欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

压力容器焊接工艺论文实用13篇

压力容器焊接工艺论文
压力容器焊接工艺论文篇1

任何的一种科技制品,在完成之后都需要有事后的检查和返厂维修,压力容器也不列外。压力容器在焊接完毕之后,应当首先检查它的焊缝外观和尺寸是否符合预定目标和目标参数、实验压力容器焊接完毕之后的抗热能力和对热的处理、检查压力容器是否在焊接的时候出现裂痕等损伤、检查压力容器在制作之后的致密性是否良好,是否有透气的现象出现。关于压力容器在焊接完毕之后的返厂检查必须要严格做到以下几点:

(1)焊接的返修次数不宜超过两次;

(2)如果需要对焊接之后的压力容器进行返厂检修,必须要提交它要返修的原因并且对原因作出分析,同时提出要维修的建议;

(3)在压力容器回厂返修之前,必须要将其清洗干净,可以采用表面扫描的方式确定已经清洗干净;

(4)等待补焊的部位一定要开阔、平整、以便于进行补焊工作的进行。

压力容器焊接工艺论文篇2

引言

压力容器是典型的焊接结构,因而焊接可以说是压力容器制造、安装及修理中最重要的工序之一,焊接的质量直接关系着压力容器产品的耐腐蚀性能、使用寿命及其安全性能,关乎着压力容器设备的安全运行,乃至人们的生命财产安全。

一、影响压力容器焊接质量的因素分析

要提高压力容器的焊接质量,需要先着手了解影响其焊接质量的各种因素,以此针对性地制定策略,才能起到事半功倍的效果。首先,压力容器焊接使用的材料,是影响焊接质量的重要因素。这里说的材料包括焊接生产过程中所使用的各种焊接材料,如焊条、焊丝、焊剂、气体等。焊接材料的正确选择与使用,是确保压力容器焊接质量的前提。其次,由于焊接是制造压力容器最为关键和重要的一个环节,因此压力容器的焊接工艺成了影响其焊接质量的关键因素,这主要包括焊接工艺的制定以及焊接工艺的执行两个方面。压力容器焊接工艺的制定,必须依据合适的焊接工艺评定报告(PQR),结合工艺人员的经验、产品特点、制造工艺条件和管理情况综合考虑,最终形成焊接工艺规程或焊接工艺卡(WPS),将其作为焊接工序的指导依据,来保证焊接的质量。压力容器焊接工艺的严格执行,也是确保焊接质量的关键,一旦制定出合理正确的焊接工艺规程(WPS),需加以贯彻执行,不能随意变更其工艺参数,如有充分的根据确实需要改变,也应当履行相应的手续与程序,确保焊接工艺执行的严肃性,这是对焊接工艺的制定与评定的有力补充,与焊接工艺的制定同等重要。第三,由于压力容器的焊接离不开人的操作,需要焊工进行直接性作业,因此操作人员的素质是影响压力容器焊接质量的直接性因素,操作人员的技术水平、职业道德、质量意识、操作时的态度、纪律性等均会直接影响到压力容器的焊接质量。此外,各种焊接设备的性能以及焊接操作过程中的环境因素,也会影响到压力容器的焊接质量。

二、提高压力容器焊接质量的相关举措

1、把好焊接材料质量关

为确保压力容器的焊接质量,需要遵循全面质量管理的观点,从引进焊接材料之前就要把好材料关,在生产过程的起始阶段,就需要仔细研究压力容器的设计图纸,掌握相关的技术要求以及相应的国家标准、法律法规。依照焊接材料的相关标准及规定选用材料,确保焊缝金属的性能应高于或等于母材性能。基于压力容器应用广泛的特点,选用材料时还需根据实际情况及其相关用途所需的实际工况要求,综合考虑其化学成分、力学性能、耐腐蚀性能以及其它特殊要求等因素。从焊接材料的订货、选购,及至入厂、登记管理、烘培与领用,都需要确保其可靠性和可追踪性,这就需要采购人员确定合格供方时查验他们的相关资质,择优选择讲信誉、质量好而且稳定的供货方和协作厂进行订货和加工,材料进厂时要加强相关验收与检验工作,仔细核对材料生产供应商提供的证明文件,检验好材料的各项指标是否符合制定标准后,方可入库。此外,还要建立严格的材料管理制度对其加强管理,施行材料的标记移植制度,确保材料的可追踪性,如有需要还须进行必要的复检工作,以确保焊接材料的质量符合相关要求与规定,为压力容器焊接质量的提高提供保证。

2、制定合理焊接工艺并严格执行

合理焊接工艺的制定需要依照压力容器焊接工艺评定的标准《承压设备焊接工艺评定》,对受压元件焊缝、与受压元件相焊的焊缝、熔入永久焊缝内的定位焊缝、受压元件母材表面堆焊和补焊,以及上述焊缝的返修焊缝应当进行焊接工艺评定。焊接工艺评定完成后,焊接工艺评定报告(PQR)应由制造单位焊接责任工程师审核,技术负责人批准,监检人员确认后存入技术档案,工艺评定试样应至少保存5年。组织经验丰富的焊接技术人员编制焊接工艺规程(焊接工艺卡),确定焊接电流、焊接速度以及电弧电压等焊接工艺参数,以指导压力容器的焊接工作。一旦确定好相应的焊接工艺参数,应在焊接过程中,加强管理与检验,严格按焊接工艺卡上的工艺参数进行操作,确保焊接工艺执行的严肃性,以保证压力容器的焊接质量,避免由于不按规定操作引发的各种危险。施焊后应及时对焊缝进行无损检测,一旦发现超标缺陷,应分析产生缺陷的原因,并根据实际情况制定详尽的返修方案,制定出针对性强的返修工艺,并对返修情况做好记录。只有制定合理的焊接工艺并严格执行之,才能有效降低生产成本,提高压力容器的焊接质量。

3、提高操作人员的综合素质

首先,确保操作人员的技术水准符合压力容器焊接操作的要求,压力容器的焊接应由持有特种设备安全监察机构颁发的《特种设备作业人员证》的焊工担任,并且只能在有效期内从事合格项目范围内的焊接工作。建立焊工技术档案,定期组织对持证上岗的焊工进行岗位培训及考核,做好焊绩记录,防止任一焊接方法中断特种设备焊接作业6个月以上。不断提高焊工的理论水平和实际操作技能,使其真正在理论方面认识到执行工艺规程的重要性,从实践上提高操作技能。其次,通过进行教育及管理等手段,不断加强对操作人员的职业道德、社会道德等建设工作,提高其效率、质量意识,增强责任心。

4、对焊工的管理

人在生产实践活动中起到关键性的决定作用,因为人作为生产者对生产实践活动有积极或消极意义,这个道理放在压力容器的生产活动中也同样适用。因此,要重视对焊工的管理,要求进行压力容器施焊的焊工必须通过考试考评,在成绩合格之后取得从业资格证后,才能在规定的期限内从事焊接工作。焊工在工作时,要严格按照焊接工艺方案进行。在这期间,制造单位的质检员要定期或不定期地做好焊接工艺参数的检查与记录工作。进行压力容器施焊的焊工必须先要参加相关考试顺利考取焊工证,只有手里有了这张从业资格证,才能进入压力容器生产这个行当。在施焊时要持证上岗且在规定的期限内从事焊接工作,若焊工在证件失效后仍然从事相关工作,一经发现,要从严处理。制造单位应建立焊工技术档案,这么一来,对每名焊工的业务水平都能有个全面了解,这利于加强对焊工的管理,制定科学合理的焊工培训计划,对提高焊工专业素养、确保压力容器质量都大有裨益。

5、质量控制检测

在检测钢制压力容器产品的焊接接头性能如何时,要严格按照相关的检验规定认真执行,其中涉及到焊接试板的尺寸、数量等等。至于试样截取、试验项目、合格标准和复验要求,上述这些同样也要严格按照相关的技术操作规程认真执行。在检测有色金属制的压力容器产品质量如何时,则可依据钢制压力容器的设计图样及相关要求认真执行,关于拉伸试样的高拉强度具体标准要求主要有两条:一是不得小于母材材料的最低值;二是如果焊接接头的母材材料强度等级不同,那么拉伸试样的强度必须大于或等于强度等级低的那个。

结束语

压力容器的焊接是压力容器制造过程中的核心部分,一个压力容器的好坏,使用的寿命,使用的能力很大程度上取决于焊接质量的好坏,本文就常见的压力容器质量问题做出了解答方法和预防措施。

参考文献

压力容器焊接工艺论文篇3

现阶段,在压力容器安装工程中,大部分施工人员均比较重视焊接外观质量,忽视了对焊接内在质量的控制,主要体现为三点,即选材不当、焊接工艺不当、焊接工作装备不到位。因此,在压力容器安装工程中,一定要加强对焊接质量的控制,无论是外在还是内在,同时,加强相应的检验环节,保证压力容器可以正常使用。

1 焊接技术承接及焊接技术准备

压力容器出厂随机技术文件是焊接技术承接及焊接技术准备的主要依据,也是用户监督压力容器安装质量的重要依据。现阶段,一些容器厂没有重视随机技术文件,或者提供的文件内容不全、不细致,这样也就会影响压力容器的安装与焊接准备工作。对于小型压力容器来说,安装单位可以根据自身工作经验展开技术准备工作,而对于大型压力容器来说,如果缺少出厂技术文件,在进行安装的时候,安装单位就无法正确选择焊接材料、焊接工艺与方法,也就无法保证压力容器的焊接质量。所以,一定要重视压力容器出厂随机技术文件,其不仅对安装有所要求,对焊接也有着一定的要求,安装单位只有按照其规定进行焊接技术准备,这样才可以正确选择焊接材料、焊接工艺与方法,进而为控制焊接质量提供技术保障。

2 焊接工艺准备及焊接质量控制

焊接工艺准备主要就是根据压力容器安装技术与质保体系要求展开的工作,焊接工艺具有一定的指导性与焊接质量控制的跟踪性。要想有效控制焊接质量,可以从以下方面着手。

1)宏观控制。在开展焊接质量控制工作的时候,从宏观角度分析,主要包括两个方面:一方面,主要就是对压力容器整体安装焊接质量进行控制。在焊接施工中,对每一道重要焊接工序进行统一编号与管理,之后按照焊接顺序进行施工,为跟踪检验提供了可靠依据,同时也可以预防漏检、错检;另一方面,对压力容器焊接焊缝进行归类管理,按照同类型焊缝予以工艺准备,展开全面的宏观控制。

