碳排放论文实用13篇

碳排放论文
碳排放论文篇1

1.3数据来源本文采用的数据广州市能源消费总量(万吨标准煤)、广州市国民生产总值GDP(万亿)和广州市年末常住人口数(万人)均来源于历年《广州市统计年鉴》(2004~2013)。

2结果分析

2.1广州市三次产业碳排放特征改革开放以来,广州加快了产业结构调整步伐,产业结构由改革开放初期的“一、二、三”调整为目前的“三、二、一”,第三产业占据了三次产业的主体地位。据统计,2012年广州市实现地区生产总值(GDP)13551.21亿元,按可比价格计算,比上年(下同)增长10.5%,三次产业对经济增长的贡献率分别为0.5%、35.2%和64.3%。形成了以汽车、石油化工、电子信息制造业以及生物医药等产业为支柱的国民经济体系。2012年,第一产业、第二产业和第三产业在碳排放总量中所占比重分别为1.95%、42.05%、42.49和13.50%左右。第一产业的碳排放量趋向稳定,近10年来一直维持在2%左右的低位,这说明第一产业并不是影响广州市碳排放总量的主要因素。另外,第三产业的碳排放量增长迅速,2012年第三产业的碳排放量首次超过第二产业。在广州市碳排放量比例中,以工业部门为主要构成的第二产业所占比重仍然较大,工业结构重型化,制造业仍然处于国际产业链的相对低端,先进制造业、现代服务业和战略性新兴产业发展相对不足。2012年广州规模以上工业总产值中轻重工业比例为32.02:67.98,重工业的能源消费占工业能源消费的71.72%。随着广州城市化、现代化不断发展,能源需求快速增长,碳排放需求将进一步释放。10年来,第三产业的碳排放比重迅速增加,2012年第三产业部门的碳排放量首次超过第二产业,这是由于交通运输业、仓储、邮政业等较耗能第三产业的迅速发展所致,第三产业比重所占比重加大。第一产业所占的比重最小,随着农业现代化水平的提高,农业能耗增加,碳排放比重有所提高。除第一产业外,其他部门碳排放强度呈现逐年下降趋势(图1),其中第二产业部门下降幅度最大,这是由于工业行业内部结构进行了优化调整,部分高能耗企业(印染、造纸等)关停或转移,高附加值低能耗行业(电器机械制造业、医药业等)比重上升。第三产业的碳排放强度最低,但同时应该看到,10年来第三产业碳排放强度下降速度缓慢,第三产业是未来广州经济增长的核心,金融、保险、物流等服务业是发展的重心,而这些行业的碳排放强度小,所以第三产业碳排放强度仍有较大下降空间。第一产业碳排放强度有所上升,这是农业机械化导致能耗上升的结果。

2.2广州工业内部各行业碳排放分析第二产业作为广州重要的支柱产业,低碳指标无疑是重要的,但不能因此而放弃一些碳排放较大,但对国民经济影响较大的部门。进一步优化广州工业结构的关键是甄别出碳排放量小、社会经济效益高的行业。本文将从经济、社会、生态效益三方面提取指标对工业内部各行业进行聚类分析,建立起广州工业内部的分类体系,该体系显示未来广州应该大力发展的行业和重点优化的行业。

2.2.1指标选取对经济、社会、生态效益的衡量分别选取增加值规模、就业系数、碳排放强度这三项指标。增加值规模代表该行业占工业比重,体现了该行业重要程度,增加值规模越大,则该行业对国民经济的拉动力越强。就业系数为行业的就业人数与该行业增加值的比值,反应行业对社会就业的吸纳能力,就业系数越大,则单位增加值吸纳劳动力越多,但同时也说明劳动生产率较低,在目前我国劳动力过剩的情况下需要辩证的看待这项指标。碳排放强度是单位增加值的碳排放量,该项指标反映行业对生态环境的影响程度。

