON通常包括四个单元,分别由OLT、ONU、ODN和光纤线路共同构成,是一种稳定、可靠、接口丰富的接入网技术。

3.2无线通信技术无线通信系统由无线基站、无线终端及相关的应用管理服务器共同构成,常用的无线通信技术包括WLAN、WiMAX和3/4G通信技术。具体如下:

3.2.1Wlan技术Wlan利用无线通信可以在一定距离范围内构建一个无线网络,能够将计算机网络和无线通信技术相结合,以无线多址信道作为传输媒介,可以实现传统有线局域网功能,能够真正实现随时随地接入宽带网络。Wlan技术又被称为Wi-Fi技术,包括三个使用标准,覆盖范围可达到90m左右,具有高速的传输速度,其中80.211b传输速度达到11Mbit/s,802.11a和802.119传输速度达到54Mbit/s。Wlan通常使用的组网方案包括AC(接人控制点)+AP(接入点)+无线网卡+网络管理四个单元。虽然Wlan技术已经得到了广泛的应用,但是其安全性存在隐患,容易受到外来的攻击。

3.2.2WiMax技术WiMax技术是一种非常先进的无线通信技术,其可以提供面向移动互联网的无缝高速链接,并且可以在静止状态访问网络,WiMax基于802.16d和802.16e协议构成,传输速率能够达到10~70M/s,覆盖范围能够达到1000m左右,在配电网接入层,使用无线通信技术可以有效地管理智能电表、智能传感器及监控设备。WiMax技术的加密技术相当严格,数字证书确保用户传输数据不遭到偷窃,并且具有强大的高速传输性和先进性,已经被应用于智能配电网组网实施中。

3.2.33/4G通信技术随着无线通信技术的高速发展,3/4G通信技术已经得到了广泛的应用和发展。3/4G通信系统采用先进的软件无线电技术、空时编码技术、智能天线技术、高效的调制解调技术、高性能的收发信机、无线链路增强技术等,可以为传输数据提供全新的空中接口,并且可以为用户带来高速移动宽带体验。组网过程中,3/4G通信技术直接面向用户家庭,为其提供家庭智能用电功能。

电网通信论文篇12

(3)对电力资源的输送智能化有很重要的实际意义电力资源的地域输送是电网系统管理的重要组成部分,网络技术的应用为输送组织管理提供了一个新的模式,也就是新型的智能化模式,这种模式有效促进了电力系统中各个部门的衔接协调性,使整个电力运作更加有效率。

2当前我国电力信息通信网络的现状

(1)网络结构的构成不合理。从目前我国电力企业通信网络的发展来看,其结构大体上呈现出星型结构和树形结构,这种构成方式使得电力资源在共享上没有达到预期的效果,而且长此以往,很多电力基础设施的维护工作也无法做到彻底,这就为后期的电力工序活动开展带来一定的不便,遗留下安全隐患。

(2)电力信息通信网络的资源传输质量不高。经济的迅速发展,导致电力企业的电能资源输送管理出现了很多的不足,在很多的通信网线上只是简单的包装,没有进一步的屏蔽层包装,加大了外界因素的干扰,而且在线质的选择上大多采用的是单股的铜线,这种材质很容易折断,加上地域间的差异性和需求性的不同,SDH节点的数目就会增多,这在很大程度上降低了传输线路的质量,影响到信息通信的有效性。

(3)地域间发展失衡。我国地域辽阔,各个地区间由于经济水平的差异,在电力建设上形成不均衡的现象,有的地方经济条件好,选用的建设材料质量好,基础设施也就更稳固,而有的地区由于资金缺乏,建设材料也只是根据资金状况来决定,而且这种差异性也随着电力系统的发展变得越来越明显。

3网络技术的具体应用分析

(一)信息业务中的体现。

(1)语音业务。这一业务主要包括基于电力在调度过程中的电话以及行政电话,而且,它为电力系统的其他行政工作与调度之间建立了一个很好的平台,对其安全性也有了进一步的优化;

(2)应用在在电网中对于变电站的监控信息与电网在调度过程中自动化程序的实时数据基础上;