2)焊接工艺。焊接工艺是一种全面指导焊接施工的重要工艺文件。其主要内容有:焊缝编号、焊缝位置、焊接材料选用、焊接层数、焊接形式、焊接顺序、焊缝尺寸、焊缝质量标准等。焊接工艺可以全面反映焊工上岗行为,并且对其进行相应的规范,保证焊接施工的有序进行,同时也是指导焊接施工顺利完成的重要工艺文件,保证了焊接质量。

3)焊接工艺装备。焊接工艺装备主要包括焊接工装与焊接设备。焊接工装与焊接设备主要就是根据焊接工艺要求予以配备的,其工装与设备型号、性能、规格、适用范围等参数需要予以明确,这样就可以为焊工焊接施工提供可靠依据,进而保证焊接质量。

3 现场焊接及跟踪检验

跟踪检验是控制现场焊接质量的重要手段。从焊接工艺准备、焊接材料选用、焊工上岗一直到焊接质量检验,一定要加强对每一个环节的质量控制。在开展焊接质量检验工作之前,需要编制相应的检验大纲或者工艺,其内容主要包括检验项目、检验顺序、检验标准等,是进行检验工作的技术指导文件。现场焊接及跟踪检验主要包括以下几点。

1)焊接之前的综合检验。在进行焊接之前,需要进行综合检验,主要包括三方面内容:一是,检验焊缝,主要就是对其尺寸、表面质量、坡口形式等进行检验;二是,检验工艺设备是否达到使用标准;三是,检验焊工是否具有上岗资格证书。通过以上三方面的检验,就可以为焊接质量控制提供可靠基础与前提。

2)焊缝外观检验。在进行焊缝外观检验的时候,主要就是对其焊缝成型尺寸、焊缝标记、表面质量等进行检验,进而确保焊接质量。

3)焊缝无损检验。在开展焊缝无损检验工作的时候,主要就是按照焊接工艺标准与射线无损工艺标准执行的,是控制与检验焊接质量的重要手段之一。在开展无损检验的时候,会涉及到焊接材料入库、零件组装直到完工,对整个安装工程质量有着直接的影响。

4)试板焊接及机械性能试验。试板焊接及机械性能试验主要就是根据压力容器出场要求与技术规范标准进行的检验项目,其主要适合应用在大型压力容器安装焊接质量检验中。试板材料一定要和焊缝母材保持一致,并且采用一致的焊接方式、环境、坡口形式、工艺等,这样在经过机械性能试验之后,才可以准确反映受压元件焊缝的焊接质量,为焊接质量控制提供了可靠依据。同时,这也是检验焊缝质量的主要试验之一。

5)焊接材料跟踪检验。在跟踪检验焊接材料的时候,需要从材料进场、验收、入库、储存、保温到焊接的每一个环节展开,这样才可以保证焊接材料质量符合设计要求。合格的焊接材料需要进行分类存放,并且禁止不合格焊接材料入库。在处理、使用焊接材料的时候,也要进行相应的记录,避免出现用错焊接材料的现象,进而有效保证压力容器的焊接质量。

6)完善焊接及检验记录。完善焊接及检验记录是有效控制焊接质量、避免出现漏检与错检的主要手段之一,也是真实反映焊接质量及检验结果的重要依据,必须保证原始记录的准确、完整、有效。同时,强化安装现场管理,保证焊接质量,也是促进压力容器安装质量提高的重要所在,可以有效消除压力容器运行中可能出现的安全隐患,提高了压力容器的工作效率。

4 结束语

总而言之,在压力容器安装过程中,一定要加强对焊接质量的控制,确保压力容器安装焊接施工质量符合使用要求,充分发挥压力容器的作用,促进生产效率的提高。并且,在控制焊接质量的时候,一定要加强对焊接工艺的重视,选用质量合格的焊接材料,并且强化焊接质量检验工作,这样才可以全面控制焊接质量,达到预期控制目标。

参考文献

压力容器焊接工艺论文篇4

就目前而言,无论是国产压力管道还是进口压力管道,都不可避免地存在不同程度的缺陷,且压力管道在使用过程中还会因为载荷、介质等各种因素的影响,萌生出新的缺陷。而压力管道安装工程具有一次性与现场条件复杂恶劣等特点,因此,其质量安全评定是至关重要的,其中焊接过程的质量安全评定对保证压力管道工程的安装质量起着至关重要的作用。

2压力管道安全评定方法

2.1安全评定的理论基础

因焊接工艺本身的特点,焊接接头在形成过程中经历极其复杂与不均匀的热过程,致使焊后接头存在较大的残余应力和变形、几何

不连续性与力学性能的不均匀性,同时在焊接接头也容易产生各种焊接缺陷,如裂纹、夹渣、气孔、咬边等,这些缺陷的存在与发展往往会导致结构的失效与断裂,但焊接接头形成过程中缺陷是不可避免的。工程实践表明,并非所有缺陷都会导致结构的失效,也就是说缺陷满足一定条件是对结构无害的。

2.2国内外压力管道安全评定的研究状况

国外压力管道安全评定研究始于70年代,它起源于核电站压力管道,一方面由于核电站的安全性要求较高,另一方面核电站中的事故常发生于压力管道的泄漏或爆破。因此美、德、日等发达国家相继开展了压力管道的研究。随着研究的深入,研究花费越来越巨大,包括日本,法国,美国,德国在内的多个国家成立了“国际管道完整性研究工作组”,由各成员国出资,联合开展研究,研究成果共享,在研究中得到了一些有意义的结论。在国内,针对我国压力容器、压力管道长期存在的共性问题,多个科研院所的科学家们总结、继承和吸收了国内外锅炉压力容器安全评定的理论、技术实践和经验,1984年我国便了“压力容器缺陷评定规范“(CVDA一84),它以COD理论为基础,反映了当时国内外的技术水平。2004年我国又制定出“在用含缺陷压力容器安全评定“标准,它采用失效评定图技术,规范了压力容器安全评定的技术方法,在提高我国压力容器安全评定总体水平的同时,也提高了压力容器的安全性和经济性。

2.3国外压力管道安全评定的发展趋势

就目前而言,国际上对含缺陷压力管道的试验研究和安全评定的研究工作正方兴未艾,并在不断的深入,在该领域的研究大致有三大

趋势:

2.3.1工程化,许多学者正在致力于评定方法适合于工程应用的需要,从复杂三维有限元计算,到弹塑性断裂力学的评定。在弹塑性断裂力学评定中,采用简化归纳、实验验证使之满足工程实用性。

2.3.2可靠性,在工程实际中,无论是管子的尺寸、缺陷的大小,还是材料性能参数都不是确定值,而是以一定的分布规律分布的。随着可靠性理论的应用,对压力管道的缺陷评定结果也提出了可靠性指标。如Hong,.Y.等人以疲劳裂纹扩展为机理,考虑参数不确定性,分别用Paris公式计算裂纹在深度和长度方向的随机扩展,在压力管道的先漏后爆评定中,得到了压力管道的泄漏概率和爆破概率。

2.3.3智能化,随着计算机技术的发展,目前国际上管道安全评定方法都向智能化方向发展,如德国MPA编制的ELBA专家系统,用于带纵向裂纹管道的安全评定;ESR专家系统,用于高温构件管子、管系及部件等寿命的预测;美国的BMW专家系统用于锅炉管失效分析。

2.4国内压力管道安全评定的发展趋势

我国压力管道安全评定的研究工作起步较晚,但近年来引起了人们的高度重视。由于我们有较扎实的断裂力学的理论基础,又有国外大量的研究成果可以借鉴,因此起步水平较高,发展较快,根据我国情况,其发展可从下面几方面深入。

2.4.1国产化,就是根据我国的情况来制订研究计划。国外该领域的研究主要集中在核电工业,其材料主要是核管道用材。而我国,核电工业刚刚开始不久,当然我们可以进行这方面的研究,作为技术储备。但研究更应该面对石油、化工及民用工程如城市煤气等中管道的研究,以大大减少这些领域内管道产生灾难性事故的发生率。

2.4.2工程化,除评定方法更简便、更适合于工程应用外,更值得指出的是,从工程实际出发开展研究,得出更符合工程实际情况的结论。国外研究目前都集中在含裂纹的管道,但从我国管道检测的大量结果看,其中咬边、未焊透、夹渣及气孔等缺陷更为普遍,因此研究含咬边、气孔等缺陷管道的失效行为更符合工程实际。

2.4.3智能化,随着计算机应用的逐步普及,智能化必然成为管道安全评定的发展方向,我国应当跟上世界发展的潮流,与世界同步。

3安全评定内容

3.1焊接管理制度

应有满足工程需要的焊接工艺评定压力管道焊接工艺评定一般按JB 4708-2000《钢制压力容器焊接工艺评定》的要求进行,焊材的保存、烘干、领用、发放和回收应符合有关规定,焊工应有相应的资格项目,并在有效期内,应根据焊接工艺评定编制焊接工艺规程,管口加工及组对应符合工艺要求,施焊时工艺参数应符合焊接工艺规程,焊接完成后需及时作好焊接记录,焊缝外观应经检验合格。评定中对工艺评定档案是否完整,评定试样的数量及弯曲试验的弯曲角度和弯心直径,试样上有无评定编号标记,评定能否有效覆盖,焊工有无超项焊接,焊材库的温湿度是否达到要求,焊条有无烘干并作好记录等应重点检查。

3.2焊接工艺文件

对于压力管道的焊接用工艺文件,除了工程施工技术方案外,还应编制专门的焊接作业指导书。压力管道焊接作业指导书应由专业焊

接工艺人员编制,由焊接与热处理责任师审批。压力管道焊接作业指导书应根据图样要求和事先按有关施工与验收规范完成的相应焊接工艺评定进行编制,应按整个压力管道工程中遇到的各种焊缝连接形式分别规定相应的坡口要求、焊接位置、焊前预热、焊材选取、层间温度、焊接层数、焊接道数、施焊电流、施焊电压、焊后热处理、焊工资格、检验与无损检测要求以及对其中固定焊、障碍焊的特别工艺措施。