2.2.2聚类分析本文采取聚类分析法对广州市工业内部行业进行聚类分析,根据《广州统计年鉴2013》查得规模以上工业各行业增加值、劳动生产率、单位增加值能耗等数据,从而计算出增加值规模、就业系数和碳排放强度等反应经济、社会和生态的指标(表2),依据指标对各行业进行聚类分区。本文采用的是系统聚类法,运用SPSS19选择ward聚类方法,采用平方Euclidean距离,聚类结果见图2。根据聚类结果,可以将广州的工业部门划分为五大类。第一类,2个,汽车制造业,化学原料及化学制品制造业。增加值规模占总增加值规模比例高达34.18%(为叙述简便,下述指标占比规模未作特别说明皆为该产业占规模以上工业比重),为增加值规模最大的两个产业,是广州的支柱产业,劳动生产率高,就业系数较低,但就业人数较多,就业人数规模为13.95%;同时也是碳排放强度较低的产业,碳排放强度仅为0.11,碳排放量占比为5.98%。上述产业为经济效益很高,同时碳排放强度较低的产业,就业人数较多,是广州今后优先发展的产业。第二类,14个,燃气生产和供应业,烟草制品业,有色金属冶炼和压延加工业,农副食品加工业,计算机、通信和其他电子设备制造业,电气机械及器材制造业,金属制品业,仪器仪表制造业,专用设备制造业,食品制造业,医药制造业,酒、饮料和精制茶制造业,铁路、船舶、航空航天和其他运输设备制造业,通用设备制造业。增加值规模37.09%,就业规模44.82%,碳排放规模8.37%,就业系数0.04234,碳排放强度0.15749,主要为先进制造业和饮食制造业,该类产业产值的增长对碳排放的依赖较小,增长速度快,科技含量较高,吸纳就业能力强的支柱产业,属于典型的低碳行业。造船业,各类设备制造业,通信电子以及生物医药应该作为广州重点发展的先进制造业;对于食品饮料,应健全监测与监控体系,提高产品质量标准,应用各项信息技术改善销售方式和渠道,依靠“广式食品”的传统美誉,做强做大“广式腊味”“广式月饼”,更好地体现岭南美食文化。第三类,8个,皮革、毛皮、羽毛及其制品和制鞋业,印刷业和记录媒介的复制,木材加工及木、竹、藤、棕、草制品业,纺织服装、服饰业,文教、工美、体育和娱乐用品制造业,家具制造业,其他制造业,橡胶和塑料制品业。增加值规模10.78%,就业规模30.93%,碳排放规模4.64%,就业系数0.10587,碳排放强度0.28035吨每万元,大部分属于轻工业,就业系数较高,碳排放强度较低,但经济效益偏低的产业,从现阶段来看,该类产业能够解决部分就业问题,对环境污染较小,关键在于加大研发投入,开发高端产品,提高经济效益,如高端服饰、体育用品、高尚家具品牌的建立。第四类,6个,纺织业,黑色金属冶炼和压延加工业,非金属矿物制品业,造纸及纸制品业,水的生产和供应业,化学纤维制造业。增加值规模4.75%,就业规模8.46%,碳排放规模12.89%,就业系数0.0595,碳排放强度1.37282,属于典型的高碳低效产业,是今后广州发展需要重点控制的产业,关停部分高碳产业,提高技术降低碳排放强度,如通过环保搬迁、园区集聚和技术升级,提高造纸工艺技术水平,开发各类高档新闻纸和高档文化用纸,进一步发展广州特色的高档印刷业。第五类,2个,电力、热力的生产和供应业,石油加工、炼焦和核燃料加工业。碳排放高达68.12%,是工业碳排放的主要来源,同时也是碳排放强度最大的两个产业,碳排放强度高达3.18吨/万元,为平均碳排放强度的5.3倍;增加值规模为13.20%,就业系数低,就业人数仅占1.84%。上述产业为经济效益较高,但碳排放较大的产业,对就业的拉动不大,产业的增长对碳排放的依赖较大,增长方式不够“低碳”,通过技术革新,大力降低碳排放强度的潜力还很大。

