通信电子线路论文实用13篇

通信电子线路论文
通信电子线路论文篇1

(2)本课程工程性、应用性强,而且理论课安排与实践不在同一个学期,实验与课程设计仅36学时,在很大程度上影响学习效果.

(3)通信电子线路学习内容主要是分立元件电路,与社会需求的集成电路不一致.

2改革方案

2.1教学内容改革

目前有关通信电子线路的教材大部分以介绍分立元件电路为主,我们现选用的是刘彩霞等编著的《高频电子线路》也不例外,分立元件电路学习更利于学生了解各电路的组成原理,而且分立元件价格便宜,实现成本低,有利于学生自主进行电路设计.但目前所售电子产品的结构主要以集成电路为主,大大减少分立元件使用,随着集成规模不断扩大,电路设计新技术、新器件不断出现,为了达到学校应用型人才培养目标,满足社会需求,在理论教学过程中,考虑适当淡化分立元件电路分析、设计内容,加强集成电路外部特性、功能应用的分析.例如:学习调幅、调角、锁相电路时,可介绍一些芯片在这些电路的应用实例.课程学习以学生熟悉的无线话筒、收音机作为模拟通信系统的例子为主线,先介绍整个课程各章节涉及的模块在系统中的功能,让学生对系统有一个总体的概念,不至于“只见树木不见森林”.各部分电路的授课侧重点在电路各部分的作用、电路特点,推导过程仅做大概介绍,推导结果的实际意义可以做深入分析,讲述电路工作原理跟实际电路要紧密结合,比如,学习反馈型振荡器原理,可以结合广泛应用、简单可行的电容反馈三点式振荡电路作分析,从这个切入点“举一反三”,可以更好理解电路的原理;善于利用图、表进行分析,比如,通过选频特性曲线来理解放大电路的中心频率、通频带、选择性等指标参数的意义.课堂适当利用仿真软件,通过调整电路一些元件的参数,观察元件参数变化对输出波形的影响,从直观上看到电路各元件的作用.例如,讲述调幅信号概念、分析调幅信号时,利用仿真软件可以看到调幅电路输出的调幅波,并改变调制输入信号等参数观察波形的变化,便于学生对比学习,激发学习兴趣.

2.2教学方法的研究

以理论与实践紧密结合为出发点,根据学生实际情况,探索集多媒体和板书教学、互动式教学、网络教学于一体的立体教学方式.

(1)多媒体和板书教学相结合.多媒体教学手段能将难懂的内容直观化,突出要点,有助于抽象的概念的理解和方法的掌握;多媒体方法图文声像并茂,能充分调动激发学生的学习兴趣,吸引学生注意力,有助于提高教学效果.通过多媒体仿真实验演示,让学生更好地理解课程教学难点,培养学生的探索、创造能力,如讲述频率调制时,将调制前后的波形用多媒体展示进行对比,学生就十分容易理解频率调制的概念.该课程有大量的电路图、波形图,利用多媒体还可以节省画电路图的时间,提高课堂教学效率,避免了传统板书画图耗时,容易出错的弊病.这门课程中公式推导很多,若只是利用多媒体展示,学生一下难以理解相关内容,因而对课程的重点、难点通过板书教学效果更好,教师边写边提问让学生对某个问题进行思考,通过问题驱动学生去学习、讨论,从而解决问题.

(2)课堂授课的多样化.在教学过程中,充分注重实践的引导作用,需要时从实验室找一些元器件、电路板等实物带到课堂上让大家传看,让学生可以切实感受到单元电路的功能,每个元件的作用,大大提高学习兴趣.也可考虑把教学课堂搬到实验室进行,边演示边讲述理论知识,使学生有直观感性认识,这样能很好地帮助学生理解理论知识,激发学习积极性.

(3)网络平台作为辅助学习方式.网络化教学提供了培训教师与学生之间实时或非实时的、多种方式的互动平台.利用这个平台学生根据存在的问题选择相应的内容进行学习,学生能在合适的时间轻松愉快的环境中更好地进行学习,极大地调动学生的学习积极性,教师可以利用平台为学生构建含有丰富教学资源的学习环境,对学生学习行为的跟踪,与学生互动,为教学提供很大的方便.

2.3实践教学

以大实验观为指导思想,多方位利用现有教学资源,建立集类型多样化实验项目、课程设计、毕业设计、课外创新活动以及教师科研于一体的实践教学体系,有效解决了课内学时不足带来的瓶颈问题.

(1)实验项目:实验跟理论课安排在同一学期,便于学生边学习边实验,有利于学生加深通信电子线路基本单元电路的理解,掌握通信电路参数的测量方法.另外,理论课教师要参加实验教学,这样有助于提高教师理论与实践结合的能力.

(2)课程设计:课程设计旨在培养学生的设计应用能力、分析解决问题的能力.课程设计过程中,老师只从设计方法上做指导,具体设计由学生根据老师的要求到网上或图书馆自行查找资料,独立完成无线发射接收系统的电路设计及其PCB板的设计,使学生的实践技能和应用能力得到较大的提高.

(3)课外创新实践:为了鼓励学生积极参与科学研究、技术开发、学科竞赛及各类社会实践活动,提高学生综合运用知识能力、系统设计与工程实践能力,培养创新意识和团队协作精神,在学生中搭建创新实践的平台.创新实践以学生课外自学为主,教师辅导为辅,学生可根据兴趣自行选题,或由教师给出相关参考方向,设计并制作一个具有某种功能的通信电子系统.同时,积极鼓励学生参加部级、省级、校级等各种电子信息类大赛活动,参加创新创业训练计划活动,让学生参与教师的科研项目.项目组成员最好有层次搭配,让高年级学生带领低年级的学生一起完成实践项目.通过实践训练,部分学生会具备一定的通信电路分析设计和解决问题能力,对通信方向产生强烈的兴趣.通过做项目的少数同学激发班里其他同学参与项目的热情,在同学中形成爱学习、爱动手的良好氛围.

通信电子线路论文篇2

基金项目:本文系重庆市高等教育教学改革研究重点项目资助(项目编号:112003)、重庆理工大学高等教育研究项目(项目编号:2011025)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)16-0052-02

近年来,通信技术得以飞速发展,新的通信技术、通信方案和集成电路层出不穷。如今,通信产业已成为国民经济的发展最迅速,进步最快的一个行业。[1]“通信电子线路”正是重庆理工大学(以下简称“我校”)电子信息与自动化学院为适应社会需求,针对电子信息类专业开设的一门专业必修课。作为电子信息工程专业电路与系统课程体系中极为重要的一个环节,其主要内容包括现代通信系统组成原理、系统设备电路工作原理及其分析方法。该课程是一门理论性和实践性都很强的课程,其教学目的是培养学生能在无线电通信及相关领域从事产品设计开发、科学研究等方面的能力。[2]本文分析了目前我校“通信电子线路”的教学现状与存在问题,并提出了该课程教学体系改革的思路与相关建议。

一、“通信电子线路”的教学现状与存在的问题

通信电子线路是在科学技术和生产实践中发展起来的,本身工程实践性就很强,许多理论知识都可以通过实践得到深入的理解。目前,这门课在我校电子信息工程以及电子信息与科学(光电学院)两个专业的大三开设,课程体系的设置为理论学时数40,2.5学分,并无教学实践环节。

在对其他高等院校的调研中发现,大部分其他院校针对信息类专业在这门课程的教学大纲中都安排了相关的实践环节。表1中详细列举了部分院校的“通信电子线路”的课程体系。(注:各院校课程名称略有差异)

从表1中可以看出,虽然各高校在这门课程上分配的理论学时数有差异,但都分配了相应的实践教学。实践教学主要分为实验教学和课程设计两类。清华大学作为全国最优秀的高等学府,尤为突出了实践教学的重要性,在学时数的分配上甚至超出了理论教学,充分体现了清华大学坚持“以实践教学”的教学理念。华中科技大学和重庆大学作为全国一流的重点大学,实践和理论并重,分配了等同的学时数。西华师范大学和我校一样,属于省部级重点建设高校,在该课程体系上分配的理论和实践学时数分配大致为2:1。而我校的实践教学环节目前仍为空白。

笔者在多年讲授“通信电子线路”这门课程的过程中,感受该课程缺乏实践环节带来的一系列问题:

该门课程本身内容多,概念多,电路复杂,采用非线性分析方法,比较抽象。[3]加上缺乏实践环节的辅助,学生不易理解电路功能,常常感到学习困难,学习兴趣低下,教学效果较差。

由于缺少实践环节,学生对这门课程的理解只能停留在理论知识上。即使是对课程掌握比较好的同学,也只是了解单元电路的理论工作原理,很难理解单元电路实际中是如何作用于整个通信系统中的。不少同学反映说,学完这门课程后感觉只是死记硬背了一些电路和公式,对各种电子器件和单元电路仍没有深刻的理解,更不要说理解电路的应用和自主创新地设计电路了。

在近年来的全国电子设计大赛中,通信电子线路相关课题呈现出越来越重要的趋势。[4]但是由于我校通信电子线路实践环节的空白,学生在电子设计竞赛中跟其他兄弟院校相比处于劣势。

我校正处在一个变革和高速发展的阶段,在推进素质教育,提高人才培养质量上取得了一系列的硕果。但是,现阶段“通信电子线路”这门课程体系结构不够合理,单纯的理论学习并不能满足当今社会对信息类人才的需求。缺乏相应的实践环节,是该课程教学改革亟待解决的问题。

二、“通信电子线路”的改革方案

“通信电子线路”课程改革的主要思路是围绕创建通信电子线路实践教学环节展开。通过实践教学,一方面可以激发学生学习通信电路的兴趣,加强学生对已学电路知识的理解和掌握;另一方面,可以培养学生分析解决实际问题的能力,提高学生综合应用能力。同时,实践教学可以进一步推动理论教学方法、教学内容和考核手段的改进,从而完善课程建设,提高教学质量。

1.创建“通信电子线路”实践教学体系

由于我校学生的层次参差不齐,一方面,从有利于培养学生能自觉应用理论知识指导实践,强化基本技能训练,为培养高素质人才打下良好的基础角度考虑,结合目前人才培养方案和专业素质教育要求,根据学生的实际情况,建议进行以下课程的改革方案,将整个通信电子线路实践分为基本实验和拓展实践“两阶段三层次”。[5]