3.3持证焊工

压力容器焊接工艺论文篇5

压力容器的分类方法很多,从使用、制造和监检的角度分类,有以下几种。

1.按承受压力的等级分为:低压容器、中压容器、高压容器和超高压容器。

2.按盛装介质分为:非易燃、无毒;易燃或有毒;剧毒。

3.按工艺过程中的作用不同分为:反应容器、换热容器、分离容器、贮运容器。

(一)压力容器的概述

1.压力容器的分类

压力容器按工作压力一般可分为低压、中压、高压和超高压四类。压力容器的等级原则上可按以下规定划分:

(1)低压:0.1MPa≤P<1.6MPa

(2)中压:1.6MPa≤P<10MPa

(3)高压:10MPa≤P<100MPa

(4)超高压:P≥100MPa

2.压力容器设计压力及设计温度

压力容器中主要的载荷是内压,其值不得小于最大工作压力,而最大工作压力指正常操作情况下,容器顶部可能出现的最高工作压力,压力容器的设计压力规定来取值。

二、压力容器焊接缺陷的监测及质量控制

(一)压力容器焊接中产生的缺陷及预防措施

1.压力容器焊接中产生的缺陷

(1)热影响区脆化

(2)气孔

(3)咬边

(二)焊接质量控制及措施

1.材质因素的控制

材质包括母材和焊接材料。

(1)母材的控制

①间接评估法

②直接评估法

2.焊接材料的控制

①在焊接同种材质时,一般应按焊接接头与母材等强的原则来选择焊接材料。

②在焊接碳钢与低合金钢或不同强度等级的低合金钢之间的异种钢接头时,可按两者中强度级别较低的一种选用焊接材料。

③在焊接碳钢与不锈钢或低合金钢与不锈钢之间的异种接头时,则一律采用高镍铬焊条或焊丝进行焊接。

2.工艺因素控制

焊接工艺中,对焊接质量影响较大的有焊前准备、焊接顺序和焊接工艺参数。

(1)焊前准备的控制(焊前准备主要包括坡口制备、接头装配和焊接区域的清理。)

①坡口的制备

②接头的装配

③焊接区域的清理

(2)焊接顺序的控制

在选择焊接顺序时,应尽量使焊缝处于比较自由的收缩状态。原则是,先焊收缩量的焊缝,后焊收缩量小的焊缝,以保证焊缝在焊接时能有较大的收缩自由,产生较小的残余应力,可以防止裂纹的产生。

图1中,如果焊接顺序是沿全圆周连续焊接,在B点就会产生较大的拉应力,发生层状撕裂。但是,若改为先焊B侧的1/4圆周,然后再焊A、C两部分,则在B点形成压应力,就不会产生层状撕裂。

3.检验因素的控制

焊接检验是控制焊接质量的重要手段。如前所述,焊接检验方法种类很多,每种方法都有其自身特点和应用范围。因此,在检验过程中应注意正确选择和灵活使用,才能全面准确的反映焊接质量。在本设计中可以采用X射线探伤来对储气筒进行检测。

结论

压力容器焊接工艺论文篇6

1 压力容器的结构和特点

(1)产品结构和参数的多样性。

压力容器产品适用范围广,如化工、石油、冶炼、饮食等行业,产品具有品种繁多的特点,进而引起制造工艺上的多样性。

(2)有较高的安全性要求。

压力容器制造,必须遵循大量的、强制性的标准和规范,并且标准和规范具有时效性。

(3)设计具有较强的专业性。

压力容器产品不同于通用机械产品,在运用软件技术进行产品设计时,不仅要求人员掌握先进的计算机技术,更要具备化工设备的整体设计思想。

(4)操作的复杂性。

压力容器的操作条件十分复杂,甚至近于苛刻。处理介质则包括爆、燃、毒、辐(照)、腐(蚀)、磨(损)等数千个品种。操作条件的复杂性使压力容器从设计、制造、安装到使用、维护都不同于一般机械设备,而成为一类特殊设备

2 压力容器制造中存在的问题

为了更好的发展生产和满足市场需求,某些压力容器制造厂家在定型产品生产的基础上开始制造各种制造许可证允许范围内的非标压力容器。但是,由于厂方对压力容器的相关法规、规章和标准不熟悉以及制造经验不足等问题存在,导致压力容器制造过程中出现失控现象,违反相关管理制度。

1、质保体系运转不正常。

2、设计时选用标准不当。

3、工艺文件执行不严格。

3 采取的措施

3.1 材料控制

必须在熟悉图样的技术要求和相应的国家标准后,由制造单位,对材料加以控制。在压力容器的制造过程中,材料徭经过冷变形过程,一般压力容器冷变形常不大。对于不同材料,冷变形率不同,其性能变化所需进行工艺性试验,以确定材料经冷变形后是否需采取其他措施恢复其性能。在监检过程中,对这方面应有的认识的明确要求。

3.2 焊接的控制

材料的焊接过程,实际是一个冶金过程,但却又不是一个完全的冶金的过程。

焊接性试验,钢材的焊接性试验,是为评定其焊接性能的优劣,找到焊接性能最佳所应采取的措施,满足压力容器对焊接质量的要求。这类试验通常是将材料的焊接参数规定成几个组别,进行焊接和焊后热处理,再对焊接试板进行力学性能试验,从中选择出性能合格的焊接参数范围,在此基础上,再进行第二轮焊接试验,确定用于焊接工艺评定的焊接参数,用确定的参数进行焊接工艺评定,评定合格后,的焊接参数,方可作为压力容器焊接工艺编制的根据。焊接的控制之关键,在于焊接工艺评定。受压元件之间的焊缝,受压元件与受压元件之间的焊缝,及其上述定位焊缝和受压元件母材表面堆焊、补焊,均应按《钢制压力容器焊接工艺评定》标准进行评定。

3.3 工艺的控制

与普通的机械产品加工相比,压力容器制造,具有多品种单台套的特点。因此,制造厂对每一台压力容器,都要编制一套完整的工艺文件。这些工艺文件,具有指导生产、保证质量、提高效率的作用。制定了正确、合理的工艺后,关键是在施工过程中,严格执行已定的工艺。每道工序完成后,操作者和工厂检验员,都要在工艺流程卡上签字认可,做到在制品随工艺流程卡,一同进入下道工序。

3.4 外观质量和几何尺寸的控制

压力容器产品的外观质量和几何尺寸,往往被人们所忽视!由此,引起的爆炸事故也屡见不鲜。外观质量中的咬边和根部未焊透等,都是严重引起应力集中的缺陷。缺陷尺寸不太大时,可进行修磨,但尺寸严重超标,就必须修磨补焊,消除缺陷。另外,电弧打伤、机械划伤等也应该修磨消除。尤其,对不锈钢制的压力容器,其内壁接触介质工作面上的这类缺陷,就更不容忽视;设备的不直度,要控制在标准规定之内,否则会影响化工工艺流程和增加设备的附加应力。

3.5 焊后热处理的控制

对焊后要求热处理的设备,其热处理工艺,必须依据焊接工艺评定报告的参数来编制。因为不同材料、不同厚度时,热处理的温度,都有一定的范围和保温时间;处理温度不准确,会影响材料的性能。在压力容器制造中,热处理一般分为两大类: 一是焊后热处理;二是改善力学性能热处理。

3.6 耐压试验的控制

耐压试验,是产品制造完工后,考验产品强度和密封性能,确保产品在今后运行中安全可靠的重要手段,必须严格按照《容规》和国家有关规定执行。

压力容器耐压试验的目的是通过观察承压部件有无明显变形和破裂,检验承压部件的强度,来验证压力容器是否具有设计压力下安全运行必须的承压能力。同时通过观察焊缝、法兰等连接处有无泄漏,来检验锅炉压力容器的严密性或发现容器潜在的局部缺陷。压力容器的耐压试验时,要求介质具有挥发性小、易流动、不燃和无毒等特性。而不用气体。因为耐压试验主要是检验强度,试验时应考虑容器在试验时有破裂的可能性,由于气体爆破时的能量比液体大数百倍甚至上万倍,故较少采用。

对于一般在常温下使用的压力容器,为了避免耐压试验时发生脆性断裂而提高试验用水的温度是没有必要的,这些容器可以在环境温度下,用一般常温的水进行耐压试验;但是在环境温度低于零度时应将试验用水的温度保持在5度以上,以防冻结。在较高温度下使用的压力容器,如果所用材料无延性转变温度,在耐压试验时可适当提高试验用水温度,但不宜高过容器的设计温度。

3.7 维护管理

严格执行有关法规,根据设备检修有关规定,切实做好定期检查、取样,掌握压务容器在运行中缺陷的发展和腐蚀情况,对发现的问题及时采取补救措施,防止设备继续腐蚀,延长使用寿命,确保压力容器安全运行。

3.8 无损检测的控制

无损检测是保证压力容器产品质量的一种重要的检测手段,射线探伤是目前压力容器焊缝质量检测中应用最为广泛的,为达到较好的检测效果必须事先制定符合容器检测要求的探伤工艺。对于非标压力容器来说,因其产品类型、规格、结构不一,通用工艺不能完全运用,应该制定专用的工艺卡,对此,制造厂家往往不是很重视。单凭经验操作而不制定专用工艺卡,使检测结果不能满足标准要求。

结束语

综上所述,压力容器的制作过程,从设计图纸的工艺性审核、制作工艺的编制、材料的验收入库到制作、检验与验收的各个环节,都是至关重要的。全面了解压力容器制造的过程,从而最大程度顺应市场需求,使容器制造业应对市场能力进一步提高。

参考文献

[1] 缪春生,崔建国,马歆.压力容器制造过程调研及若干问题的探讨[J].压力容器,2008,(11):56-57.