(3)对继电保护作用中的信号和电网管理系统中信息的实现的应用。

电网通信论文篇13

由于发展与管理时间段,经验不足,我国目前的通信网络结构设计还是很完善,整个结构相对脆弱。在结构形式上,主要有两种结构:星型结构、树形结构。这两种结构的弊端就在于结构不稳定、达不到资源共享的要求。再由于一些地区长期缺乏护理,设备长时间运行会出现许多故障或者寿命已到极限,都需要维修或更换,严重制约了我国电力系统的均衡发展。

1.2网络结构管理复杂

按照相关规定,电力线路结构应该分为三级(分别为一、二、三级),但是在实际运营中,会受到多方面因素的影响导致在设计规划线路结构时并不能很好地遵守规定,使得线路结构变得很杂乱。在这个基础上,电路结构只会越来越乱,造成正常损耗增加,不能达到规定的传输标准。

1.3电力通信的传输质量差

许多地区的传输电路保护措施不到位,通讯所用网线并没有加强屏蔽措施,使得很容易受到外界信号感染。并且我国目前光纤覆盖率还并不是很高,大部地区的网线都还是一股铜线,传输效率、安全性都没有保障。这就导致了SDH节点量的大量增加,使得整个网络结构变得杂乱无章,很容易引发一系列问题,并且会减慢问题的处理速度,降低了我国信息传输质量。

1.4管理不严谨

主要体现在标准不统一方面。随着研究的不断深入,人们发现了更新的技术,新技术自然用到了新标准,但是设备的更替却跟不上技术更新的步伐,一些设备达不到新标准的要求,使得电力信息通信中的网络管理一片混乱,出现了“马拉火车”等不合理的现象。

1.5地域发展不平衡

我国还处于改革开放的初级阶段,先富带动后富的政策刚迈出第一步,因此东南沿海的经济水平要高于内陆地区,这也造成了我国电力通信技术的不平衡,并且参照目前我国的国情来看,这种差距还会进一步加大。因此我国南方与北方的网络才会分开运营。

2.电力通信中网络技术的应用

2.1信息业务

电力通信管理工作中主要包括以下几种信息,

(1)管理中的电话通信,电话通信属于传统的通讯方式,在电力信息通信中的作用却非常大,并且也很丰富。因此需要保证电话传输的安全与快速;

(2)管理者发出了指令以及传达的信息;

(3)电网系统中,变电设备对电压的监测信息;

(4)电力传输过程中的实时数据,例如管理部门随即采取的数据;

(5)视频会议的连接;

(6)检测设备发出的保护信号;

(7)将IP和TDM(时分复用模式,可以使同一通信媒体同时传输多种形式的数据)承载技术用于监控、调度等业务。

2.2技术体制的选择与发展思路

随着我国改革开放的不断深入,各项改革也在不断加大,其中包括电力行业。因此在改革背景下,电力企业已经尝试性的建立了本行业专用的网络通信技术。但仍有一些问题有待解决,如:

(1)目前的网络架构还是传统的链型结构,稳定性差,传输不可靠。而针对此类情况还没有很好的解决方案,只能通过线路保护倒换来增强对电网的保护;

(2)目前信息网络传输体质比较落后,还在采用集中供应的同步数字体制,还无法处理随机性的IP业务。但是IP业务却在与日俱增,在这种背景下,电力企业应建立新型的电力信息管理机构,包括DWDM波复用(密集型光波复用)技术,MSTP(基于SDH的多业务传送平台)等,注重未来的发展。对于经济先进、技术发达且SDH网络建立完善的气度,就应找到合适的方法对现有的社设备与技术进行升级,将静态TDM复用模式不做大的变动而使其能够支持IP业务接入,变成动态的IP模式。

3.在电力信息通信中运用网络技术的优点主要有以下三点优势:

3.1加强了电力系统对信息的控制力

通过将网络技术应用于电力信息通信中,提高了系统的可控性,电力传输的管理工作变得更加方便等。

3.2促进电力企业的改革

网络科技的蒸蒸日上也为我国的电力系统建设带来了基于,利用智能化、响应快的网络系统对电力信息系统进行管理、检测、维护,不仅降低了工作人员的劳动量,同时也提高了工作人员的网络素养,使其能够赶得上社会发展潮流。

3.3实现电力传输系统管理的智能化

网络技术的应用,使电力传输系统摆脱了传统的管理模式而变成了以新能源和电力需求为主导的只能管理模式,这样一来,整个供电系统中不同部门之间沟通更方便,管理更便捷,真正的实现了管理控制一体化。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读