第一阶段:基本实验

(1)基础常规:增设“通信电子线路实验”必修课,有独立的实验教学内容和教学大纲,为验证性实验,用单元电路实验板、综合实验板和实验箱进行。通过实验,学生加深和巩固对通信电子线路基本单元电路的理解,初步掌握通信电路的测试方法。但理论课与实验课分工而不分家,理论课老师仍然参加实验教学并负责实验辅导。

(2)系统综合应用实验:类似电子线路课程设计,通过对一个典型的完整的通信系统,例如无线收发信机的搭接、调试、指标性能测量,培养学生对知识灵活应用和系统级思维的能力,建立系统概念,为学生独立设计与制作电路打下良好的基础。

第二阶段:拓展实践

(3)创新型实践:开课时间为晚上,周末或寒暑假这些空闲的时间,为部分对电子设计有浓厚兴趣并有探索精神的学生提供进一步提升的平台。实践过程以学生课外自学为主,教师辅导为辅,学生可根据兴趣自行选题,或由教师给出相关参考方向,设计并制作一个具有某种功能的通信电子系统,提高学生综合运用知识能力、系统设计与工程实践能力,培养创新意识和团队协作精神。同时,鼓励学生积极申请项目,参与学科竞赛。目前,学校为学生自主创新已提供了良好平台,包括“开拓杯”电子设计竞赛和大学生创新基金项目等,还有重庆市“盛群杯”设计大赛以及全国的电子设计大赛。

通过这个层面的实践训练,部分学生会具备一定的通信电路分析问题和解决问题能力,对通信方向产生强烈的兴趣。这部分学生可通过毕业设计进行进一步研究甚至进行深造。

这三个层次的实践训练是循序渐进、层层推进的,目的是使学生系统地掌握通信系统各种功能单元电路的工作原理和分析设计方法,建立起现代通信的系统概念,为今后从事通信电路及相关电子系统的工作打下坚实的基础。

2.以实践教学为依托,改革通信电子线路理论教学

在引入实践教学后,理论教学过程也应做了相应的调整,突出应用和工程实践的特点,把理论知识的传授和实践能力的培养结合起来。在实践中,电路设计工作基本上是以应用为主,不需要更多了解模块或者芯片内部结构,而需要了解电路的基本功能和使用方法即可。[6]而目前的通信电路教学依然以基本的分离元件电路为主,包括混频、调制和解调等电路,均是采用传统的二极管或者三极管构建的电路。但这些功能在实践教学中基本上都已经集成化。这就要求在理论教学过程中,适当淡化普通三极管电路设计和分析内容,加强功能分析,进一步强化模块和集成电路的应用。例如:学习调幅、调频、调相、锁相电路时,可介绍一些芯片,包括一些知名的半导体公司;在讲解某种单元电路工作原理过程中,增加这种电路应用于哪些电子设备中的情况,在系统中的地位及其性能对系统指标的影响。[7]

3.改革评价考核机制,激发学生自主学习积极性

目前的教学评价仅考查学生对理论知识点的掌握,考试内容局限于课堂笔记和书本内容,这与通信电子线路的实践性不相符。[7]一个完善的课程考核应当体现在全面性、多样化和立体化上,体现对通信电子线路理论知识方面的考查,对实践能力、实验技能方面的考查,对分析问题、解决问题能力方面的考查。可参考由作业评分、期末考试、实验实践环节的能力考核和平时课堂表现4个部分组成。考核重点是对学生的学习态度与学习效果、理论知识与实践知识、知识与能力几个方面进行全面的动态地分析。理论考核中,加强基础、侧重应用、淡化计算,并融入实验笔试部分。在实验考核中,学生的实验成绩由教师考查学生在实验过程中及实验报告中反映出的对实验的理解、动手能力、科学作风、分析问题能力和探索创新精神进行综合评定。建立多项指标综合评分机制,突出能力方面的考核,激发学习自主学习的积极性和热情。

三、结束语

笔者通过多年的教学经验对“通信电子线路”课程体系改革进行了探索和研究,提出了构建一套通信电子线路实践教学体系,以填补我校没有通信电子线路实践教学的空白,并希望以此推动理论教学方法。教学内容的改革,逐步完善通信电子线路课程建设。

参考文献:

[1]顾宝良.谈谈开设通信电子线路课程的必要性[J].电气电子教学学报,

2000,(3):20-22.

[2]廖惜春.基于工程应用的“高频电子线路”课程教学研究[J].电气电子教学学报,2007,(4):12-14.

[3]陈建良,熊庆国.“通信电子电路”教学改革与实践[J].中国冶金教育,

2007,(4):35-36.

[4]郭云林.重视电子竞赛推进教学改革——谈参加全国大学生电子设计竞赛的体会[J].电气电子教学学报,2003,(1):63-66.

通信电子线路论文篇3

Abstract: Railway signal engineering simulation experiment has a series of advantages ,such as simple principle, easy implementation, reliable operation, and many other advantages. This paper on the basis of theoretical analysis of railway signal combined with the engineering practice to get correct data , through calculation model and a series of engineering test.This paper effectively solves the problem of railway signal interlocking test, which can be widely used in railway signal conduction of engineering experiment.

中图分类号:X731 文献标识码: A

1.引言

我国铁路以提速为载体,以技术创新为依托,推动了铁路信号的技术改造与升级,广泛采用计算机技术,促进了铁路信号向数字化、网络化、集成化、智能化、综合化方向的发展。而铁路信号在铁路运输中起着相当于人“眼睛”的作用,对提高铁路运输效率、运输速度、保证行车安全都起着至关重要的作用。轨道电路、道岔、信号机是组成铁路信号的“三大块”,本论文将围绕着这三项内容,在设备安装完毕进入调试试验阶段展开讨论,建立模拟试验的模型,以解决模拟实验的有关难题,探讨出一条可行之路。

2.轨道电路模拟试验模型

轨道电路是以铁路线路的两根钢轨作为导体,两端加以绝缘,接上送电和受电设备构成的电路。当轨道电路内钢轨完整,且没有列车占用时,轨道继电器吸起,表示轨道电路空闲。轨道电路被列车占用时,它被列车轮对分路,轮对电阻远小于轨道继电器线圈电阻,流经轨道继电器的电流大大减小,轨道继电器落下,表示轨道电路占用。

根据轨道电路的原理,轨道电路模拟试验可分为室内部分和室外部分。在实际操作过程中,室外部分可以通过分线柜单独对室外电缆进行导通,也可以单独送电进行试验。对室内电路进行模拟试验,第一步是先模拟室外回室内的轨道电压,在分线柜侧对轨道电路进行送电,以检查轨道继电器是否能正常励磁。继电器试验完毕后,在室内分线柜上将所有轨道电路的回线(H)封连,引出一条电源线;将轨道电路的去线单独引出至模拟盘钮子开关的中接点,模拟盘所有钮子开关的前接点封连后引出一条电源线,两条电源线引至轨道电源变压器的二次侧。当扳动妞子开关时,轨道电路的通路就实现了闭合或者断开,实现了对室外轨道电路列车分路的模拟。

图1轨道电路模拟试验模型

3.道岔电路模拟试验模型

图2 道岔模拟试验模型

交流道岔的动作电路/表示电路原理跟直流道岔相近,只是动作线和表示线的配置与直流道岔不同,我们可以使用相同的方法来建立模拟试验模型。

4.信号机点灯电路的模拟模型

信号机点灯电路由室内电路和室外电路两部分组成,室内电路通过信号继电器(XJ)的节点来控制点灯。信号点灯电源XJZ220、XJF220经过熔断器(RD)、信号隔离变压器(GLB)还有灯丝继电器(DJ)将电源送至分线柜端子。然后经过室外分线盒送至室外点灯变压器,从而点亮信号灯光。根据实际电路的原理可以做出如下模型(以调车信号机点灯电路为例):

根据点灯电路原理,将室内外点灯电路分开试验。试验室外点灯电路时,首先导通电路的通路,然后在分线柜点灯端子上单独送出220V点灯电源,以检查室外点灯电路的准确性。室内点灯电路的模拟试验模型当中通过在分线柜位置加入两只220V、60W的白炽灯泡,来模拟室外的信号机的点灯,从而检查室内点灯电路的正确性。

图3 信号模拟试验模型

通信电子线路论文篇4

电子线路是电信、通信专业的重要基础课。目前的教学,主要采用理论教学、实验箱连线的方式。但该课程内容和概念多,电路复杂且大多为非线性,而实验只是验证性的连线,学生缺乏感性认识,设计电路的意识和能力差。引入仿真软件,可弥补理论教学中的枯燥抽象,增强感性认识,激发学习兴趣,提高教学效果。本文采用multisim对LC电容三点式振荡电路和单调谐回路谐振放大电路进行了仿真研究。

2 仿真研究

2.1 电容三点式LC振荡器

下图1为电容三点式LC振荡器电路,C1是旁路电容,C2是隔直流电容。W1用以调整振荡器的静态工作点(主要影响起振条件);K1、K2、K3用来改变C3,K4、K5、K6用来改变C4,从而改变电压反馈系数;K7、K8、K9用来改变R5,从而改变回路谐振电阻;K10、K11、K12用来改变C5,从而改变振荡频率,亦改变耦合程度。

从仿真图2可看出,在电流2.281mA时候,输出波形为4.04Hz。同理通过方针实验改变静态工作点,负载电阻R5,耦合电容C5,分压比C3/C4也会对起振条件产生相应的影响,即输出的波形幅度会发生变化。

2.2 单调谐回路谐振放大器

单调谐回路谐振放大器实验电路如图3所示。C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

从仿真图可看出,在输入频率为6MHz、幅值为20mV正弦波的时候,输出近似于40Mv,其输出波特图可以通过波特仪得出,是一个带通滤波器,通频带内非常平缓,通过仿真方法,可以直观的看到其选频特性,随着输入幅度的变化,可以实时的得到输出的变化,从而可以有效地求出谐振放大器的放大倍数。

3 结论

通过以上两个典型通信电子线路的仿真,能够证明仿真在教学中的重要性。通过生动直观的波形仿真和灵活快捷的参数设置使学生加深对理论知识的理解,又可提高学习兴趣和设计能力。引入仿真软件,不仅可以解决该课程理论枯燥抽象、实验室元器件的限制等问题,还可突破时间和空间的限制,提高学生的实践能力。在实现高频电路分析和设计方面不仅高效、可靠,且具有逼近真实电路的效果。

参考文献

[1]刘佳.由高频正弦波振荡器的仿真谈Multisim仿真软件在“高频电子线路”教学中的应用[J].科教文汇,2012.3(9).