[2] 郝永臣. 压力容器制造过程中常见问题分析[J]. 现代商贸工业. 2010(21)

压力容器焊接工艺论文篇7

锅炉、压力容器是承压类特种设备,其质量稍有问题就会有安全隐患,给国家和人民生命财产带来潜在的威胁,而焊接接头的质量,对锅炉、压力容器的寿命和安全运行起关键作用,从某种程度上说,锅炉、压力容器的质量就是其焊接质量,而焊接接头的质量取决于焊接材料、焊接工艺、焊工管理、焊接设备、焊接检验等因素。控制这几个方面的因素,即可控制焊接质量。

2、 锅炉、压力容器焊接质量控制措施

2.1 焊接材料的控制

(1) 焊接材料的选择

对于不等强度级别钢的焊接,原则上应选择低强度等级的焊接材料,在某些特殊情况下,如点固焊或厚板的第一道焊往往要求强度高,可以选用高强度等级的焊接材料。焊接材料的选择还应综合考虑结构和工艺因素及刚度特点,如冷冲压冷卷要求焊接接头有较高的塑性变形能力,热卷和热处理则要求接头经高温热处理后仍能保证所要求的强度性能及韧性,因此,应选用合金成分较高的焊材,而形状复杂,结构刚性大以及大厚度的焊件,由于焊接过程中产生较大的焊接应力,容易产生裂纹,因此必须选用抗裂性好的低氢焊条。

(2)焊接材料的验收、保管、领用

用于制造锅炉、压力容器受压元件的焊接材料应符合有关国家标准和行业标准,制造单位应建立并严格执行焊接材料验收、复验、保管、烘干、发放和回收制度。不同厂家生产的同一型号或牌号的焊条,其工艺性能有可能存在差异,制造厂应根据多年的实践情况,选定相对固定的焊条生产厂家,焊接材料必须有质量证明书和清晰牢固的标志(如批号)。焊材买回后应按标准进行抽样复验,验收合格后及时办理入库手续,焊接材料入库后要按类别、型号、牌号及批号分别在不同的位置存放。焊条和焊剂在使用前必须按规定温度和时间烘干并保温,焊条从烘箱中取出后,在空气中放置时焊条药皮会吸收空气中的水分,时间越长,吸收的水分越多,因此,领用焊条时应做到随用随领,当天未用完的焊接材料应退回焊材库。

2.2 焊接工艺控制

(1)焊接工艺评定

焊接工艺是控制锅炉、压力容器焊接接头质量的关键,产品施焊前,对受压元件之间的对接焊接接头和要求全焊透的 T 形焊接接头、受压元件与承载的非受压元件之间全焊透的 T 形或角接焊接接头、以及受压元件的耐腐蚀堆焊层都应进行焊接工艺评定。制造厂应根据产品的情况,如焊接方法、母材钢号、母材厚度和熔敷金属厚度、焊材保护气体、有无衬垫、是否预热和焊后处理等做多种焊接工艺评定,以满足工艺需要。

(2)焊接工艺参数

焊接线能量综合体现了焊接规范参数对接头性能的影响,对于低合金高强钢、低温钢和不锈钢都要求采用小线能量焊接,对于易淬火钢,采用小线能量焊接时冷却速度快,易产生冷裂纹,因此须采用焊前预热、控制层间温度和焊后缓冷等工艺措施。但仅是线能量数值控制还不够,即使相同数值的线能量,如果焊接电流、电压和速度之间配合不合理,还是不能得到好的焊缝性能,例如在焊接电流较大、焊接电压较低情况下得到深而窄的焊缝,适当减小电流提高电压则能得到良好的焊缝质量,这两者焊缝性能是不同的,因此应在规范合理的原则下选择合适的线能量。

(3)焊接设备控制

工作状态良好的焊接设备,是顺利完成焊接工作,保证焊接质量的必要条件。焊接设备包括焊条烘干设备必须由专人管理,定期检查维修,电流表、电压表应工作正常,并在检定期内,制造厂应根据自己的需要合理选购较先进的设备,先进的焊接设备是提高焊接质量的一个重要因素。

(4)焊接检验过程

焊接过程中的检验主要是指检查焊接工艺的执行情况,焊工是否持证上岗以及焊工的自检,持证焊工要对自己所焊接的产品质量负责,一名合格焊工不仅要施焊技能好,而且要了解缺陷产生的原因和防止措施,认真操作,切忌为追求经济效益而采用大焊条、大电流焊接,这对保证焊缝质量起着重要作用,比如产品焊接试板是焊接生产过程检验的一种重要手段,是对产品的主体材料包括主体焊缝的焊接材料、焊接工艺和焊工技能的综合检验,因此要求产品试板必须与主体焊缝同材料同工艺并连在纵缝上和纵缝同时由同一个焊工施焊;有热处理要求的产品,其试板必须和筒体同炉热处理。焊后检验通常都是在焊接完成后即可进行,但是对于具有延迟裂纹倾向的高强钢应在焊后延迟一段时间再进行检验或复检。焊后检验主要是无损检验,包括外观检查,无损探伤,耐压试验及致密性试验,其中容易忽视的问题一是局部探伤时,忽视了探伤部位的代表性,如采用周向3 射线机对圆筒环缝通过一次或二次曝光即可达到一定的探伤比例,部分探伤人员为了追求探伤比例,往往选择环缝进行探伤,这是不正确的,应重点抽查焊缝交叉部位及纵向焊缝。二是局部射线检验或超声检测的焊缝,若在检测部位发现超标缺陷时,则应进行不少于10%的补充检测,如仍不合格,则应对该焊缝全部检测。

3、 焊机技术人员的培养与要点

3.1 搞好焊工考试的资格审查, 提高焊工培训的成才率

压力容器焊接工艺论文篇8

1 绪论

1.1 引言

反应堆压力容器设备是压水堆核电站中的心脏设备,该设备是放射性物质的包壳,在运行期间不仅承受高温、高压和强辐照,而且在核电站的整个运行寿期内不可更换,对电厂的稳定安全运行极其重要。

反应堆压力容器作为核电厂一回路主设备承担着三项重要功能:一、作为包容反应堆堆芯的容器,起着固定和支撑堆内构件的作用,保证燃料组件按一定的间距在堆芯内的支撑与定位;二、作为反应堆冷却剂系统的一部分,起着承受一回路冷却剂与外部压差的压力边界的作用;三、与其它一回路压力边界设备一起构筑了核电厂防止放射性物质外逸的第二道屏障。

1.2 600MW反应堆压力容器概况

我国自主设计的CNP600反应堆核电站是根据大亚湾的压水堆技术进行设计修改的,采用了两条30万千瓦标准回路的结构。目前采用该堆型的有秦山二期4个机组和海南昌江核电2个机组,秦山二期扩建工程3、4号机组沿用了1、2号机组的设计理念和标准,在原来的基础上进行了改进。600MW反应堆压力容器遵循法国“压水堆核岛机械设备设计和建造规则(RCC-M)”要求进行设计和制造,属于安全一级、质保Q1级和抗震1I级设备。设备主要设计参数和整体尺寸如下:

主要材料:16MND5 水压试验压力:22.8Mpa

设计压力:17.2Mpa 外型尺寸:6200×5282×12978mm

运行压力:15.5Mpa 设计寿命:40年

设计温度:343℃ 总 重:339t

运行温度:327.2--292.8℃ 全容积: 123m3

最大快中子通量 5×1019n/cm2 有效容积:98.577m3

秦山二期扩建工程3、4号反应堆压力容器是由中国核动力研究设计院设计,韩国斗山重工株式会社(简称斗山)和中国第一重型机械股份公司(简称一重)各自承制一台。

2 反应堆压力容器结构

反应堆压力容器通常分为顶盖组件、筒体组件两大部分。

2.1顶盖组件

顶盖组件主要由上封头和顶盖法兰两部分组成。上封头上焊有37个贯穿件管座,其中33个为CRDM管座,4个为热电偶管座,以供安装控制棒驱动机构组件和热电偶仪表导向管;有1根排气管,用于排放容器内的气体;有3个吊耳,用来运输吊装;还有通风罩支承,用来支承上面CRDM通风罩组件。顶盖法兰上开有56个主螺栓孔,用于主螺栓贯穿;在法兰面上设有两道同心环形沟槽,用于安装两道金属密封环。

2.2 筒体组件

筒体组件主要由法兰-接管段筒体、堆芯筒体、过渡段和下封头组成。其中法兰-接管筒体上有2个入口接管和2个出口接管,它们分别与反应堆各个冷却剂环路的冷段和热段连接;另外还设有2个安注管,用于在事故情况下注入冷却剂;在法兰面上设有1个检漏管,用于检测并引出密封泄露。过渡段上焊有四个径向支承块,这四个支承块与堆内构件M形插入件配合,用以限制堆内构件下部在水力冲击下发生转动。下封头上有38根中子测量管座,用作堆芯测量系统伸入压力容器的通道。

顶盖组件和筒体组件通过可拆卸的56件主螺栓、主螺母和垫圈联接紧固。

冷却剂通过入口接管进入压力容器,并且向下流过堆芯吊篮和容器壁之间的环形空间,在底部转向朝上流过堆内构件/燃料组件堆芯到出口接管,将堆芯内产生的热能带出。

3 反应堆压力容器主体材料

根据1、2号反应堆压力容器良好的运行业绩,3、4号反应堆压力容器的主材依然选用16MND5锻件。该锻件具有优良的焊接性能、较高的淬透性和强度、较强的抗中子辐照与抗脆化性,同时还具有良好的低温冲击韧性和较低的无延性转变温度等优点(1)。所不同的是4号反应堆压力容器的16MND5锻件,全部由一重锻造。北钢院对此材料与国外同牌号锻件进行了等效性试验与论证,证明各项指标都达到了等效的要求。因科镍贯穿件采用了抗各种水介质和高温应力腐蚀性能的因科镍690材料(1);安全端采用了304LN型或316LN型的控氮不锈钢。

4 反应堆压力容器焊接难点

反应堆压力容器的制造主要涉及到冶炼、锻造、焊接、机加工、无损检验等专业。涉及的每个专

业领域都存在一些工艺难点,包括:法兰接管段等大锻件的锻造;接管-安全端异种金属焊接,大接管马鞍形窄坡口埋弧自动焊,CRDM管座/中子测量管与封头的密封焊;筒体组件的最终精加工,封头J型坡口的机加工;以及接管-安全端异种金属焊缝的无损检验。

以下重点介绍焊接工艺难点。

4.1焊接工艺难点

反应堆压力容器制造中有大量的焊接工序,包括不锈钢堆焊、镍基隔离层堆焊、低合金钢环焊缝组焊、管座对接焊、管座-封头密封焊、接管-安全端异种金属焊接及各种补焊。这里重点介绍接管-安全端异种金属焊接这个业内公认的难题,很多制造厂都走过弯路。