3结论与建议

碳排放论文篇2

1.3废弃物碳排放核算根据《2006年指南》第五卷有关废弃物的分类研究,温室气体排放源主要有四类:固体废弃物生物处理、废弃物的焚化与露天燃烧、固体废弃物填埋处理、废水处理与排放,固体废弃物填埋处理(即SWDS)是废弃物温室气体的主要来源。固体废弃物被掩埋后,甲烷菌可使废弃物所含有机物分解产生甲烷气体。由前文可知,甲烷是主要温室气体之一,且产生的温室效应比二氧化碳强。据IPCC相关研究估计,全球每年约3%—4%的温室气体来源于废弃物填埋处理产生的甲烷。《2006年指南》推荐使用一阶衰减法(FOD),一阶衰减法能获得更好的测算精度。根据《2006年指南》和渠慎宁[3]等学者的研究,本研究给出固体废弃物填埋处置产生甲烷量的一阶衰减法的估算公式。

2数据来源与处理说明

2.1数据来源农业生产中涉及的水稻种植面积、化肥、农药、农膜数据来自2001—2011年《中国农村统计年鉴》和能源数据来自湖南省能源平衡表;农业生产中各类牲畜数量来自历年《湖南省统计年鉴》;工业废弃物和城市固体垃圾数据来自国研网统计数据库,确实部分运用插值法根据历年数据补充完整(限于篇幅,方法介绍略);土地利用数据来自国研网统计数据库,经济数据来自相关年份的《湖南省统计年鉴》,按2000年不变价格参与计算。

2.2处理说明根据《土地利用现状分类》和赵荣钦等学者的研究,承载碳排放的土地利用类型包括耕地、牧草地、农村居民点用地、城镇居民点及工矿用地、交通水利和其他用地。研究将根据碳排放发生载体,本文将其分解到具体的用地类型,畜牧业按照食物来源将牲畜活动分属于耕地和牧草地,用地类型与碳排放源对应关系见表4。

3结果分析

3.1碳排放总量与时序特征根据上述公式,我们对湖南省的碳排放总量进行了测算,结果见表5。2011年湖南省碳排放总量为10377.79万t,比2000年的3504.60万t增长了196.10%,远低于同时期GDP增速(500.21%)。从碳排放来源分析,2011年湖南省碳排放的主要来源仍然是能源消费,占总量的95.69%,达9930.06万t;其次是畜牧业碳排放,占总量的2.43%,达2523.01万t;种植业碳排放站总量的1.78%,达184.76万t;废弃物碳排放最少,仅为碳排放总量的0.10%。根据IPCC给出的《2006年指南》,全球能源消费占碳排放总量比例的平均水平为75%,湖南省能源消费碳排放占比远高于参考值,说明湖南省的能源消耗量较大,节能减排的形势严峻。本研究重点测算了湖南省2000—2011年的碳排放总量,通过分析其时序和结构变化特征探讨了湖南省新世纪初期经济发展对环境的影响。研究时序内湖南省碳排放逐年增加(表5),且增速持续上升,年均增长率10.37%,低于GDP的年均增长率(17.69%)。湖南省碳排放的结构特征也发生了较大变化,2000年能源消费仅占碳排放总量的77.29%,随后逐年上升,直至2008年超过90%,2011年达到总量的95.69%,能源消费对碳排放的影响逐渐增强,湖南省经济发展对能源消费的依赖日益突出,暴露了较为严重的经济发展质量问题。种植业碳排放占比逐年下降,比2000年降低了4.12倍,对碳排放总量的影响逐渐变小。畜牧业碳排放在碳排放结构中处于第二位,2000占比高达13.36%。随着能源消费碳排放的迅猛增加和畜牧业自身的萎缩,畜牧业碳排放占比也逐年下降,比2000年降低了4.50倍;废弃物在总量中的比例一直较低,2000年占总量的0.23%,随后逐年下降,2011年仅为0.10%。