[2]辛修芳.计算机仿真在高频电子线路教学中的应用[J].佳木斯大学学报(自然科学版),2010.28(2)

[3]李松松.基于Multisim的电子线路设计与仿真[M].陕西:西北农林科技大学出版社,2014.

[4]刘国华.通信电子线路实践教程-设计与仿真[M].北京:电子工业出版社,2015.

作者简介

王朋朋(1980-),女,山东省青岛市人。硕士研究生学历。现为青岛工学院信息工程学院讲师,主要研究领域为电子通信等相关。

通信电子线路论文篇5

Abstract: Railway signal engineering simulation experiment has a series of advantages ,such as simple principle, easy implementation, reliable operation, and many other advantages. This paper on the basis of theoretical analysis of railway signal combined with the engineering practice to get correct data , through calculation model and a series of engineering test.This paper effectively solves the problem of railway signal interlocking test, which can be widely used in railway signal conduction of engineering experiment.

中图分类号:X731 文献标识码: A

1.引言

我国铁路以提速为载体,以技术创新为依托,推动了铁路信号的技术改造与升级,广泛采用计算机技术,促进了铁路信号向数字化、网络化、集成化、智能化、综合化方向的发展。而铁路信号在铁路运输中起着相当于人“眼睛”的作用,对提高铁路运输效率、运输速度、保证行车安全都起着至关重要的作用。轨道电路、道岔、信号机是组成铁路信号的“三大块”,本论文将围绕着这三项内容,在设备安装完毕进入调试试验阶段展开讨论,建立模拟试验的模型,以解决模拟实验的有关难题,探讨出一条可行之路。

2.轨道电路模拟试验模型

轨道电路是以铁路线路的两根钢轨作为导体,两端加以绝缘,接上送电和受电设备构成的电路。当轨道电路内钢轨完整,且没有列车占用时,轨道继电器吸起,表示轨道电路空闲。轨道电路被列车占用时,它被列车轮对分路,轮对电阻远小于轨道继电器线圈电阻,流经轨道继电器的电流大大减小,轨道继电器落下,表示轨道电路占用。

根据轨道电路的原理,轨道电路模拟试验可分为室内部分和室外部分。在实际操作过程中,室外部分可以通过分线柜单独对室外电缆进行导通,也可以单独送电进行试验。对室内电路进行模拟试验,第一步是先模拟室外回室内的轨道电压,在分线柜侧对轨道电路进行送电,以检查轨道继电器是否能正常励磁。继电器试验完毕后,在室内分线柜上将所有轨道电路的回线(H)封连,引出一条电源线;将轨道电路的去线单独引出至模拟盘钮子开关的中接点,模拟盘所有钮子开关的前接点封连后引出一条电源线,两条电源线引至轨道电源变压器的二次侧。当扳动妞子开关时,轨道电路的通路就实现了闭合或者断开,实现了对室外轨道电路列车分路的模拟。

图1轨道电路模拟试验模型

3.道岔电路模拟试验模型

目前我国的道岔转折设备主要分为:直流电动转辙机(四线制或六线制)以及交流电动转辙机(S700K五线制)。道岔电路的动作原理是:通过定反操继电器来控制1DQJ和2QDJ吸起和落下状态,通过1DQJ和2QDJ吸起和落下来控制动作电流的流向,从而控制室外的电动转辙机转动,以达到转换道岔的目的。表示电路是通过1DQJ和2QDJ吸起和落下和室外电动转辙机内部节点的闭合位置来控制交流表示电源的流向,通过二极管整流后达到让室内表示继电器励磁的目的,从而反映道岔是在定位还是在反位位置。下面以直流道岔为例,探讨道岔模拟试验模型。

由动作电路原理可知:当道岔向反位动作时,电路中X2、X4通过直流电流;当道岔向定位动作时,电路中X1、X4通过直流电流,负载为室外电机中的定子线圈,通过的电流不大于3A,因此可以通过在X2、X4或者在X1、X4的分线盘位置加载的方式来达到模拟室外电机的目的,我们选用220V/200W的白炽灯泡作为负载。

由表示电路原理可知:当道岔在定位位置时,电路中X1、X3通过交流电流;当道岔在反位位置时,电路中X2、X3通过交流电流,负载为室内表示继电器线圈,是通过电机内部的整流二极管整流,室内的表示继电器励磁的。因此可以通过在分线柜位置的X1、X3和X2、X3上并联二极管就可以实现对表示电流的整流,达到模拟室外电机内部二极管的作用。

图2 道岔模拟试验模型

交流道岔的动作电路/表示电路原理跟直流道岔相近,只是动作线和表示线的配置与直流道岔不同,我们可以使用相同的方法来建立模拟试验模型。

4.信号机点灯电路的模拟模型

信号机点灯电路由室内电路和室外电路两部分组成,室内电路通过信号继电器(XJ)的节点来控制点灯。信号点灯电源XJZ220、XJF220经过熔断器(RD)、信号隔离变压器(GLB)还有灯丝继电器(DJ)将电源送至分线柜端子。然后经过室外分线盒送至室外点灯变压器,从而点亮信号灯光。根据实际电路的原理可以做出如下模型(以调车信号机点灯电路为例):

根据点灯电路原理,将室内外点灯电路分开试验。试验室外点灯电路时,首先导通电路的通路,然后在分线柜点灯端子上单独送出220V点灯电源,以检查室外点灯电路的准确性。室内点灯电路的模拟试验模型当中通过在分线柜位置加入两只220V、60W的白炽灯泡,来模拟室外的信号机的点灯,从而检查室内点灯电路的正确性。

图3 信号模拟试验模型

第一个模型检查了点灯电路的正确性,但是在实际操作中,因为信号机数量较多,我们不可能在分线柜位置每架信号机都挂满灯泡,所以,我们通过建立以上这个模型来解决。在上述模型中我们将信号点灯220V电源加入信号变压器进行变压(变比20:1,可以用几个功率较大的普通轨道变压器实现),将高电压降至低电压(10V左右),然后将信号隔离变压器的一次侧跟二次侧进行封连(封线L、N),拔掉信号隔离变压器,将分线柜点灯线端子进行封连(封线J、K),这样就能保证灯丝监督继电器(DJ)励磁吸起了,从而模拟出来信号点灯电路的工作状态。

5.结论

我们在实际工程中通过几个车站对建立的模型进行了测试试验,在试验过程中我们也发现了一些问题,比如模拟道岔转辙机负载的白炽灯泡功率过小,一开始选用的60W,导致启动电路的1DDQJ不能保持较长时间励磁状态,致使2DDQJ不能转极,随后我们将白炽灯泡更换为220V/200W,这个问题得到了圆满的解决。另外信号机点灯用的白炽灯泡一开始使用的25W的,导致点灯回路电流过小,致使灯丝监督继电器(DJ)不能吸起,后来经过我们更换为40W的灯泡后,问题也得到了相应的解决。

经过一系列的测试试验,我们的模拟实验的方法由于具有简单、易操作、成本低、适用范围广泛、效果好等优点,在信号既有电化改造工程中得到了广泛的应用,比如:京沪电化济南枢纽、徐州枢纽工程,陇海电化徐连段等,得到了现场使用单位的好评。

参考文献

通信电子线路论文篇6

关键词 高频电子线路;项目教学法;应用型人才

作者简介:赵海涛,山东科技大学电子通信与物理学院通信工程系,博士,讲师。

“高频电子线路”课程是电子与通信类专业的一门专业基础课,具有很强的理论性、实践性和工程型。在“高频电子线路”课程学习中,学生要掌握模拟通信系统各单元电路的工作原理、电路组成和设计方法。其任务是研究高频电子线路的基本原理与基本分析方法,以单元电路的分析和设计为主。学生通过本课程的学习,不但应该掌握必要的基础理论知识,而且还应在分析问题、解决问题和实际动手能力等方面得到锻炼和提高。而传统教学仍然采用先讲授理论知识再集中实验的模式,现有的实验项目主要为验证性实验。虽然这种验证性实验可以帮助学生理解和加深课堂所学的内容,但由于高频实验典型电路都是设计好的,电路连接过于简单,学生只是对输入、输出信号做简单的分析,学生能够动手操作、自由发挥的空间太少,不利于发挥学生的主观能动性。这于当今社会强调实用技能,强调知识创新等素质教育不能同步,因而难以适应社会的发展需要,因此,对传统教育模式进行的改革迫在眉睫。

为了使学生更好地掌握高频电路基础理论知识,提高其理论联系实践、分析问题、解决问题的能力,培养其进行电子电路设计的实践技能,本文将项目教学法引入高频电子线路的教学实践中,通过学生实做项目,把传统教学和项目教学有机融合,有效提高了学生理论联系实践、分析问题和解决问题的能力,取得了很好的教学效果。

1 教学内容模块化 教学目标项目化

由于无线通信的飞跃发展,新理论、新电路、新器件、新工艺层出不穷,日新月异,但与无线通信相关的高频电子线路的基本理论与基本电路并未过时,例如,谐振回路与耦合回路仍然是组成高频电子线路必不可少的部分;放大器、振荡器、调制与解调的原理依然未变。在教学过程中,深入研究高频电子线路课程体系,准确把握课程重要内容,及时更新教学内容。把教学内容分为4个相对独立的教学模块:放大器、振荡器、调幅与解调、调频与解调。针对每一教学模块,设置与前沿科学问题密切相关的科研项目作为教学目标,学生在学习理论知识的同时,将理论知识用于实践,制作实际电路,实现项目要求的各项指标。教师在课堂教学教授新知识的同时,注重讲解与项目设计内容相关的知识,指导学生运用理论知识指导实践。

2 项目内容实用化 理论实践并重

根据模块化教学内容,设计了接收机中频放大器、高频丙类功率放大器、LC振荡器、调幅发射与接收系统、调频发射与接收系统等5个项目,给出相应的技术指标,在课堂教学时教授各项目的核心理论知识,并提供实用的设计思路,教会学生如何根据所学理论知识,设计实际电路。以高频小信号放大器和振荡器为例,介绍项目教学的实施过程。