反应堆压力容器共设有6个接管,入口接管、出口接管和安注接管各2个。为了减少安装现场的焊接难度,以及方便压力容器设备在现场与一回路管道(奥氏体不锈钢)进行同种金属焊接,因此每个接管端部都与不锈钢锻件(即安全端)进行焊接,这条焊缝即为“接管-安全端焊缝”。由于低合金钢与不锈钢的线膨胀系数有较大差别,并在长期高温运行会发生碳迁移,如直接进行连接将会在低合金钢与不锈钢的结合面上形成较大应力差,从而影响结构安全。设计上选取了线膨胀系数介于低合金钢与不锈钢之间、并略接近于低合金钢的镍基合金作为过渡材料,从而不仅较好地缓和焊缝两侧的应力差,还能阻止碳迁移,低合金钢的稀释作用对镍基合金来说影响不大(2)。

该焊缝的结构为“低合金钢接管(16MND5)-镍基预堆边-镍基对接焊缝-不锈钢安全端(Z2CND18-12)”,参见示意图4.1、4.2。

图 4.1 出入口接管-安全端焊缝结构 图4.2 安注管-安全端焊缝结构

此异种金属焊接工艺的难点在于镍基合金本身熔池的流动性差、润湿性不好,焊接过程中焊缝容易氧化,熔池表面的氧化膜不易彻底去除,从而形成了焊缝夹杂物,因此对焊接工艺和焊接操作工要求很高,否则在焊接过程中很容易产生缺陷。考虑到焊接的困难性,为了优化焊接参数,以及提高焊接操作工的技能,斗山和一重除了进行焊接工艺评定试验外,都进行了大接管焊接前的焊接工艺试验,如斗山在焊接大接管前共进行了三次模拟试验,以及焊接见证件和在役检查试块的焊接;一重也进行了一次工艺试验。斗山针对模拟试验中出现的预堆边与对接焊缝融合处整圈未熔合缺陷进行了深层次的原因分析,并对试环进行解剖试验,缺陷的真实性得到了验证,并根据实际情况对工艺进行了改进。一重委托无损检验专业单位运用自动超声仪器进行扫查来确认试验环的焊缝质量。

虽然两家制造厂做了很多工艺准备的工作,但由于焊接过程不易控制,3、4号压力容器产品焊缝中还是出现了焊接缺陷。3号反应堆压力容器中6条接管-安全端焊缝共有5条焊缝出现了缺陷,主要位置在镍基预堆边与对接焊缝的融合处。4号压力容器有1条接管-安全端焊缝出现了质量问题。焊接结果详见表4.1。

表4.1 压力容器接管-安全端异种金属焊缝结论

针对以上的结论,我们对两个制造厂所使用的焊接方式、焊材以及焊接操作工方面进行分析比较。

4.1.1 焊接方式

斗山和一重都采用了钨极脉冲氩弧焊,针对出入口接管和安注管不同的焊接厚度,韩国斗山重工使用了日立的BHIC焊机和美国AMI焊机,分别采用了半全位置(自下而上)和全位置焊接方式,压力容器处于竖直状态,接管横躺,如图4.3。这种方式的好处在于可使用两台焊机同时焊接对称的两个接管,焊接周期缩短一半。但这种焊接方式难度较大,焊机从6点钟位置爬坡至12点位置,焊接参数未针对不同的弧度进行细化,而是用相同参数从头焊至结束,增加了产生缺陷的可能性。

一重对所有的接管都采用横焊焊接方式,使用的是焊机POLYSOUDE PC600,压力容器处于躺着状态,接管竖直向上,这种焊接方式能使焊机始终保持同一姿势,熔池成形比较规则,如图4.4。

图4.3 3号压力容器大接管-安全端焊接方式 图4.4 4号压力容器大接管-安全端焊接方式

4.1.2 焊材选择

3、4号压力容器都使用了镍基合金690焊接材料,具体类型、批号使用如表4.2。

表4.2 镍基合金焊材内容

从以上表可看出,3号压力容器大接管镍基预堆边使用的是焊带25.4×0.5,而对接焊缝使用的是Φ1.2的焊丝。据了解,该镍基焊缝很少用焊带和焊丝这种搭配方式进行焊接,而斗山使用焊带,主要是考虑焊接效率比较高。但焊带热输入量大、熔池晶粒比较粗大,塑性比较差,流动性很差,并且金属纯净度也比较差,因此与焊丝熔敷金属的晶粒熔合的不是非常好。

4号压力容器接管镍基预堆边和对接焊缝使用了同种规格的焊丝Φ0.9,镍基预堆边和对接焊缝搭接处熔合的比较好。

4.1.3 焊接操作工

斗山之前制造的很多压力容器都没有此类接管-安全端异种金属焊缝,焊接操作工的技能就是靠产品焊接前的工艺准备中摸索累积的,包括三次模拟试验、一次焊接工艺评定试验、一次焊接见证件试验和在役检查试块的焊接,因此经验相对比较欠缺。以致焊接过程中的一些细节未完全控制,产生了焊接质量缺陷。主要有以下三个方面:

(1)对焊接参数的控制得不太好,例如送丝速度和焊接速度过快造成热输入量偏低。

(2)气体保护不理想,气体保护不足使焊道产生氧化物,可能生成氧化镍(NiO),由于镍基合金与氧化镍的熔点差别很大(镍基合金:1446℃,氧化镍:2090℃),氧化镍会以夹渣出现在焊缝中。同时INCONEL52中的Al含量较高,气体保护不理想的情况下,也很容易生成Al2O3。

(3)焊道打磨不够理想,部分焊道打磨不充分,氧化物未去除,部分焊道打磨过量,产生凹坑。

针对3号压力容器接管-安全端焊缝质量问题,我们对一重进行了多次经验反馈,通报了3号焊接情况和返修方案,并强调了焊接过程中的注意事项。一重焊工进行了针对性的技能培训,在焊接前进行工艺试验,掌握了打磨和气体保护有效方法,并增加了层间渗透检验来保证质量。因此相对3号压力容器,4号压力容器的接管-安全端异种金属焊接的结果好一点。

鉴于以上原因的分析,由于焊接方式和焊接材料一经选定不能进行更换,斗山在产品焊缝返修前进行了补焊模拟试验来加强焊接操作工的技能,增加过程中层间渗透检验来加强质量控制,优化了焊接参数、更换了打磨工具、改善了气体保护等措施,并邀请了西屋专家对焊接进行指导和把关,顺利完成了返修并经最终无损检验确认合格。

4.1.4 个人建议

通过以上焊接工艺等方面的分析比较,并借鉴1号、2号压力容器的制造经验,以及其它项目的一些设计理念,有以下三方面的建议。

(1)焊接工艺改进

秦山二期共4台压力容器的接管-安全端异种金属焊缝只有三菱承制的1号压力容器的焊缝非常干净,未发现任何显示。具有丰富制造经验的三菱采用的是自行开发的等离子焊丝自动堆焊技术进行堆焊镍基预堆边,而对接焊缝选择了管嘴向下的布置和特殊辅助工装的焊机进行自动脉冲氩弧焊,并没有采用接管向上,横焊这种比较简易操作的焊接方式。三菱采用如此复杂的焊接工艺,从最终的焊缝效果来看,还是具有一定道理的。因此建议制造厂在焊接工艺还需改进,对焊接方式和焊机辅助装置上进行研究。

(2)焊材的选择

2号压力容器大接管-安全端的镍基预堆边是采用了传统的药皮焊条进行手工堆焊,对接焊缝是用焊丝进行自动焊接的,在预堆边和对接焊融合面出现过有规律的缺陷,几方研究后建议不采纳手工焊与自动焊结合的焊缝结构。从目前3号压力容器来看,用焊带堆焊的预堆边和焊丝焊接的对接焊缝两者的融合面也存在大量未熔合缺陷。因此在焊材选择方面,建议都选择焊丝,而焊接手法都用自动焊更好。

(3)焊缝结构更改

接管-安全端焊缝之所以采用镍基焊材,主要考虑了低合金钢与不锈钢的线膨胀系数有较大差别,并在长期高温下运行会发生碳迁移等因素。但目前其它电厂百万千瓦压力容器接管-安全端焊接结构采用了不锈钢焊材替代镍基焊材的设计。焊接顺序为安全端与接管组焊后进行一次中间消除应力热处理,之后与法兰接管段焊接,该焊缝要经受最终消除应力热处理。

这种设计可通过中间热处理方法来消除材料线膨胀系数不同引起的焊接残余应力,以及采用了堆焊不锈钢309L过渡层和热处理方法来有效地抑制碳向奥氏体不锈钢308L焊缝金属迁移。之前所担心的不锈钢在经过热处理热循环后,由于过饱和碳向晶界迁移,在晶界形成贫铬现象,容易产生晶间腐蚀现象。目前有研究认为,在采用超低碳不锈钢的情况下,由于不锈钢中碳含量在0.04%以下,即使发现碳向晶界迁移,也不会造成明显的贫铬现象,因此,超低碳不锈钢对热处理敏化不太敏感。

安全端的焊接流程为:

其它电厂接管-安全端具体使用的焊接材料与采用的焊接方法如表4.3所示。

表4.3 其它电厂接管-安全端焊接材料与焊接方法

采用这种焊接结构,不仅可以避免镍基焊材的异种金属焊接,大大减少了产生焊接缺陷的概率。而且还改变了焊接顺序,可以大大缩短制造周期。

反应堆压力容器除了接管-安全端这个焊接难点外,其它如大接管与筒体的马鞍型焊接最困难的是在焊接过程中要周期性地进行上坡焊和下坡焊,焊道的厚度也会因此而使得上坡时加厚,下坡时减薄。焊接操作工在施焊过程中通过频繁调节焊接速度,使在上坡焊时焊速快些,而在下坡焊时焊速放慢,来保证焊层的厚度均匀(2)。

另外CRDM管座与上封头密封焊存在很难控制焊接变形的难点,焊接的变形引起了CRDM管座位置度偏差,越焊到外面的管座变形越大。虽然制造厂在焊接过程中通过管座内充水冷却、安装辅助工装等措施来控制变形,但还是有很多管座的位置度不满足设计要求。中子测量管座与下封头的焊接也存在位置度超差的问题,对设备质量存在隐患。