3.2土地承载结构特征与效应分析根据以上有关土地承载碳排放来源的描述,本研究将2011年湖南省碳排放根据其土地承载的属性进行分解,并进一步计算结构特征与碳排放强度,以期从土地利用的视角分析碳排放的来源及减排路径,具体见表6。结果显示,城镇居民点及工矿用地是最大的碳排放源,总量达7781.06万t,占总量的74.98%,且碳排放强度(碳排放与土地面积的比值,t/hm2)也最高,为263.94;交通水利及其他用地次之,碳排放强度为33.41,碳排放占总量的11.30%,为1172.40万t;其他用地类型的碳排放量较少,总计占比为13.73%;牧草地的碳排放总量虽然较少,但其强度较大,单位面积碳排放达32.22t,是仅次于城镇居民点及工矿用地和交通水利及其他用地的碳排放土地承载类型。

4结论与讨论

碳排放论文篇3

2结果与分析

2.1家庭碳排放总量中国正处于城市化快速发展阶段,人们对生活质量的要求逐渐提高,各种能源商品及服务的消费支出相应增加,城乡家庭碳排放总量不断增加(图1)。1995-2011年,我国居民家庭碳排放总量呈现先缓慢上升后快速上升的趋势,从1995年的6.54亿t增至2011年的23.78亿t,增加了263.28%。其中,城镇从1995年的3.30亿t增至2011年的16.31亿t,年均增长9.85%;而农村从1995年的3.24亿t增至2011年的7.47亿t,年均增长5.03%。城镇家庭碳排放增速始终大于农村,城乡家庭碳排放差异从1995的1.02倍增至2011年的2.18倍,差距不断扩大。

2.2人均家庭碳排放量1995-2011年,我国人均家庭碳排放先缓慢增长后迅速增长(图2),从1995年的0.54t/人增至2011年的1.77t/人。17年来,城镇人均家庭碳排放始终大于农村,但农村增速大于城镇,城乡家庭人均碳排放差异从1995年的2.47倍降至2011年2.07倍。差距逐步减小,体现了我国城乡居民生活水平差距的缩小。

2.3直接碳排放与间接碳排放1995-2011年,城镇家庭直接碳排放增长了132.21%,间接碳排放增长了692.21%(图3),后者增幅远大于前者;直接碳排放比重从1995年的53.48%降至2011年的25.21%,间接碳排放比重从1995年46.52%增至2011年的74.79%,城镇家庭逐步转变为以间接碳排放为主。农村家庭直接碳排放增长了113.98%,间接碳排放增长了152.9%,两者增幅相当;直接碳排放比重从1995年的57.33%降至2011年的53.25%,间接碳排放比重从1995年42.67%增至2011年的46.75%,农村家庭仍以直接碳排放为主。1995年,城镇家庭直接碳排放是农村的0.95倍,2011年为1.03倍,城乡差距较小;1995年城镇间接碳排放是农村的1.11倍,2011年达到了3.49倍,城乡差距不断拉大。

2.4家庭碳排放结构将家庭碳排放分为煤炭(原煤、其他洗煤、型煤)、油品(汽油、柴油、煤油)、液化石油气、天然气、电力、其他能源(焦炭、焦炉煤气、其他煤气)、食品、衣着、居住、家庭设备及用品、交通通讯、文教娱乐、医疗保健、其他商品和服务共十四项。由于我国农村地区天然气暂未普及,使用量极少,故农村家庭不单独列出天然气的碳排放,而将其归于其他能源。城乡家庭在基本生活用能设施、能源类型、消费水平方面差异较大,两者碳排放结构差别显著(图4)。从城镇家庭的角度来看,交通通讯排放比重增幅最大,从1995年的3.03%增至2011年的21.14%,成为目前城镇最主要的排放源,这主要是因为近年来我国城市交通通讯基础设施的逐步完善,以及汽车、摩托车、移动电话等新产品不断的推出以及价格的下降;而煤炭排放比重降幅最大,从1995的32.31%降至2011年的1.94%,这主要是因为煤炭逐步被液化石油气、天然气等能源所替代。从农村家庭的角度而言,电力排放比重增幅最大,从1995年的13.31%增至2011年的32.22%,成为最主要的排放源,归因于农村能源结构的转变;煤炭排放比重虽大幅下降,但比重仍较大;食品排放比重下降幅度紧随其后,归因于农村居民消费结构的升级。