2.1 高频放大器

在讲解放大器模块内容时,以模拟电子线路中学过的小信号放大器为引子,推出高频小信号放大器,比较两者的异同点。通过回忆晶体管的混Π模型和Y参数模型从电路机理上分析高频小信号放大器的性能参数和造成放大器不稳定的原因。在课堂授课的同时,将接收机中频放大器作为项目教学案例,让同学们边学理论边完成。

项目设计内容:接收机中频放大器

主要技术指标:

中心频率f0=20MHz,电压增益Au≥35dB,通频带2f0.7=4MHz,负载电阻RL=1kΩ,电源电压Vcc=12V。

在课堂授课时,讲解放大器的设计思路和设计关键点。主要包括(1)选择晶体管与计算Y参数。选择Yre小且频率特性好的晶体管,通过混Π参数求解Y参数。(2)选择电路型式。根据电压增益要求,选择多级放大器来实现。为了保证电压增益的要求,采用共射组态的多级单调谐放大器。(3)根据稳定增益确定放大器的级数。(4)根据多级单调谐放大器的总通频带和单级通频带的关系,计算单级通频带。(5)确定电路形式,计算直流偏置电路参数和谐振回路参数。

2.2 LC振荡器

在进行课堂教学时,首先给出振荡器的概念,指出振荡器的关键是没有外接输入小信号,对比其与小信号放大器的异同,加深对小信号放大器和当前所学知识的区别与联系。在教授LC振荡器原理时,提出项目设计内容,讲解LC振荡器的构成原理,讲解LC振荡器从起振过渡到平衡状态的过程,强调设计振荡器时,特别要注意满足起振条件,并给出设计振荡器起振条件的经验值。在讲解电容反馈振荡器时,指出该类型振荡器的特点,提出改进性能的方法。

项目设计内容:LC调频振荡器

已知条件:Vcc取12V,晶体管3DG6,变容二极管2CC1D。

主要技术指标:中心频率f0=6.5MHz,频率稳定度(f/f0)≤10-3/小时,输出电压Uo≥200mV,最大频偏fm=±50kHz。调制频率(500~10000)Hz。

在学生理解设计原则的基础上,讲解实际振荡器的设计重点。主要包括:(1)确定电路形式,设置静态工作点。采用减弱晶体管与谐振回路耦合的西勒振荡器,其频率稳定度可达10-4~10-5数量级,满足设计要求。(2)绘制原理图,估算决定静态工作点的电阻和旁路电容值,估算振荡回路的元件值。(3)估算射极输出元件值,估算偏置电路元件值。

上述课堂教学与项目教学的结合,让学生充分认识到了理论知识对实践的指导作用。通过学习理论知识,通过项目分解,电路设计和参数计算,变成自己能够参与设计的内容,有效调动了学生主动学习的兴趣。

3 项目成果电路化 仿真实做结合

设计电路要转化为应用电路,还需培养学生计算机仿真分析、电路安装调试的能力。

在首个项目理论设计完成后,将电子线路EDA技术引入课堂教学,以高频小信号放大器为例介绍PSpice电路模拟软件的功能及应用。通过实例讲解,让学生深刻体会调节静态工作点可改变放大器的增益,调节谐振回路的谐振阻抗可以改变放大器的通频带,调节L、C值可以改变放大器的中心频率等知识。通过EDA仿真分析,修正理论计算参数,优化系统性能。

在EDA仿真结束后,讲解高频印制电路板的设计方法。掌握选用元器件及各种接线端子的规格、尺寸,合理安排各部件的位置,按照电路图连接引脚,完成布线。讲授Protel软件在高频电路中的布线技巧,如高速电路管脚间的引线最好采用全直线、45度折线或圆弧转折,对特别重要的信号线或局部单元可实施地线包围措施,模拟地线、数字地线分开等。让学生自己动手,绘制印制板,通过装配、调试等环节,让学生真正能够把理论知识转化为实际项目产品。通过“真刀真枪”的训练,有效培养了学生的工程设计能力和动手能力,增强了其学习的积极性和主动性,强化了学生对所学专业的认可度

4 项目考核报告化 演示答辩结合

在项目完成后,教师给出项目设计报告书写规范。学生撰写项目设计报告,从项目方案论证、电路选型、参数计算、电路仿真、电路调试装配等方面着手,将设计思想和理论实践结合的过程通过文字呈现出来。在项目报告提交后,分组进行答辩演示环节,学生演示自己的项目成果,并重点讲述如何分析问题和解决问题的。根据学生平时参与项目设计情况,结合成果演示和报告给出项目考核成绩。项目考核成绩纳入课程考评成绩,每个项目占10%分数,期末考试占总成绩的50%。

高频电子线路是培养电子信息、通信类人才的的重要专业基础课,是巩固前续电路相关课程、进一步学习后续专业课程的桥梁,在学科体系中起承上启下的作用。教师不仅教授理论知识,更重要的是培养学生理论实践相结合、提高分析问题和解决问题的能力。作者结合多年的教学科研经验,突破传统教学模式,将项目教学法引入课堂教学,设置模块化教学内容和项目化教学目标,有机融合课堂教学和项目教学,学生通过理论学习、项目设计、电路调试等环节真正体会到所学课程的实用性。项目教学法的实施有效激发了学生学习的积极性、思考的主动性,使学生更加深刻地理解所学知识,真正做到学有所用、学能所用,为培养高素质应用型人才奠定了坚实基础。

参考文献

[1]曾兴雯.高频电子线路[M].2版.北京:高等教育出版社,2009.

[2]张肃文.高频电子线路[M].5版.北京:高等教育出版社,2009.

通信电子线路论文篇7

受多方面外在因素的干扰,通信工程专业通信电子线路教学还存在一些问题,这就应加强通信电子线路教学现状分析力度,并在微课的支持下改善通信电子线路教学缺陷,全面落实通信电子线路教学改革的目标,彰显微课教学实用价值。而且在微课的支持下,还能提升学生学习兴趣,进一步促使通信工程专业通信电子线路教学改革顺利开展。

1.通信电子线路教学现状

就目前来看,通信工程专业通信电子线路教学缺陷主要表现在以下几个方面:第一,目前专业课教学的学时一直在压缩,而课程的知识点依旧很多,集中授课效率表面看上去有所提高,实则不然。在课堂讲授大纲知识点学时紧张,想要利用一些实物演示激发学生的兴趣更是没有时间。课堂上学生的专注力持续时间不会太长,课堂上高强度的授课在一定程度上提高了课堂效率,但实质上信息扩容效果却不尽如人意。在学时有限而学生吸收曲线不断下降的矛盾中,真正的课堂效率也在下降。第二,由于通信电子线路科目中涉及的知识点较为抽象,造成学生学习各项知识点的兴趣低下。如果不能有效改善这一现状,必然导致通信电子线路教学出现问题,严重影响通信电子线路科目在通信工程专业中所占比重,对于通信工程专业学生综合素质培养也有极大的影响。

2.微课在通信电子线路教学改革中的应用

为促使通信电子线路教学改革顺利开展,就应在其中引入一系列现代化教学模式,针对性解决通信电子线路教学中不合理的地方,确保通信电子线路教学改革能够满足通信工程专业综合教学要求。从通信电子线路教学改革的角度出发,微课在其中的应用主要表现在以下几个方面:

2.1延长通信电子线路教学学时

为保证学生更好的学习通信电子线路知识,不仅需要考虑通信电子线路教学形式,还应在微课的支持下延长通信电子线路教学学时,不断提升通信电子线路科目集中教学效率,据此改善通信电子线路教学时间不足的问题。而且在通信电子线路教学改革中引入微课教学模式,还可以将一系列教学内容转化成微视频,在课堂某一时间段展开集中教学,避免学生在学习相关知识时出现注意力不集中的问题,这对于提升通信电子线路教学效率和教学改革作用效果也起到非常重要的作用。不仅如此,在通信电子线路教学中还可以将微课教学与实物教学结合到一起,有效处理通信电子线路固有教学缺陷,只有这样才能提高通信电子线路教学效率,落实通信电子线路教学改革的目标。

2.2提高学生学习兴趣

通信电子线路论文篇8

《高频电子线路》是高等学校电子与通信类专业的一门重要专业技术基础课,是学生应具备知识结构的重要组成部分,其主要教学目的是为后续的专业课程奠定理论和实践基础,在专业课程体系中起着承上启下的作用。

一、课程特点与学生学习现状分析

高频电子线路以现代无线通信系统为纲,采用非线性分析法,分析发射和接收装置中的各高频单元电路,分析电路中输入与输出信号对应关系及信号频谱、振幅变化的规律。该课程涉及公式多,概念抽象,电路复杂,分析方法繁杂,并要求学生掌握的基础知识多,具有理论深、专业性强、综合性高、工程实践性强等特点。

近年来,二本高校学生的整体综合素质有所下降,特别是数学和电路基础掌握不牢固,理论与实践脱节,对于复杂难懂的高频电子线路的学习产生了畏惧甚至厌学的心理。

二、传统高频电子线路教学中存在的问题

(一)教学内容局限问题

学习高频电子线路需要以高等数学,电路分析,模拟电子线路,信号与系统等为前续课程,这些课程间既独立又相互联系,而在传统高频电子线路的教学中它们之间的衔接问题经常被忽略,给学生学习带来困难。近年来无线通信的通信体制、调制编码方式、工作频段、承载业务类型等方面都发生了很大变化,从而对其射频电路部分的设计提出了新的要求。传统高频电子线路教学中忽视对新内容的补充,与学科前沿的衔接,导致学生难以把握该课程实用性,无法培养浓厚学习兴趣。

(二)教学方式单一问题

传统教学方式一般以理论讲授为主,老师讲解课本知识点,缺乏启发和创新,学生被动接受,没有深层次的思考和理解,难以形象地了解一些概念、工作原理和实际问题。而理论教学上又缺乏体系性,总是围绕一个个分散的知识点进行,从理论到理论,为理论而理论,缺乏对整体电路的分析。

(三)理论与实践分离问题

高频电子线路是一门工程实践性很强的学科,而传统教学却将理论教学与实践教学相分离,导致理论教学更加抽象难懂,学生实践能力不足。课堂上实际电子产品及电路的接触机会极少,实验又多以验证为主,或多采用线路是集成好的实验箱,学生创新性和自主性都得不到良好的培养。