5 总结

秦二厂已完成制造的4台600MW反应堆压力容器,只有三菱重工承制的1号压力容器按期交货,其余3台由于制造工艺难点或管理原因引起了质量问题导致推迟交货。其中2号压力容器、3号压力容器由于接管-安全端异种金属焊缝的质量问题对整个机组的工期造成很大影响。因此工艺难点的解决对质量保证和进度控制都是至关重要的。

压力容器焊接工艺论文篇9

在生产中,压力容器焊缝对冲击性能、耐蚀性能等有特殊要求,当技术文件中对产品的冲击韧性及耐腐蚀性提出了要求后,焊接文件就应当限制焊接过程中的焊接热输入。

1 焊接热输入的影响因素

1.1 影响因素

影响焊接热输入大小的因素主要有:焊接电流、电弧电压、焊接速度、预热温度、多层多道焊的层间温度、焊缝尺寸、电流特性、电流种类、焊条特性、焊接位置、焊条直径等。

焊接热输入大小根据焊接工艺评定确定,在产品制造过程中以评定时的范围为准。

1.2 计算方法

产品制造时热输入的主要有两种计算方法,一种是根据焊接、电弧、焊接速度计算,一种是根据焊缝金属体积,通过焊缝金属体积变化计算。制造过程中主要使用:焊接热输入量=热效率系数×来计算焊接热输入。

热效率系数按照焊接方法进行确定。如:焊条电弧焊热效率系数为:0.8,钨极气体保护焊为:0.6。参照标准选取合适的焊接方法后,选取热效率系数。

2 焊接热输入控制方法

2.1 压力容器制造过程中控制热输入量的基本方法

对焊接热输入量进行控制的基本方法和原则如下:

a)采用窄焊道焊接;

b)控制焊前预热温度;使温度在要求的温度范围内;

c)控制焊接工艺参数,使焊接工艺参数满足热输入工艺要求及焊接工艺要求;例如:低碳钢、低合金钢和耐热钢材料的焊接,控制焊接电流,焊接电压和焊接速度等参数,使焊接热输入量在规定范围,不得高于最大值,也不得低于最小值。奥氏体不锈钢镍合金等材料控制焊接电流、焊接电压和焊接速度使热输入量极端结果不高于最大值;

d)控制焊接层数及焊道数,不得随意减少焊接层数及道数;

e)控制摆动幅度,摆动焊接时,摆动幅度不得超出规定值;

f)控制焊条直径,焊条直径不得大于允许使用的焊条直径;

g)当焊接工艺文件无要求时,施焊过程中控制焊道宽度及厚度,使之不超过焊接工艺评定时的尺寸;

h)焊条电弧焊时,焊条的单位施焊长度不低于要求的最小值。对于平焊、横焊、仰焊等焊接位置采用直焊道焊接,立向上焊摆动幅度不得超过焊条直径3倍。避免宽焊道焊接;

i) 焊道排布满足焊接工艺要求,不允许增加焊道厚度而减少焊接层数,也不允许增加焊道宽度而减少每层焊道数量;

j)每种规格焊条的单位施焊长度不得低于规定的最小值。

2.2 不同类型钢种及焊接方法焊接时焊接热输入控制要求

手工电弧焊焊接低碳钢时,焊接热输入量对接头性能影响不大,对低合金高强度钢,焊接热输入量增大,则晶粒粗大,导致韧性下降。通过焊接工艺评定合格后,做出焊接工艺规程,合理控制焊接热输入,在保证焊接质量的前提下,适当采用较大焊接电流,可以提高生产效率。

对于压力容器焊接结构通常作焊接工艺评定的同时考虑焊接热输入量,确定焊接电流的范围,再参照焊接电流与焊条直径的关系来确定焊条直接。在焊接工艺评定时去顶焊接线能量,合格后确定焊接电流等焊接工艺参数。当焊接热输入量确定后,则确定了焊接电流,焊接电压及焊接速度等参数。

厚度较大的板材焊接时一般开坡口采用多层焊或多层多道焊,每层焊接厚度一般为5mm以内。手工电弧焊熔深约为6-8mm,每层焊接厚度为焊条直径的0.8-1.2倍时,生产效率相对较高。多层多道焊焊接热输入较小,热影响区小,接头塑性。韧性较好。当焊接低合金钢等压力容器常见钢种时,若采用大的焊接热输入量,性能会大幅下降,但是若采用的焊接热输入量过小,则会产生裂纹。因此在焊接工艺评定r选取合适的焊接热输入量,当焊接热输入量满足要求时,可选取较大范围的热输入量,以便于焊接操作。

对于自动焊,焊接时要设定好焊接电流、电弧电压、焊接速度进行焊接。对于手工焊,焊接时还要注意电弧长度、焊炬移动,以及控制好焊道的宽度及厚度。

3 结论

在焊接过程中需要填写热输入记录表来记录焊接过程的热输入量。控制好焊接热输入量才能使压力容器制造既能满足使用要求,又能提高生产效率。

参考文献:

[1]低碳钢与低合金高强度钢焊接材料[M].机械工业出版社,1987.

压力容器焊接工艺论文篇10

根据《压力容器安全技术监察规程》,包括以下四个方面:

(1)外观质量检查

(2)焊缝无损检测试验

(3)焊接接头力学性能试验

(4)压力试验

2 检验的方法

2.1 外观质量检查

利用检验尺、样板、量规等检查外观尺寸;利用肉眼或放大镜检查焊缝表面缺陷。

要求:外观尺寸符合设计图样的规定;焊接接头无裂纹、气孔、未熔合、未焊透、咬边等,焊缝与母材过渡圆滑。

2.2 焊缝无损检测试验

2.2.1焊缝无损检测的方法

可以分为两类:

焊缝内部缺陷检测方法:射线检测、超声检测等;

焊缝外部缺陷检测方法:渗透检测、磁粉检测等。

2.2.2技术要求

(1)射线检测。射线照相质量不应低于AB级;

G B 150、G B151等标准中要求进行 100%检测的压力容器的对接焊缝不得低于Ⅱ级;

除上述以外要求进行100%检测和局部(20%)检测的压力容器的对接焊缝不得低于Ⅲ级,且无未焊透。

(2)超声检测。 GB150、GB151等标准中要求进行100%检测的压力容器的对接焊缝不得低于Ⅰ级;

除上述以外要求进行100%检测和局部(20%)检测的压力容器的对接焊缝不得低于Ⅱ级。

(3)渗透检测。没有任何裂纹、成排气孔和分层,并符合有关标准要求。

(4)磁粉检测。没有任何裂纹、成排气孔和分层,并符合有关标准要求。

2.3 焊接接头力学性能试验

2.3.1产品焊接试板的制备

(1)试板材质与产品相同;

(2)试板形状和尺寸厚度:与焊件相同;宽度:250~300mm;长度:以够截取试样为准,舍弃长度:手工焊≥ 30mm:自动焊≥40mm。

(3)焊接试板。在施工过程中,采用与产品相同的焊接工艺焊接。

(4)试板数量。按照《规程》的规定;有的按台,有的按批。

2.3.2试验内容和方法

(1)拉伸试验

①试样尺寸和数量数量:2个;

试样宽度≥25mm;

试样厚度:当试板厚≤30mm时,采用全板厚;

当试板厚≥30mm时,采用多片试样。

②技术要求

抗拉强度不小于下列规定之一:

产品样图规定值;

钢材标准规定的最小抗拉强度;

不同强度钢材组成的接头中抗拉强度较小者。

(2)弯曲试验

①试样尺寸和数量:当δ

当δ≥20mm时,侧弯2个。

②技术要求:

在拉力机上冷压至规定的角度后,在受拉面的任何方向上没有长度大于3mm的纵向裂纹或缺陷。

(3)冲击试验

①试样位置和数量

一般只制取3个焊缝冲击试样;当设计温度≤-20℃时,还须做3个HAZ冲击试样。

②技术要求

常温冲击功的平均值不低于27J;低温冲击功的平均值不低于下表值。

单个值不小于规定值的70%。

2.4 压力试验

2.4.1液压试验

一般采用水作为介质,因此亦称为“水压试验”。

(1)试验前的准备

①必须先进行焊后热处理和其它所有试验,且全部合格。

②必须检查所用的设备、仪器和防护措施,且合格。

(2)试验规范

①水温:碳素钢、16MnR、15MnVR,不低于5℃;其它低合金钢不低于15℃。②试验压力和保压时间:(3)试验步骤

①将容器充满液体;

②当容器壁温与液体接近时,缓慢升压至设计压力;

③确认无泄露后,升压至试验压力,保压30min;

④降压至试验压力的80%,保压足够的时间,进行检查,然后卸载。

(4)技术要求

a.无泻漏;b.无可见异常变形;c.无异常响声。

2.4.2气压试验

2.4.3气密性试验

(1)试验前的准备

①必须先进行耐压试验,且合格;

②必须检查所用的设备、仪器和防护措施,且合格。

(2)试验规范

①气温:碳素钢和低合金钢,不低于5℃;

其它按设计图样规定。

②试验压力和保压时间:试验压力等于设计压力。

(3)试验步骤①缓慢升压至试验压力,保压30min;②对所有焊缝和连接部位进行泄漏检查, 然后卸载。

(4)技术要求:无泄漏。

参考文献

压力容器焊接工艺论文篇11

日常生活中,最常见到的焊接方法包括埋弧焊、手工电弧焊、钨极氢弧焊、熔化极气体保护焊等。焊接方法很多,具体采用哪种方法要视具体情况而定。而最常用的、用的最多的焊接方法是对焊接工人身体伤害最小的埋弧焊和操作最方便灵活的手工电弧焊。在埋弧焊中,因为电弧是在一层颗粒状的可熔化焊剂保护膜下不断燃烧,隔离了电弧光的外露。手工电弧焊顾名思义更加依赖焊接工人的体力,使用的设备简单,使用目地是保护焊接熔池,防止和大气接触。国家对压力容器的焊接质量十分关注,做了很多立法上的规定,国家劳动部门对压力容器的焊接质量监督也是十分严格的,为此制定了一系列的监察规程。每个生产厂家都必须严格遵守按照监察规程制定的、经过所在地劳动监察部门批准的《质量保证手册》中的焊接质量控制系统的有关内容及制度。