2.5不同收入水平的城乡家庭碳排放收入水平是影响家庭碳排放的重要因素[20,21]。2010年,我国城乡家庭不同收入水平间接碳排放变化情况如图5(直接能耗数据难以获得,因此仅考虑间接碳排放)。分析可知:无论城镇还是农村,随着收入水平的提高,各类型间接碳排放都呈增加趋势,对于城镇家庭,增幅最大的为交通通讯排放,其次为文教娱乐和居住排放;对于农村家庭,增幅最大的为居住排放,其次为交通通讯、文教娱乐、医疗保健排放。同时,随着收入水平的提高,食品排放比重下降,而交通通讯、文教娱乐排放比重上升。

2.6各省区城乡人均家庭碳排放我国幅员辽阔,由于地理位置、自然禀赋以及经济发展等因素,各省区城乡居民能源利用与家庭碳排放必然存在差异。限于数据的可得性,从人均家庭碳排放的角度对2010年我国30省区(不包括港澳台和)城乡家庭碳排放差异进行分析与比较。2010年,我国各省区城镇人均家庭碳排放均大于农村,以全国平均水平所在点为坐标原点,以①和②线为坐标轴,分为四个象限(图6)。其中,位于第一象限的北京、上海、浙江、广东、天津、福建、辽宁、内蒙古8省区的城镇和农村人均家庭碳排放均大于全国平均水平,该地区是节能减排的重点省区,应加强节能减排,且同时兼顾城乡区域;位于第二象限的江苏、黑龙江、山东、吉林、宁夏、河北6省区的农村人均家庭碳排放大于全国平均水平,而城镇小于全国平均水平,该地区应注重农村地区的节能减排;位于第三象限的湖北、陕西、湖南、河南、安徽、四川、广西、山西、新疆、江西、海南、青海、甘肃、贵州14省区的城镇和农村人均家庭碳排放均小于全国平均水平,该地区节能减排工作应在保障当地人民基本生活水平的基础上进行;位于第四象限的云南、重庆2省区城镇人均家庭碳排放大于全国平均水平,而农村小于全国平均水平,该地区节能减排应侧重城镇地区。

3讨论

随着我国经济社会的发展,城乡居民生活水平逐步提高,来自家庭生活消费的碳排放总量不断增加,家庭碳排放占我国碳排放总量的比重也不断上升,以家庭为单元的节能减排工作逐步提上议程。文中通过对1995-2011年我国城乡居民家庭碳排放的评估分析,形成以下认识:(1)我国居民家庭碳排放快速增长,这与我国前期总体排放水平较低、排放增长需求强密不可分。城镇居民家庭碳排放的增速明显高于农村,这与城镇化进程、城镇人口增长和消费能力的差别密切相关。城镇是家庭碳排放的主要贡献者,如何引导城市在快速发展的同时减缓碳排放增长速度,是城市决策者必须考虑的重点;农村能源消费行为逐步与城市接轨,优质能源(如电力)比重逐年增大,传统能源(如煤炭)比重逐年降低,为节能减排带来一定的契机。节能减排政策的制定应从城乡差异的实际出发。(2)文中研究表明,17年来,家庭碳排放的重点向电力、油品、交通通讯等方面转移。其中,城镇家庭交通通讯排放增长迅速,成为主要排放源,而煤炭排放比重快速下降;农村家庭电力排放增幅最大,替代煤炭排放成为最大排放源。科学利用家庭碳排放结构动态变化规律及其趋势预测对节能减排工作进行合理部署。(3)在文中分析的全国30省区中,城镇和农村的人均家庭排放均低于全国平均水平的有14个,而高于全国平均水平的仅有8个,低水平排放省区主要分布在中西部地区,且中西部省区的城乡排放差距更大,这意味着不同省区城乡人均家庭排放的现状、减排基础、排放增长需求等均有较大差别。应广泛考虑区域实际发展需求,使不同地区享有同等的发展权,同时关注城乡差距,将农村家庭的节能减排工作与脱贫发展互动结合。