三、课程教学改革措施

(一)理论教学改革

1.优化教学内容:

(1)课程内容的合理调整。随着电子技术的迅速发展,高频电子线路的课程教学内容也应不断进行调整。首先是教材选择要求保留经典电子线路内容,摒弃目前已淘汰电路形式,增加新技术的介绍及典型的集成电路模块分析等,通过对比国内众多优秀教材,选择张肃文编著的《高频电子线路》,该教材内容详尽,理论架构清晰,能较好满足课程教学要求[1]。再者,由于该课程内容多、课时数少的现状,在教学内容上必须删繁就简,以通信系统中传输与处理信号出发,系统模块化分析每部分电路,加强集成电路的概念和应用,适当引入一些新技术的实际应用。

(2)课程整体性的系统把握。为了达到更好教学效果,摆脱传统高频电子线路教学中缺乏系统和工程观念的教学方式,从通信系统角度出发,将教学内容分为三大模块:发送设备、信道传输、接收设备。发送接收设备按高频电路部分又可以划分为三个小模块:振荡器、调制和解调、高频信号放大器。然后通过分析经典电路构成和工作原理的方法剖析各个模块的功能和基本原理,最后将各个系统模块结合为一个完整的系统,学生可以更好地理解课程各个章节的联系和各单元电路之间的连接方式及相互之间影响,建立系统和工程观念,提高分析和解决问题的能力[2]。

(3)课程重点、难点的适当处理。在有限教学时间内,为了快速让学生掌握本课程要领,教学过程中要注重对各部分的重点和难点的总结[3]。在分析各部分电路性能时,通过提问,回顾联系知识点形式反复强调,课堂练习、课后习题形式巩固和融会贯通重点知识。在讲述繁琐计算的具体电路时,应做到分散难点、将抽象概念简单化,便于对知识难点的理解。

2.多样化教学方法:

(1)提问式与启发式教学法。为了激发学生学习兴趣,培养独立思考能力,采用课前提问方式使学生对要学习章节产生好奇心,迫切想了解接下来学习的内容,自然地引入本节课的知识点。在讲授过程中联系提出问题启发学生认真思考,利用所学知识点解决问题,提问式与启发式相结合的教学法充分调动了学生学习的积极性和主动性。

(2)讨论、互动交流式教学法。讨论是课堂教学的一种重要形式,在老师引导下,学生根据所给有一定难度和深度的讨论题目,以小组形式进行讨论。讨论过程可以各抒己见,相互启发,增加交流,讨论结果及时总结,这样不仅满足了知识的传授,而且启动了学生的思维活动,加深了知识的掌握,培养了学生独立思考、分析和解决问题的能力[4]。

(3)对比、归纳教学法。高频电子线路的学习需要与一系列的前续课程衔接,特别是低频电子线路,虽然在工作条件、电路结构、应用范围以及基本原理和分析方法上两者都存在着差异,但也有着某些联系。采用对比教学法,将两者内容融会贯通,完整理解体系概念。再者,该课程章节内容多,但相互间却有着内在联系。通过归纳、总结,将分散知识点编织形成知识网络,便于学生找到规律,从系统角度分析和解决问题。

3.丰富教学手段:

(1)多媒体教学的应用。利用多媒体教学可以节省大量板书和画图的时间,增加课堂信息容量;可以生动形象地展示课程内容,使学生易于理解和掌握;可以方便地与已有知识进行比较,便于总结和复习,并有利于资源共享。但使用多媒体过程中不能过分依赖,重要公式的推导、关键电路的分析等利用板书突出重点,加深理解。采用多媒体与板书有机结合的方式,使学生在板书和动画的两个动态过程中,仔细领会教学的重难点,最大程度上调动学生的学习积极性。

(2)仿真软件的应用。由于课程内容抽象复杂,涉及复杂电路分析时,纯粹依靠讲解不能有效地帮助学生理解,将计算机仿真引入到教学中,使教学内容更加直观,增加学生对理论知识的理解和电路结构的把握,对提高教学的效果和质量有很大帮助。

(3)网络资源教学的应用。充分利用丰富的网络资源,积极开展网络教学,不仅可以扩展教学时间和空间,而且还可以增进师生间的交流。建立课程学习网站就是网络资源教学中的有效手段之一。通过网站可以进行教学通知,答疑辅导,学习资料共享,知识自测等教学活动,充分发挥学生学习的自主性,进一步帮助和促进课堂教学[5]。

(二)实验教学改革

实验教学是课程教学的重要辅助部分,对学生加深知识理解和实践能力的培养起关键作用,因此,高频电子线路的实验教学需要多样性与实用性的统一。针对不同教学过程进行相应实验教学。如在学习该课程初期,可以通过进行演示性实验展示每个模块的功能,加深学生理解;在学完一个模块后,针对已设计制作好的电路,进行验证性实验,观察实验结果是否与所学理论一致;当学校资源满足不了某些实验要求时,还可以利用仿真实验作为补充;而实验教学的最终目的还是为了培养实用技术型人才,所以开放式、设计式实验是必不可少的。多样性与实用性统一的实验教学法使学生有效地把所学知识应用于实际,提高学生技能水平,拓宽了学生专业理论基础,加深学生对课程理解,培养独立思维、独立创造的能力。

(三)考核方式改革

随着教学内容、方法和手段的变化,考核方式也应与之相适应。考核必须能较为全面地反映出学生对课程知识的掌握程度和综合素质的培养情况。采用平时成绩、实验成绩、期末卷面成绩、加分及扣分五项标准相结合的评分办法,对学生的理论知识、综合能力、实践能力进行考察。其中平时成绩包括考勤和作业完成情况;实验成绩包括实验出勤情况、实验操作和实验报告三部分,而实验操作作为实验成绩的主要部分;加分项与扣分项是考核方式中新引入的项目,通过加分项对学生起到激励作用,激发学生学习的主动性和积极性,通过扣分项督促学生加强自我管理约束能力。多种评定标准相结合的考核形式有助于提高学生对课程的综合运用能力。

四、结语

高频电子线路作为电子类和通信类的专业基础课程,其重要性不言而喻。该课程公式多,概念抽象,电路复杂,分析方法繁杂,在传统的教学方式下,教学效果并不理想,通过对理论教学和实验教学等各环节的综合思考,不断调整教学思路,更新教学方法和手段,重视实践教学,充分调动学生的学习积极性,提高教学质量,培养学生综合创新能力。

参考文献:

[1]张肃文.高频电子线路(第五版)[M].北京:高等教育出版社,2009.

[2]陈芳妮.高频电子线路课程教学改革探讨[J].浙江科技学院学报,2011,23(4):329-332.

通信电子线路论文篇9

0 引言

21世纪以来,通信技术飞速发展,为了适应科学技术发展,许多重点大学将“高频电子线路”更名为“通信电子线路”。“通信电子线路”是一门重要的专业基础核心课程,是 “电路分析”、低频电子线路(模拟电子线路基础)、“信号与系统”等课程为先修课程的综合性、难度性较大的课程。该门课程也是培养学生分析问题、解决问题的能力,以期达到能设计和运用各种高频电路的能力,为后续的专业课的学习打好基础。本校通信我校通信工程专业拟在2011版培养计划中面向航空特色将“高频电子线路”课程更名为“通信电子线路”,因此开展通信电子线路课程教学研究具有非常重要的意义。

1 课程特点

“通信电子线路”需要在电路分析基础、信号与系统、低频电子线路(模拟电子线路基础)等课程学过以后开设,其后续课程是专业课,如通信原理、无线通信、移动通信等。它是基础课程和专业课程之间架起了一座桥梁。

通过该课程的学习, 学生应了解高频电路重要新技术的发展趋势,熟悉本课程所述各模块的组成、特点、性能指标,以及在通信系统中的地位与作用。深刻理解非线性电路的分析方法及特点;初步建立起信息传输系统的整体概念。掌握高频电路中的基本概念、基本原理和基本方法以及典型电路,看懂一般的实际电路。由于该课程各个模块都是以非线性电路为主,采用非线性分析方法,理论分析很抽象,涉及实际电路较少,尤其是新的通信实际电路很少,甚至没有。学生往往怕学、怕分析,学习效果不理想。如何建设好该课程及提高学生的实际应用能力是当前亟待解决的问题。针对这一棘手问题,本文将从以下几个方面进行探索和研究。

2 课程体系的建设

我校通信电子线路的课时是72学时,其中理论课60学时,实践课12学时。学时较多,因此教学内容必须丰富。首先,根据相关技术和国际上同类课程最新教材的发展趋势,汲取国内外优秀教材的精华,结合通信学科的最新成果和相关技术的最新方法,我们采用的教材是王家礼的21世纪高校通信类规划教材《高频电路原理与分析》,该教材内容精选,重点突出。

然后针对该课程的难点,将课程内容上进行了优化。整个课程内容主要由两部分构成:无线模拟通信系统的发射机部分和接收机部分。发射机部分由音频放大电路、高频小信号放大电路、高频振荡器、调制器以及高频功率放大电路组成。接收机部分由高频放大电路、本振电路、混频电路、中频放大电路、解调器以及低频放大电路组成。根据这两大部分的内容,按照高频小信号放大电路高频功率放大电路正弦波振荡电路振幅调制电路混频电路解调电路进行教学内容的编排。同时考虑到现代无线电设备中,锁相环作为一个多功能部件用得越来越多,已成为一个基本的高频单元电路,将锁相环原理及应用单独成一章。

随着科学技术的发展,高频集成电路成为系统中不可缺少的器件或部件,增加了高频集成电路的内容,比如,高频电路的集成化、高频集成电路和高频电路的电子设计自动化(EDA)等。并将其作为自学思考部分,课堂上进行有目的地引导学生自学。这样教学中我们就以“讲透概念原理,打好电路基础”为宗旨,在章节次序的安排上尽量符合由浅入深,由个别到一般的认识规律。以分立元件电路为基础,面向集成电路,重点突出电路模型的概念,讲透基本单元电路的工作原理及分析方法,降低知识体系入门的难度,提高学生的兴趣。使学生有一个完整的知识架构,克服了部分学生在学习通信电路难的思维障碍。通过知识体系的建立,达到知识精练、知识体系系统化,与其他相关课程融合,提升学生创新思维能力。