一、影响压力容器焊接质量的各种因素及控制措施

化工压力容器的焊接质量存在诸多缺陷,有位于焊接接头的表面,用肉眼或低倍放大镜即可观察到的外部缺陷和位于焊接接头内部,需用无损探伤方法或破坏性试验才能发现的内部缺陷。要想探究压力容器焊接过程的质量控制措施,就必须在结合相应缺陷的基础上,找出影响压力容器焊接质量的各种因素,本文将这些因素大致归为以下几种。

1.1焊接材料的质量和焊接试板的制作

焊接材料和焊接试板在一定程度上都可以说成是对其质量的要求。焊接材料即我们通说的焊条,它的化学成分需要与焊体成分符合,否则,极易产生焊接裂纹、未融合等现象。焊接试板是检验产品焊缝质量的重要标准,焊接正式产品之前,先采用相同材料,相同接头形式的小块工件进行焊接,这块工件就被称为“试板”。目的是实验焊接规范,测试焊接结果,用于保证焊接正式产品的时的焊接质量。所以它的材质与工艺需要同产品的主焊缝完全保持一致,也就是质量上的统一,否则就会产生焊接尺寸不合格,角焊缝单边或下陷量过大等缺陷。

1.2焊接工艺

焊接工艺是由焊接方法确定的,不同的焊接方法决定了不同的焊接工艺的实施。焊接工艺主要根据被焊工具件的材质、型号、化学成分、焊件结构类型、焊接性能要求来确定。焊接工艺对碳钢的预热、焊条条件、坡口形式、工艺参数、热处理等作出了不同的要求。如焊接工艺参数,由于母材熔化到第一层焊缝金属中的比例最高达30%左右,所以第一层焊缝焊接时,应尽量采用小电流、慢焊接速度,以减小母材的熔深,也就是我们通常说的灼伤。因此,要注重焊接工艺在不同母材上的不同操作。焊接工艺参数的验证主要是通过焊接工艺评定来实现。

1.3焊工的技术水平

人的主观能动性对事物的发展具有重要作用。压力容器的制作是由焊工来完成的,因此焊工的技术水准、实际操作能力是决定焊缝质量的重要因素。相同的工作环境、同样的设备标准因焊工的技能大小和经验富贫而使得压力容器的最佳工作性能发挥不同。如焊缝余高即焊缝高出母材的高度值过高,通常就是由一些焊工的习惯导致。现实生活中,压力容器的焊接存在的诸多缺陷主要是由人机工作性能和状况、材料的选用、焊接的方法、工作环境的影响等因素引起的。而且更多时候是各种因素相互交织,导致焊接更难以把握。但是“世上无难事,只怕有心人”,只要焊工掌握强硬的技术,严格操守焊接工艺,就能够在最大程度上避免这些缺陷的出现。

二、压力容器焊接过程的质量控制措施

唯物辩证法因果关系的辩证原理要求我们要寻因究果,揭示本质,提高科学预见事物的能力。综上,我们可以总结出以下几种控制措施:

2.1加强焊接材料的质量控制,保证产品焊接试板的合格

焊接材料的材质必须符合国家规定的标准和行业指标,什么样的母材就要选择与之相适应的焊接材料。以不同强度级别钢为焊体材料的焊接,通常情况下要选用低强度等级的焊接材料,只有在极个别的特殊情形时,如点固焊或厚板的第一道焊,才选用高强度等级的焊接材料。要保证焊条的质量,须选择相应焊条型号,焊工需要严格按照《焊条质量管理规程》的规定实施操作。

产品的焊接试板作为实际焊接状态的一部分,其最终检验结论决定着施焊产品的合格与否。因此要严格检验产品的焊接接头和受压元件的力学性能和弯曲性能,检查是否满足国家规定的标准规范和行业的设计要求。要按照GB4744-2000《钢制压力容器产品焊接试板的力学性能检验》的标准对焊接试板进行拉伸实验、弯曲实验和冲击实验,必须保证焊接试板的焊缝力学性能试验的合格,对实验不合格的要进行相应复验,复验仍达不到要求的,焊接试板可判为不合格。

2.2加强对焊工的管理

合格的焊工要具有丰富的专业知识,必须持国家考试证书上岗就业,企业也必须聘用这样的工人进行压力容器的焊接操作。企业要根据各个步骤的难易、各道工序的工作特点,并结合焊工的技能水平,合理的安排焊工,保证焊接工作的顺利进行。同时要对在岗焊工进行定期的技能培训,使焊工形成“虚心接受任务,认真读通图纸,严格按工艺施工,时刻保持工作环境整洁,保证设备器具摆放整齐”这样一个工作流程,提高焊工的综合素质。作为焊接工人自身,必须遵守职业操守,不断提高自身素质和职业修养,修其品德,诚信工作,脚踏实地,努力钻研业务,严守操作规范,勤于思考,使理论与实践结合起来,不断更新自己的业务水平,增强工作能力。

2.3加强对焊接设备的管理

焊接设备包括焊机、焊接工艺装备和焊接辅助器具。焊接设备尤其是对精密性及储存环境要求严格的材料要严格予以妥善安置与管理,否则,处理不善,将导致焊接工作终止,贻误工期。例如,在使用液化石油气时,环境温度需控制在60摄氏度以下,气瓶要远离火源5米以上,以防止爆炸的发生。焊条使用前需要烘干,否则焊缝内部就极易出现气孔这样的缺陷。

结语

综上所述,焊接对压力容器的质量、使用寿命、安全性、生产效率和成本起着至关重要的作用。本文通过分析焊接质量的影响因素,得出压力容器焊接过程的质量控制措施,希望对压力容器焊接工业的健康发展有所帮助。

参考文献:

[1] 王绍霞.徐国军.张海涛.浅谈压力容器焊接质量控制措施[J].中小企业管理与科技.2011,(02):288

[2] 杜立明. 牟宗.压力容器焊接生产中的质量控制[J].低温与特气.2013,31(01):26-19

压力容器焊接工艺论文篇12

焊接设备主要有焊机、焊条烘干箱、保温桶、加热器、钳形电流表及温度测量仪。为保证焊接质量,应定期对焊接设备进行全面的检查和维护。焊机都应装配电流表、电压表,焊条烘干箱要有温度表等仪器,并定期对焊接设备的电流、电压、温度显示进行校验,确保焊接所使用的工艺参数的正确。另外每次对设备进行全面的检查、维护和校验都要做记录,并进行保存,以便备查。

2、焊接材料管理

在焊条周转或储存过程中,由于保管不善或存放时间过长,都有可能发生焊条吸潮、锈蚀及药皮脱落等缺陷,这就会影响焊条的使用性能,造成飞溅增大、产生气孔、焊接过程中药皮成块脱落甚至焊条报废等。管理不善还可能造成错发、错用,造成质量事故。焊接材料的管理目的是确保压力容器的焊接正确、焊缝合格,应保证在整个生产过程中焊条的领用有条不紊。焊接材料的管理包括焊接材料的采购、验收、保管、烘干、发放和回收。焊接材料合格与否由焊材的订货、验收和复验来保证。焊接材料进厂后,检验人员应根据材料质量证明书、采购合同、订货技术条件及相关标准进行验收。验收一般有以下2种情况:①质量证明文件齐全,符合相关标准要求,检验人员认定合格,在材料质量证明文件上盖合格标记,然后入库。②质量证明文件或项目不全,对性能指标有怀疑、首次使用的生产厂家的牌号或产品技术要求有特殊规定的,要对焊材的熔敷金属进行复验。复验合格后盖合格标记,然后入库。入库后按种类、牌号、批次、规格及入库时间等分类堆放。焊接材料使用的正确由焊接材料库保管、存放、领用、发放等环节来保证。焊工凭焊接工艺指导卡填写焊接材料领用单,管理人员根据焊接工艺指导卡审核焊工填写的领用单,并在焊接材料发放台账上登记记录。记录内容至少要包括产品工号,焊缝名称,焊接材料的牌号、规格、生产厂家、炉批号,发放量及焊工代号。可以对任意产品的任意焊缝进行台账管理,使焊材的管理明确、可靠。焊条应在干燥与通风良好的室内仓库存放。焊条储存库内不允许放置有害气体或腐蚀性介质,焊条应存放在架子上,架子离地面高度及离墙面的距离不得小于300 mm。焊条储存库内应设置温度计和湿度计,室内温度不得低于5℃,相对湿度不得低于60%。焊条使用前须按有关规定进行烘干,对于奥氏体不锈钢焊条,例如A102的烘干温度,在JB/T 4709—2007《压力容器焊接规程》中给出的烘干温度为150℃,是按酸性焊条的要求进行烘干。而现在各大厂家对焊条的药皮成分进行了调整,焊条以钛钙型为主,故其烘干温度也大大提高,厂家推荐烘干温度基本在300~350℃。因此在烘干A102焊条时,应按厂家的推荐参数进行烘干。烘干后的焊条应置于100~150℃恒温箱内,每次领用的焊条不得超过4 kg。焊条在保温筒内最长使用时间不得超过4 h,若超过4 h,则应重新烘干,且最多只可烘干2次。焊工还应收回使用后的焊条头,便于进行当日剩余焊接材料的回收统计。

3、焊接工艺评定及焊接检验管理

3.1 焊接工艺评定

焊接工艺评定是指为验证所拟定的焊件焊接工艺的正确性而进行的试验过程及结果评价,即通过拟定正确的焊接工艺保证焊接接头获得所要求的使用性能。作为焊接的质量管理,目前没有条件制定以各种使用性能作为焊接工艺评定的判断准则,因此以焊接接头的力学性能(拉伸、弯曲、冲击)作为判断焊接工艺的准则。对于特殊材料,还需要增加化学成分分析及晶间腐蚀试验等。如要评定焊接工艺,首先要拟定焊接工艺指导书(PQR),用焊接工艺评定报告(WPS)来证明PQR的正确性。根据评定合格的焊接工艺制定具体的焊接工艺规程来指导具体焊接工作。每个WPS都有相应的评定合格的PQR与之对应,一般应对PQR及WPS编号归档。WPS上应按要求填入PQR号,以证明WPS是评定合格的。WPS是焊接质量管理体系的核心,是指导生产的标准依据,压力容器制造厂必须确保焊接工艺文件的正确性及可靠性。WPS必须是由本单位技术熟练的焊接人员使用本单位焊接设备焊接试件,即焊接工艺评定不允许借用或交换[10]。压力容器制造厂的焊接工艺文件一般分为通用焊接工艺及专用焊接工艺。通用焊接工艺是将厂内常用的焊接材料、结构、焊接方法和典型零部件的焊接汇总成通用焊接工艺文件。随着生产的发展以及新工艺、新材料、新标准的实施,需要不断对通用工艺进行必要的补充、更新和重新修订。专用焊接工艺是针对钢材的焊接性能,结合产品的特点,对特定产品制定的焊接工艺。