碳排放论文篇4

准确计算旅游碳排放量比较困难,在既有的关于旅游碳排放量估算的研究中,主要有“自上而下法”和“自下而上法”两种。“自上而下法”即直接估算一个国家或地区的旅游业碳排放量;而“自下而上法”则是以分析到达旅游目的地的游客数据入手,根据对旅游行为的分类统计,向上逐级统计各个部门的二氧化碳排放量。各种与旅游相关的交通方式的旅客运输规模则用相应交通方式旅客周转量的9%来表示。在发展中国家,每人每天大约出行6千米,其中与旅游休闲有关的出行占不到10%,即每人每天大约有0.6千米的出行是与旅游相关的。一般来说,某一区域的经济水平越发达,其居民的出游意愿和出游几率也就越高。山东省是我国的重要经济强省和旅游大省,其经济社会发展水平在全国各省份中名列前茅,以2013年为例,其旅游业收入占GDP的比重为9.48%,而当年我国旅游业收入占GDP的比重仅为5.18%,结合石培华(2011)的研究结果,本文使用旅客周转量的9%作为与旅游相关的旅客运输规模,而计算所需的2000—2013年山东省旅客周转量来自《山东统计年鉴》(2001—2014)。另外,由于居民旅游所选择的出行方式多样化,根据2009年《中国旅游城市网誉报告》中的数据显示,我国有35.6%的游客选择通过公路交通完成旅行,有32.7%的游客选择铁路交通,有25%的乘客选择航空交通,而选择自行车、水运等其他交通方式的旅客约占6.7%,本文使用以上数据作为游客选择各种交通方式出行的数据。

三、计算结果与分析

查阅历年《山东统计年鉴》获得2000—2013年山东省旅客周转量后,代入公式即可得到与旅游相关的各类交通方式的旅客运输规模,再根据公式,分别与相应的各种交通方式的二氧化碳排放系数相乘后,即可得到相应的旅游交通碳排放量,再将各种旅游交通方式的碳排放量进行加总处理,即可得到2000—2013年山东省旅游交通碳排放量,然后除以各年相应的山东省游客总数之后,即可得到2000—2013年山东省游客人均旅游交通碳排放量。游客人均旅游交通碳排放量、旅游交通碳排放结构进行分析之后,得出结果:

(一)山东省旅游交通碳排放量总体呈逐年增长态势

2000年山东省旅游交通碳排放量为0.848Mt,2013年增至2.924Mt,是2000年的3.45倍,年均增长9.99%。2000—2013年山东省旅游交通碳排放量的变化大致分为三个阶段,即2000—2003年和2010—2013年为缓慢增长阶段,2004—2009年为快速增长阶段。2000—2003年山东省旅游交通碳排放量增长缓慢,2001年旅游交通碳排放量增长率为8.31%,2002年为8.18%,2003年旅游业由于受到“非典”事件的影响,山东省旅游业收入和接待游客总数均出现一定程度的下降,旅游交通碳排放量同步下降3.93%。2004—2009年,山东省旅游业发展迅速,旅游交通碳排放量呈现快速增长态势,年增长率都在10个百分点以上。由于国务院在2009年提出要大力实施旅游节能节水减排工程,倡导低碳旅游方式,国家旅游局又在2010年进一步提出推进旅游行业节能减排工作的指导意见,山东省在发展旅游经济的同时响应国家号召,实施了旅游业节能减排政策,使得2010—2013年旅游交通碳排放增长较为缓慢,2013年仅增长3.32%,旅游业节能减排工作初见成效。

(二)山东省游客人均旅游交通碳排放量总体呈下降趋势

从游客人均旅游交通碳排放量来看,山东省游客人均旅游交通碳排放量总体呈下降趋势。进入21世纪以来,山东省旅游业无论是总体规模还是发展速度都位居全国前列,2000年山东省游客总数为7079万人,2013年增长到54714万人,是2000年的7.73倍,虽然山东省旅游交通碳排放量逐年上升,但山东省游客总数增长率总体上仍要大于旅游交通碳排放量增长率,这就使得游客人均旅游交通碳排放量总体上呈下降趋势。其中,2003年受“非典”事件影响山东省当年游客数量减少,2008年受国际金融危机影响,当年的游客人数增长率也出现一定程度的下滑,这就使2003年和2008年山东省游客人均旅游交通碳排放量出现短暂上升。