3 教学模式的创新

课程知识体系改革要服从于课堂教学实际需要。在明确知识体系构架基础上,还需要在教学活动过程中加强教学手段、方法和教学理念等教学模式进行创新研究,以提高教学效率和教学效果。教学中我们特别注重了解学生学习状况,针对性加强学生薄弱环节的学习指导,及时收集学生学习效果的信息反馈进行分析,把课程内容的新发展及教师在科研中的应用引入教学内容,把学生的学习重点调整在“工程应用”状态。同时课堂教学引入多媒体信息技术,制作多媒体课件,引入图片、动画、视频等多媒体要素,优化教学过程,充实课堂教学的内容,提高学生学习的兴趣和效果。

根据本课程理论性与实践性都很强的特点,同时也为了更好地培养学生的实践、创新能力,结合通信工程专业实际情况,以发射机系统和接收机系统为主题内容,设计多个验证性和综合性实验,并编写与课程配套的实验指导书。帮助学生理解理论课堂知识,熟练掌握常用电子仪器,掌握通信电子线路分析与设计方法,培养学生的独立思考、综合应用和解决问题的能力。

4 结束语

“通信电子线路”课程是我校通信工程专业的重要课程。这门课程的教学改革直接关系到专业的建设和学生的知识体系搭建,也关系到学生对专业前景的信心。因此,改革完善该课程教学体系,摸索良好的教学模式,增强学生对专业的认同感,提升学生的能力和质量势在必行。

参考文献

通信电子线路论文篇10

[文献标识码]A

[文章编号]2095-3712(2014)28-0059-03

[基金项目]本文系广西高等教育教学改革工程项目(2013JGZ128)的研究成果。

[作者简介]陈冬梅(1976―),女,湖北荆门人,硕士,桂林电子科技大学信息与通信学院副教授,研究方向:无线通信,通信网络。

通信电子电路是通信工程、电子信息工程、电子科学与技术等专业中的一门重要的专业基础课,也是一门理论性、工程性和实践性很强的专业基础课。它主要研究模拟通信系统中一些基本单元电路的组成、工作原理及功能、基本分析方法和工程计算方法,强调电路结构和单元电路的模型化。[1]通过学习这门课程,学生可以初步具备通信系统的设计和安装技能,并能使用电子仪器进行调整和测试,为以后专业课的学习打下基础。本文根据多年的教学实践,分析该课程教学现状,探索教学改革。

一、课程教学现状

(一)教学内容多,课时少

根据学校的教学改革要求,通信电子电路课程的课时被压缩,造成教学内容多与教学课时少的矛盾。[2]同时,先修课程所接触的电路基本上都是线性电路,而本课程涉及的电路是非线性电路,因此教师教得费力,学生学得吃力。

(二)与先修课程、后续课程联系密切

通信电子电路的先修课程有高等数学、大学物理、电路分析基础、模拟电子技术、信号与系统等,后续课程有通信原理、现代移动通信系统等,因此它是一门承前启后的课程。[3]

(三)理论教学与实践教学的脱节

理论教学中介绍的电路多是分立元件电路且没考虑实际电路的高频效应,学生在课堂上很少接触实际的电子产品及电路,实践教学多以验证实验为主,缺少创新性和自主性。[4]

(四)理论教学和集成电路学科发展差距大

理论教学仍以较为经典的分立元件电路的内容为主,这与集成电路学科发展的差距较大,造成学生所学与所用脱节,学而无用的现状,也就是说,学生在学习本门课程之后难以设计出实用的高频、射频电路,甚至连相关的文献资料也看不懂。

二、教学改革的探索

针对上述教学现状,本文对通信电子电路课程教学改革进行了如下探索:

(一)修改教学大纲,精简教学内容

随着通信技术和集成电路技术的飞速发展,电路的集成度越来越高,通信电子电路的课程教学大纲和教学内容要顺应时代潮流不断更新,删除、缩减一些陈旧的教学内容,比如丙类倍频器、二极管调幅电路等,增加一些新技术的介绍和典型的集成电路模块,比如锁相环倍频器、集成模拟乘法器调幅电路等。除此之外,相似内容避免重复讲,比如幅度调制、乘积型同步检波、混频器等电路的核心器件都是相乘器,只需要详细介绍首先接触到的幅度调制电路选用什么样的相乘器来实现以及相乘器工作原理,后两种电路中的相乘器介绍即可忽略。

(二)改进教学方法,实现本课程的承前启后

由于通信电子电路课程是一门承前启后的专业基础课,所以理论教学过程中要采用适当的教学法。

1.移植教学法引导学生“承前”

案例一:LC选频回路。

教学过程中,采用如下步骤进行:

(1)LC选频回路是线性元件电感、电容、电阻等组成的电路,因此它是一个线性系统。

(2)接着,让学生回忆信号与系统课程中线性系统的常用分析方法,即频域分析法,将信号与系统中的频域分析法移植到LC选频回路的分析中,从系统传输函数的幅频特性和相频特性两个方面来分析LC选频回路的选频效果。

案例二:正弦波振荡电路。

移植教学法可以不断提出问题让学生思考。教学过程中,采用如下步骤进行:

(1)设问:正弦波振荡电路是线性电路还是非线性电路?(是典型的非线性电路)这种非线性系统采用什么分析方法――图解法、幂级数分析法等?由于正弦波振荡电路在起振初期的信号是小信号,所以可以将正弦波振荡电路看作是一个近似的线性电路,采用模拟电子技术课程中微变等效电路分析方法来分析其振荡条件的满足。

(2)在微变等效电路分析的基础上推导振荡条件、振荡频率等。教学过程采用这种移植教学法给学生不断设问,引导学生思考问题,这样学生很容易接受陌生的教学内容,也能学会分析问题、解决问题的方法,也会明白学以致用的道理。

2.对比教学法引导学生“承前启后”

下面分别通过案例一说明如何采用对比教学法“承前”,通过案例二说明如何采用对比教学法“启后”。

案例一:高频小信号调谐放大器。

模拟电子技术中介绍过低频放大器,通信电子电路介绍高频小信号调谐放大器,如图1所示。这两者的共同点是都属于电压放大器,可以采用对比教学法分析高频小信号调谐放大器的性能,过程如下:

图1 高频小信号调谐放大器

(1)对比电路结构的不同。教学过程中可通过设问来比较两者的电路结构的不同。不同点之一:低频放大器的输入信号形式通常采用阻容耦合方式,高频放大器采用变压器耦合方式。不同点之二:低频放大器的负载是电阻,高频放大器负载是LC选频回路。

(2)分析步骤的异同点。分析步骤的异同点如表1所示。高频小信号放大器的分析部需要低频放大器的步骤一。因为低频放大器的微变等效电路采用H参数,H参数与放大器的静态工作点参数有关,而高频小信号放大器的微变等效电路采用Y参数,Y参数与放大器的静态工作点参数无关,所以忽略此步骤。接下来的步骤二是类似的,但是这部分学生往往对电容电感的处理感到棘手,教学中常用黑板板书列出电容电感元件处理方法的不同,如表2所示。步骤三是类似的,只不过分别采用H参数,Y参数微变等效电路。步骤四也是类似的,性能指标的计算有所不同而已。若采用这种对比教学法的话,学生能轻而易举地掌握高频小信号放大器的分析方法。

案例二:幅度调制、频率调制和相位调制。

本课程中介绍的三种调制方式都属于模拟调制方式,虽然模拟调制系统在现今通信中不大常用,但是模拟调制是后续课通信原理中模拟调制、数字调制的分析基础。两门课程都会介绍模拟调制,但是侧重点和分析内容不同,因此可以采用对比教学法来“启后”。比如,通信电子电路着重介绍调制信号是单频信号情况下的三种模拟调制原理及电路形成,而通信原理着重介绍调制信号是带限信号情况下的三种模拟调制原理及相应的模拟调制系统的性能分析,系统性能分将会有助于课程设计和毕业设计中如何选择一个合适的调制方式来实现通信。

(三)加强实践教学,以赛促学

实践教学是理论教学的重要辅助部分,也是提高教学质量的重要手段之一。对于通信电子电路课程来说实践教学尤为重要。

首先要合理安排实验内容,减少验证性实验,多让学生的动手设计部分电路或改进部分实验电路,这样既能加强对理论知识的理解,又能锻炼学生的动手能力。

其次要加强课程设计,丰富课程设计内容。针对学生的个人特点,课程设计可以设定为软件仿真类、硬件设计类课程设计,硬件设计类的课程设计也不一定要学生设计一个全新的通信系统,可以试着用学过的理论知识来改进现有电路以实现一个新的功能。

最后还要以赛促学,调动学生学习本门课程的积极性。教学过程中可以将全国电子设计大赛和广西电子设计大赛与本课程教学内容密切结合,课堂上适当介绍本学科的发展前沿,推动本课程的课程教学、教学改革等,激发学生的学习兴趣。我校的科协和创新基地等为学生提供了动手的平台,学生参加各类电子类大赛成绩斐然,很好地激发了学生的学习热情。[5]

(四)充分运用多媒体和仿真软件

在信息时代的大环境下,多媒体教学已成为一种趋势。多媒体教学融入文本、电路图、框图、动画等元素,使抽象的内容形象化、生动化,学生容易理解和接受。比如在讲解高频小信号调谐放大器时,通过多媒体动画演示,引导学生思考下一个要分析的问题是什么。

另外,将仿真软件Multisim引入到课堂教学,相当于将实验室搬到课堂中,利用强大的虚拟仪器仪表功能对讲授的单元电路进行仿真实验,这样可以加深学生对电路功能的理解,使教学内容更加直观。

三、结束语

本文针对通信电子电路的教学现状,对教学方法进行了探索,通过具体的教学案例重点介绍了如何实施移植教学法和对比教学法。总之,在教学过程中,只有不断进行教学方法的改进才能取得好的教学效果,激发学生的学习兴趣,培养学生的动手能力。

参考文献:

[1] 王卫东,陈冬梅,胡煜.高频电子电路[M].第3版.北京:电子工业出版社,2014.

[2] 陈冬梅,周胜源.Multisim 8软件在通信电子电路课程教学中的应用[J].桂林电子科技大学学报,2009(4):317-320.