3.2 焊接检验

焊接检验是确保压力容器可靠性必不可少的环节之一,包括焊前检查、焊接过程中工艺执行情况的检查、焊后焊缝的外观检查及焊缝的无损检测。焊前检查的内容包括确认焊工资格、确认焊接材料及其烘干温度和保温时间、焊缝坡口清理情况、焊缝装配质量、预热温度等的检验。焊接过程中的检查内容,主要是监督焊工是否按焊接工艺规程提供的参数进行焊接,如焊接电流大小、焊接电压、焊速、层数、层间温度、后热温度及保温时间的检查等。对于不锈钢制压力容器,由于不锈钢材料对热输入比较敏感,焊前不能预热,焊接过程中的层间温度不能超过100℃,焊接过程中的焊条摆动幅度不能超过2~3倍的焊条直径,以防止焊缝组织发生转变。焊后检查的内容包括焊缝外观成型检查、焊缝后热检查及焊缝的无损检测。焊缝外观成型检查即检查焊缝及热影响区表面不得有裂纹、气孔、夹渣、凹坑、未焊满及飞溅物等缺陷,并对角焊缝的焊脚尺寸、对接焊缝的增宽尺寸及焊缝余高尺寸进行检查。对于有后热要求的焊缝,应在焊后立即进行焊缝后热,温度应按焊接工艺文件的规定进行,时间宜为0.5~1 h。在焊后立即对焊缝进行加热保温,有利于焊缝中氢原子的大量扩散,大多数有后热要求的压力容器焊缝往往都没有及时进行后热消氢处理,会对焊缝的抗裂性造成一定的影响。焊缝的无损检测则根据图样、技术要求及标准规定的要求采取相应的检测方法,并执行合格等级相关条款。通过上述检验的焊缝即为合格焊缝,未通过上述检验的焊缝需返修。为确保焊缝返修质量,要制定相应的返修工艺,对于同一部位返修次数超过2次的焊缝进行返修,应经制造单位技术负责人批准。

4、焊接环境管理

压力容器焊接工艺论文篇13

压力容器所选用的焊接方法、焊接工艺、焊接材料和焊接设备首先应保证焊接接头的高质量,同时必须满足高效、低耗、低污染的要求。压力容器承受着容器内高温、高压和腐蚀性的化学成分的多重影响,因此对焊接工艺质量的要求十分高,压力容器的焊接质量直接影响其安全运行。

一、关于压力容器焊接常见问题分析

1.裂纹。近些年因为裂纹缺陷造成的压力容器事故比较多,裂纹具有预见性较低、形成因素复杂、形态不一等特征,在压力容器中焊接中不允许存在裂纹。在发现浅表裂纹的时候要扩大检查比例,并采用磨法消除,超过规定尺寸的裂纹,应采取补焊法处理,这样可以有效的降低裂纹的危害性。

2.焊接变形。避免焊接变形与焊工的经验和专业知识息息相关。尤其是大型

压力容器或瓣片式、组合式的压力容器极易产生焊接变形。焊工在焊接的时候应当对焊接工艺和焊材有相应的认识,在实际操作中判断会不会产生变形及变形的大小,在焊接前提前采取合理的防变形措施,以抵消产品的实质变形。

3.气孔和夹渣。气孔是深埋问题,通常是由于在焊接的时候有锈迹、水渍和油污等原因导致的。预防气孔产生的方法是:依据气孔的性质和大小挑选合适的焊接电流和焊接速度,认真清理焊缝周围一定范围内的污垢。但是只有严重的气孔才需要消除,微小气孔的危害并不大,可以不用清理。夹渣,通常是由于焊缝边缘有碳弧气刨或氧割存留了熔渣,是由焊接速度过快,焊接电流太小等原因造成的。

二、关于压力容器焊接中常见问题的对策分析

1.优化焊接材料。焊接材料是直接影响压力容器焊接质量的主要因素,焊接材料的好坏从根本上决定了焊接过程中的焊接质量,再好的焊接工艺和焊接操作方法以及环境,如果没有符合标准的焊接材料作保障,都会影响压力容器的焊接质量。焊接材料在选择过程中必须严格按照国家标准要求进行选材,选用符合国家相关标准的产品,选择有质量保证书的材料。如果要求焊缝的力学性能不低于原材料的力学性能,应当选择高强度的焊接材料,焊接过程中,对承力、承压要求高的部位应当选择高强度焊接材料。

2.优化焊接工艺与工艺评定控制。作为指导焊接过程、规范焊接操作、将焊接流程标准化的重要工艺文件―焊接工艺,是控制焊接质量的重要技术标准。焊接工艺又叫焊接工艺规程,包括焊接的使用材料、焊接操作方法、母材的型号、焊接接头的形式、焊接操作的技术规程、以及焊接质量验收方法等等参数,几乎包含了焊接过程中的全部质量参数。针对压力容器焊接过程中的难点和关键点,要制定有针对性的焊接工艺规程,根据压力容器的母材厚度和压力容器的用途科学选择合理的焊接材料,根据压力容器的使用特性选择焊接接缝的坡度、焊缝形状;同时由于压力容器对焊接质量的较高要求,在焊接过程中,要对焊接质量的控制方法和验收标准提高要求。同时在编制焊接工艺规程时,要精确所有焊接参数,要将所有焊接性能参数优化,以重理论上充分保证压力容器焊接过程的科学、严谨。焊接过程中对焊接工艺的评定能够对焊接工艺进行控制。通过焊接工艺评定的过程保证了焊接过程符合焊接工艺规程中要求的各项技术参数,保证焊接操作人员各道工序严格按照焊接工艺规程的要求,避免将缺陷带入下一道工序。

3.优化焊接质量检验。焊接质量检验是控制焊接质量的最后一道防线。通过材料、工艺、操作规程、工艺评定重重工序,焊接质量的优劣与否就需要焊接质量检验来掌握控制。焊接质量检验包括焊前、焊中、焊后三道检验。焊前检验主要检验焊件的装配质量和焊接口的材料特性、焊缝间隙等;焊中检验要检测中间工序的焊接质量,焊缝是否工整焊接过程是否严格执行焊接工艺规程和焊接操作规程,以及焊接要求是否符合图纸尺寸和技术要求;焊后检验是通过外观检查、无损探伤检查、压力试验、外观检查等方式现场检查焊接后工件的焊接质量。针对压力容器的特殊用途,对焊接后的质量检查应当采用多层次、多角度、多方法的检查方式对其进行全面检查,一旦发现焊接缺陷立即采取补救措施,返修或直接报废。

三、关于压力容器焊接工艺改造分析

1.压力容器用耐热钢焊材选用。与低合金高强钢相同,焊缝金属和母材等强度原则仍是低合金耐热钢焊材选用的基本原则,只不过此时不但要考虑焊缝金属与母材的常温强度等强,同时也要使其高温强度不低于母材标准值的下限要求。为使其焊缝金属具有与母材同样的使用性能,因此要求其焊缝金属的铬、钼含量不得低于母材标准值的下限。为保证焊缝金属有同样小的回火脆性,应严格限制焊材中的氧、硅、磷、锑、锡、砷等微量元素的含量。为提高焊缝金属的抗裂性,应控制焊材中的含碳量低于母材的碳含量,但应注意,含碳量过低时,经长时间的焊后热处理会促使铁素体形成,从而导致韧性下降,因此,对于低合金耐热钢的焊缝金属含碳量最好控制在 0.08%-0.12%范围内,这样才会使焊缝金属具有较高的冲击韧性和与母材相当的高温蠕变强度。

2.压力容器用耐热钢焊接要点

(1)预热与道间温度 在Cr-Mo钢的焊接特点中提到的冷裂纹、热裂纹及消除应力裂纹,都与预热及道间温度相关。一般来说,在条件许可下应适当提高预热及道间温度来避免冷裂纹和再热裂纹的产生。

(2)焊后热处理 对于低合金耐热钢,焊后热处理的目的不仅是消除焊接残余应力,而且更重要的是改善组织提高接头的综合力学性能,包括提高接头的高温蠕变强度和组织稳定性,降低焊缝及热影响区硬度,还有就是使氢进一步逸出以避免产生冷裂纹。

(3)后热和中间热处理Cr-Mo钢冷裂倾向大,导致生产裂纹的影响因素中,氢的影响居首位,因此,焊后(或中间停焊)必须立即消氢。一般说来,Cr-Mo钢容器的壁厚、刚性大、制造周期长,焊后不能很快进行热处理,为防裂并稳定焊件尺寸,在主焊缝(或主焊缝和壳体接管焊缝)完成后进行比最终热处理温度低的中间热处理。这类钢的后热温度一般为300-350℃,也有少数制造单位取350-400℃的。中间热处理规范随钢种、结构、制造单位的经验而异,一般中间热处理温度为(620-640℃)±15℃。

3.堆焊,顾名思义就是在工件的外表面熔敷一层保护金属层,这种保护金属层通常具有耐腐蚀、耐热等特点,这种方法很有利于提升工件的使用寿命。这对产品性能的提升以及生产成本的降低都有积极的促进作用。带极自动堆焊技术虽然起步较晚,但由于其使用范围广,效率高等特点,在国内外得到了广泛应用。为了保证使用中的质量,通常对过渡层进行埋弧自动焊接处理,这样,不仅可以使工件焊接表面光滑,还可以使得焊接性能牢固。

在压力容器制造的过程中,焊接是一种比较特殊的重要工艺,其质量的优劣直接影响到压力容器的使用寿命。因此,在焊接压力容器时,要从细微处着眼,避免违规操作,以提升压力容器的制造质量。

参考文献:

[1]田立志. 压力容器焊接质量分析及控制[J]. 应用技术,2012( 08)

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读