通信电子线路论文篇11

《通信电子线路》是通信工程类相关专业的一门非常重要的专业基础课程。本课程以通信系统为主要研究对象,研究构成发送设备、接收设备的各单元电路,典型线路的工作原理。分析方法不同于线性电路,分析时在满足工程要求的前提下,往往采用工程近似的方法。所以在《通信电子线路》的教学过程中,应帮助学生建立清晰的概念、培养正确的学习方法、激发学生的学习兴趣,同时加强实践训练,提高学生分析问题、解决问题的能力,培养学生的综合素养,从而为通信系统的工程实现和后续专业课程打好基础。

1 教学中存在的问题

通信类专业的学生普遍认为学习《通信电子线路》的难度很大,对单元电路的应用很茫然,对新技术新内容的了解及应用的接受能力较慢等等,使得学生在学习过程中有一定的畏惧感,进而又会产生厌学情绪,严重影响了学生的学习态度和兴趣。再加上《通信电子线路》课程理论推导多、公式复杂、概念比较抽象、知识点联系较为紧密,学生学习起来很费劲,这也使教师在教学过程中产生了很大的压力。教好这门课程成了教师最大的难题,促使教师要积极开展教学改革,提高课堂教学效果。

2 教学方法的探讨

2.1 理论教学过程中应注重提高学习效率

目前,各高校已普遍采用多媒体教学。多媒体教学给我们带来了很大的便利。比如说在《通信电子线路》教学中,如果单纯采用传统的板书教学,在绘制电路图、书写公式时很不方便,同时也浪费了很多宝贵的时间,信息量太小,学习效率太低。如果采用多媒体教学则可以克服这些问题,还可以通过一些动画演示提高学习乐趣。只是单纯的多媒体教学也存在它自己的问题。

2.1.1 多媒体教学的缺点

多媒体教学给现在的教学带来了很大的方便,但也存在它自己的一些缺点:

第一,多媒体教学对课件的质量要求很高。课件内容必须适合课堂教学。另外,需要重点掌握的内容和只需要简单了解的内容要区分开来,让学生们一看就知道哪些是要重点掌握的内容。课件每页显示的内容不宜太多,字体也不能太小,字体颜色不能太单调,重点字句要用不同颜色标注出来,要保证学生能看清投影屏幕上的内容。版面力求简洁美观,在不过分分散学生注意力的前提下,适当增加一些图片、动画等媒体,既增加演示的效果,也可以活跃课堂授课的气氛。

第二,多媒体教学对教学方法提出了较高的要求。讲解内容要由浅入深,条理清晰,由于《通信电子线路》的大部分内容难以很快理解,所以要给学生留有一定的理解和独立思考问题的时间,一个知识点讲解完毕后要辅助讲解一些相关的例题,便于同学们对知识点的理解应用。另外,还可以通过提问等方式来活跃课堂气氛,提高学生的注意力,增加与学生的交互性等。

第三,单纯的多媒体教学不易于提高学生的注意力。多媒体教学进度快,教学内容多且难,这样会造成这样一种情况,学生若要做好笔记则顾不上认真听课,而若认真听课则又没时间做笔记,从而达不到一种最佳的学习状态,基础稍差的学生根本就跟不上老师的思路。

因此在理论教学过程中,应合理采用多媒体和板书相结合的手段。

2.1.2 多媒体和板书相结合

上面已经分析了多媒体教学的优缺点,为了提高学生的学习效率,在理论教学中,教师一定要合理的应用多媒体和板书。

第一,板书比较繁琐的图表和公式等采用多媒体。用多媒体授课时,教学内容不能太零散,一定要将前后知识点巧妙的贯穿起来。《通信电子线路》分析的本来就是通信系统的各个模块,每堂课的内容都有较大的连贯性,所以每次授课前,先对上一堂课的内容做一个简单的复习,将需要重点掌握的知识点连贯性的简单罗列出来,再引出本堂课将要学习的内容,让学生在上课之前就了解这堂课要学习的内容,并能了解各节内容的连贯性,学生们能够加强对所学内容的理解掌握。

第二,对于一些较难理解的知识点,一定要在黑板上板书。难点内容可以用多媒体显示,但同时一定要在黑板上板书,学生可以利用老师板书的时间来进一步理解内容;一些重点难点内容,一定要辅以一些例题,可以通过板书来讲解一二个例题,将解题过程完整的板书在黑板上;一些容易出错的问题一定要板书加以强调等。上完一节内容后,将本节内容的要点整理后在黑板上板书,并将前后内容连贯起来,这样学生学习起来比较有思路,易于掌握。

总之,在理论教学中,一定要将多媒体与板书相结合,以多媒体为主,利用板书加以补充和强调。

2.1.3 课后强化练习

《通信电子线路》知识点多,学习难度大,仅仅停留于课堂上老师的讲解是远远不够的,有些内容在课堂上一时难以理解或理解的不够透彻,所以课后必须辅以一定的习题练习。习题练习是加强巩固理论认识的一种很重要且非常有效的手段,在课程学习中占有相当重要的地位。习题练习的形式可以是授课教师布置作业课后完成,也可以在上课的过程中通过讲解例题来实现。让学生结合理论知识具体问题具体分析思考,这样能有效地避免学生在考试和具体实践中眼高手低。

2.2 实践教学中应注重提高动手能力

在上一节已经具体分析了怎样提高理论学习的效率,对于工科学生来说,最重要的一点就是要把理论知识应用于实践,让理论来指导实践,这也是 《通信电子线路》课程学习的根本任务。在理论教学的过程中,可以穿插一些实践环节,通过学生自己动手操作,锻炼学生的动手能力,培养学生在实践中发现问题、分析问题和解决问题的能力,从而为今后工作奠立基础。但是,在实践中由于课时有限,授课老师没有足够的时间来指导学生,所以授课老师一定要注意去引导学生自己去学习一些相关仿真软件等。《通信电子线路》适用的软件有OrCAD/PSpice,Multisim,但我们学习采用较多的是Multisim。老师可以上一两次课引导学生入门,之后就要学生们利用课余时间去熟悉软件,并用这些软件进行器件仿真或系统级仿真,使学生不仅能对细节有较为深入的认识还能对整体有宏观的把握,而且能极大地提高学生的学习兴趣。这样,既能够提高学习效率,也能够提高学生的动手能力。

3 总结

《通信电子线路》是一门实践性很强的技术类基础课,课程抽象复杂且较难理解, 在传统的教学方式下教学效果并不理想。但是,对于通信工程专业的学生来说,必须学好《通信电子线路》这门课程。所以,授课教师必须要重视教学改革,要在如何提高学生的学习效率和提高学生的动手能力上下功夫,采用合理科学的教学方法。

参考文献:

通信电子线路论文篇12

随着近年来电子技术的飞速发展,人类对电气设备尤其是计算机设备的依赖越来越严重,这些高精度的微电子设备内置大量的半导体集成模块,导致过压、过流保护能力极其脆弱。结果是各类电子设备的耐过电压能力下降,遭雷电和过电压破坏的比例呈不断上升的趋势。

1 1/4波长短路线型电涌保护器原理分析

1.1 传输线的传输理论

1.1.1 传输线的基本概念 凡用来传输电磁能量的导体,介质系统均可称为传输线。微波传输线是传输微波能量和信息的电磁装置,也可用来构成各种微波元件。按传输线上所传输的波可将传输线分为三类:(1)双导体传输线(2)金属波导管(3)介质传输线。

1.1.2 均匀传输线的分布参数 微波传输线与集总参数电路不同,当高频信号通过传输线时将产生如下一些分布参数效应:

分布电阻效应;指传输线上单位长度线段的总电阻值,单位为欧/米,其大小取决于导线的材料及其截面和尺寸,对于理想导体,则,表示无耗。

分布电导效应;指传输线单位长度线段的并联电导值,单位为西门子/米,其大小取决于导线周围填充介质的损耗角,对于理想介质,则,表示无耗。

分布电感效应;指传输线上单位长度线段的自感,单位为亨/米,其大小取决于导线的截面尺寸、线间距离和导磁率。

分布电容效应;指传输线上单位长度线段间的电容,单位为法/米,其大小取决于导线的截面尺寸、线间距和填充介质的介电常数。

3 结语

可见传输线的传输理论在微波通信应用方面已日趋成熟,1/4波长短路线型电涌保护器的原理采用传输线的传输理论分析,通过理论分析和实验数据得到以下结论:1/4波长短路线采用铜导线,承受的雷电流大,即SPD的通流大。

参考文献

[1] 郭躬旭 鲍于常. 1/4波长短路线作大功率中波发射机避雷器的试验 [J].广播电视技术 1989年第六期;

通信电子线路论文篇13

TN710-34

文献标识码:A

文章编号:1004-373X(2012)05

-0175

-04

Theory and graphic method analysis about experimental

phenomenon of analog amplifying circuit

SU Bian-ling, LEI Neng-fang

(School of Physics and Electric Engineering, Weinan Teachers University, Weinan 714000, China)

Abstract:

Some unexplained experimental phenomenon existed in analog amplifying circuit are analyzed by using theory and graphic method. The performance of amplifying circuit can be understood directly by students, and the principle and essence of amplifying circuit can be mastered.

Keywords: electronic technique; experimentation; graphic method; voltage amplifier

收稿日期:2011-09-15

基金项目:渭南师范学院基金资助科研项目(09YKZ016)

0 引 言

《模拟电路技术实验》是一门实践性很强的专业技术基础实验课程,是对模拟电子技术理论知识的重要补充[1]。电压放大电路是模拟电子技术这门课程的重要的基本的内容,贯穿于整个模拟电子技术基础课程的教学中。电压放大电路实验包括基本共射放大电路实验、射极电压跟随器实验、多级电压放大电路实验、负反馈放大电路实验和差动放大电路实验等,是模拟电子电路课程实验的基本的也是重要的实验[2]。对于电压放大电路实验,主要研究的是电压放大电路的性能,即电压放大能力、带负载能力以及从信号源索取电流的能力。为了研究放大电路的性能,实验电路中往往通过静态工作点(即调节基极偏置电阻)的改变,实现对放大性能的影响;负载电阻的阻值的改变,实现对放大性能的影响;单级放大电路的级联提高电压放大能力;引入负反馈改善放大电路的各性能参数。下面就从影响放大电路性能的几个主要因素入手,对放大电路实验中常出现的、学生觉得无法解释或与理论似乎又相悖的问题进行理论分析与基于图解法的解析,以期望使学生深入理解放大电路的性能,真正掌握模拟放大电路的原理与实质。

1 静态工作点对放大电路性能的影响

如图1为基本共射放大电路的实验原理图与输出特征曲线,理论上可通过调节Rb,Rc或更换三极管的方法实现静态工作点的调整,但在实验中一般只通过调节基极静态偏置电阻(即Rb2),研究静态工作点的改变对放大电路性能的影响。

在电压放大电路中既存在直流信号又存在交流信号,即既存在静态工作点又存在动态的交流信号,且直流信号为放大动态的交流信号提供合适的静态工作点,保证放大电路能不失真且最大限度地放大交流信号,而交流信号在放大电路中的流动必须建立在静态的基础上[3]。由此可知:静态工作点的改变必定对放大电路的性能产生影响。

首先分析调节Rb2时,静态工作点的移动。由于IBQ≈VCC-UBERb1+Rb2,且VCC、Rc不变,即直流负载线不变[4],则当Rb2增大时,Q点沿直流负载线下移,如图1(b)中的Q1点;当Rb2减小时,Q点沿直流负载线上移,如图1(b)中Q2点。

再通过理论分析可得动态参数,电压放大倍数及输入电阻:

从式(1)表面无法看出Rb2的调节对共射极放大电路的电压放大能力的影响,但实验中却明显地得出:当Rb2改变时,共射极放大电路的电压放大倍数在改变。对静态工作点的改变必定对放大电路的性能产生影响的解析如下所述。

由此可知:当Rb2增大时,Au减小,Ri增大;当Rb2减小时,Au增大,Ri减小。

尽管理论上已经获得解析,但从图1(b)中可知由于VCC、Rc不变,直流负载线不变,当Rb2改变时,Q会沿直流负载线上下移动。那么就产生Rb2增大,Q点下移时,Au下降,Ri增大;而Rb2减小,Q上移时,Au增大,Ri减小的疑问。从图1(b)所示共射放大电路的输出特性曲线上可知,Rb2改变时直流负载线不变,交流负载线斜率不变,且为线性,在输出信号不失真的条件下,只是Q点上下移而已,但是根据负载线的线性及输出不失真的条件,即使Q点移动,Au,Ri也不应发生变化。通过图2所示图解法对放大电路性能的分析,便可理解其中的原理。

从图2可知,在输出不失真的条件下,对于同样大小的输入信号,由于三极管输入特性曲线的非线性,使得当Rb2增大时,Q下移,对应的输入ib减小,ic减小,Uo减小,显然Au随之减小,Ri增大;当Rb2减小时,Q上移,对应的输入ib增大,ic增大,Uo增大,Au随之增大,Ri减小。

不过,在此应注意:当静态工作点移动至特性曲线近似线性的区域时,Au和Ri就几乎不再发生改变,为一固定值。

2 负载对放大电路性能的影响

2.1 对Au的影响

理论上由式(1)可知:RL增大,Au增大;RL减小,Au减小。

用图解法同样可知:当RL增大时,RL′增大,交流负载线[6]变平坦,输出的动态范围增大,即输出信号增大,Au增大,如图3所示。

图3 负载电阻的改变对电压放大倍数的影响示意图

2.2 对非线性失真的影响

实验现象:固定Q点,带负载RL,调节输出为最大不失真的输出;再断开负载,发现又出现了失真现象;固定Q点与RL,且使Q点偏离放大区中心,调节输入信号幅度,使输出出现失真现象;然后调节RL,使RL减小,可发现失真减弱或消失。

理论上:如上节分析所知,由于RL增大时,Au增大,输出信号增大,动态输出范围增大,使得原本刚好不失真的最大输出由于动态输出范围的增大而产生失真现象[7]。

图解法解析:如图4(a)所示,假设Q点固定且偏离放大区的中心,靠近饱和区,那么,当带负载且输出调节为最大不失真输出时,断开负载,交流负载线就与直流负载线重合。由于三极管特性的非线性,由图4(a)可知,尽管输出的动态范围增大,但出现了饱和失真现象。当Q点处于放大区的中心(如图4(b)所示)或者靠近截止区时,同样由于三极管特性的非线性,会出现同样的实验现象,只不过当Q点靠近截止区时,出现的是顶部失真。

图4 负载的改变对非线性失真的影响

3 单级放大电路的级联对放大电路性能的影响

实验现象:首先单独调整每级放大电路的静态工作点,使得每级放大电路的静态工作点都处于放大区的中心,然后级联两级或多级放大电路,在输入信号不变的情况下,发现①输出端产生了顶部和底部同时出现的失真现象;②在降低输入信号的过程中,发现顶部和底部失真并非同时消失。

理论与图解法解析:由于调整每级放大电路静态工作点都处于放大区中心的过程中,每级放大电路的输出都为最大不失真输出,当级联后,用上级的输出作为下级的输入,势必超出了下级的最大输入信号的范围,即输出超出了最大的输出(如图5(a)所示),必定产生上下都被削去的失真现象。由此可知,要消除这种失真现象,只要减小输入信号的幅度,便可达到预期的目的。

在调整每级放大电路静态工作点都处于放大区的中心的情况下,在降低输入信号的过程中发现顶部和底部失真并非同时消失的原因是:在调节前级静态工作点时,下级电路是断开的,也就相当于前级放大电路在空载的情况,但当电路级联后,相当于带上负载,此时前级放大电路的交流负载线与空载时不同,对于空载时的Q点处于放大区中心的情况,由于三极管特性的非线性,带负载后,Q点会偏离放大区的中心(如图5(b)所示),因此,在降低输入信号的过程中,发现顶部和底部失真并非同时消失。

图5 级联对非线性失真的影响

4 负反馈对放大电路性能的影响

负反馈的引入对放大电路的影响是非常全面的,它可以改变放大电路的电压放大能力、带负载能力、索取信号源信号的能力,可以拓展频带宽度和可以改善非线性失真[8]等。这些性能通过实验都可以得到验证,但在实验过程中同样也会出现让人困惑的问题与实验现象。

实验现象在带负载、闭环且静态工作点固定的情况下,观察闭环放大电路的最大不失真输出电压[9]时,出现①若此时将闭环开路,失真又立即产生;②若此时断开负载,失真同样立即产生。

实验现象①的解析与级联所产生的实验现象①相似,只不过在此是由于开环电压放大能力高于闭环电压放大能力,使得在闭环情况下的最大不失真。当电力开环后,由于放大能力的提高,输出超出了最大不失真的动态范围,因此,产生了失真现象。

实验现象②的解析与如图4(b)相似,此时闭环放大电路的交流负载线与带负载时不同,对于带负载时的Q点处于放大区中心的情况,由于三极管特性的非线性,空载后,Q点会偏离放大区的中心,因此,闭环带负载情况下的最大不失真,在空载时会出现失真现象。当Q点偏离放大区域时的情况如图4(a)所示。

5 结 语

在模拟放大电路的实验中,经常会使学生产生难以理解或无法解释的现象。在实验教学过程中,采用图解分析法可以直观、全面地对这些现象做深入透彻地解析[10],可很好地巩固理论知识并提高动手能力,使初学者的基本实践技能循序渐进地提高,并因此而激发学生的学习兴趣和求知欲望,提高模拟电子技术课程的教学质量。

参 考 文 献

[1]张伟珊.Multisim 7在模拟电路实验教学改革中的应用[J].现代电子技术,2008,31(16):3-5.

[2]孙建设,陈志红.电子实验技术中的理论与应用问题解析[J].实验室研究与探索,2006,25(8):920-922.

[3]华成英.模拟电子技术基础[M].4版.北京:清华大学出版社,2007.

[4]邵中元.晶体管放大电路图解法应用的延伸[J].上海师范大学学报,2003,32(1):33-38.

[5]康华光.电子技术基础:模拟部分[M].5版.北京:高等教育出版社,2008.

[6]向秀岑,李明辉.叠加定理在求解交流负载线中的应用[J].现代电子技术,2010,33(1):110-111.

[7]江晓安,董秀峰.模拟电子技术[M].3版.西安:西安电子科技大学出版社,2008.

[8]陈军.电子技术基础实验(上):模拟电子电路[M].南京:东南大学出版社,2011.

[9]朱华光.Multisim 10在模拟电路实验中的应用及研究[J].现代电子技术,2010,33(15):192-196.

[10]丛琦,姜光远.用图解分析法分析放大器的输入、输出电阻[J].长春师范学院学报:自然科学版,2009(6):32-35.

[11]赵波.Multisim在竞争冒险教学中的应用\[J\].现代电子技术,2010,33(7):166-168.

[12]王全宇.基于Multisim的电子技术课程虚拟实验环境创设\[J\].现代电子技术,2011,34(17):188-189.

作者简介:

苏变玲 女,1964年出生,陕西大荔人,硕士,副教授。主要研究方向为电子技术基础课程教研、数字信号处理。

(上接第174页)

图2中x轴为时间基准,每格250 ms;通道1是U1第4脚上测量所得充电波形,y轴为每格1 V;通道2是闪光灯触发脉冲,y轴为每格2 V;取充电时间1 s及2 s时验证,从图中可以看出,x轴4格和8格时对应的y轴幅度分别占满幅的79%和92%左右,考虑到电容、电阻实际值与标称值误差,可以认为理论计算与实际测量结果非常吻合。

3 结 语

通过积分方法,实现了闪光灯充电限流电阻功率计算,并且得到了实验验证,按照计算结果选取的功率电阻,已经在实际产品中得到应用,并且运行稳定可靠。

参 考 文 献

[1]佚名.闪光灯[EB/OL].[2011-08-21].baike.省略/view/13713.htm.

[2]炖鱼(still hope left).关于闪光灯[EB/OL].[2011-02-11].省略/group/topic/17525588/.

[3]曲学基.电力电子整流技术及应用[M].北京:电子工业出版社,2008.

[4]戴志平.开关电源工程调试技术[M].北京:中国电力出版社,2009.

[5]沈元隆,刘陈.电路分析基础[M].3版.北京:人民邮电出版社,2008.

[6]胡薇薇,陈江.电路分析方法[M].北京:北京大学出版社,2009.

[7]马军.微积分[M].上海:同济大学出版社,2010.

在线咨询