(三)航空交通和公路交通是山东省旅游交通碳排放的主要来源

为消除个别年份的数据对总体结果的影响,以2000—2013年各种交通方式累积的碳排放量来看,可发现各种交通方式中,公路交通碳排放占27.37%,铁路交通碳排放占12.38%,航空交通碳排放占57.67%,其他交通方式碳排放仅占2.58%;各种交通方式中,公路交通碳排放的年平均增长率最大,航空交通次之,说明航空交通和公路交通是山东省旅游交通碳排放的主要来源,这主要与山东省公路交通发达,航空运输发展迅速有关。以2013年为例,山东省8家运输机场完成旅客吞吐量2884万人次,同比增长13.4%,同时公路交通是山东省主要的交通运输方式,其公路建设遍布城乡,四通八达,截至2013年底,山东省已经初步完成了“五纵四横一环八连”的高等级公路网建设规划,形成了横连东西、纵贯南北、环连相通的大通道。

四、结论及对策建议

(一)结论

通过对2000—2013年山东省旅游交通碳排放量进行分析,得出以下结论:

1.旅游交通碳排放总体呈逐年上升态势。旅游交通碳排放量的变化可分为三个阶段,即2000—2003年和2010—2013年的缓慢增长阶段,2004—2009年的快速增长阶段。

2.除了2003年和2008年之外,山东省游客人均旅游交通碳排放量均呈现下降趋势。

3.旅游交通碳排放主要来源于航空交通和公路交通。

(二)对策建议

1.山东省可以借鉴国际上对交通业征收碳税的做法,适当提高燃油经济标准,对燃油、天然气等按含碳量的比例征收碳税,通过经济激励手段推动替代燃料技术的应用与发展,以达到旅游交通节能减排的目的。

2.加大资金投入力度,通过技术等手段降低航空旅游交通的碳排放。航空企业在确保安全的前提下,可通过优化航路、截弯取直缩短飞行距离、精确计算所需携带的能源量达到合理配载、尽量减少地面滑行、提高空管效率、推广桥载设备、鼓励使用生物燃料等一系列措施,最大限度地降低航空旅游交通碳排放量。

碳排放论文篇5

(1)建材生产碳排放,主要由建材生产时消耗的各种能源产生。由于原材料和生产工艺不同,不同建材的碳排放量有很大差别,选择合适的建材是减少碳排放的一个重要措施。另外,人的因素产生的碳排放量相对很小,在测算建材生产碳排放时可以忽略不计。

(2)建材和机械运输碳排放(以下简称运输碳排放),主要由运输过程消耗的燃油资源产生。其碳排放量与所运输的物品种类、数量、运输工具以及运输距离等因素有关。在工程造价文件中,运输碳排放数据体现在运输车辆的机械台班消耗上,根据机械台班消耗量可估算出运输碳排放量。

(3)施工过程较建材生产和运输过程更加复杂,碳排放范围也更广泛。施工生产要素消耗包括人工、材料、机械三类,其中,人工碳排放量相对很少,可以忽略不计;建材生产过程已经计算过材料碳排放,不必重复计算。故施工碳排放主要考虑施工机械和施工工艺因素,通过对施工方案和施工组织设计的优化可有效减少碳排放量。

1.2计算方法

目前,工程建设碳排放计量尚无通用的国际或国家标准,可参考产品碳计量标准进行工程建设碳排放的计算。如ISO/CD14067、英国PAS2050:2008规范以及IPCC国家温室气体(GHG)排放清单指南等,这些规范在碳排放的范围核算和计量方法上都较为成熟,具有很大的参考价值。对现有规范和参考文献进行总结,得到工程建设领域可借鉴的几种碳排放量计算方法:

(1)实测法。通过标准连续计量设施对现场燃烧设备有关参数进行实际计量,得到排放气体的流速、流量和浓度数据,据此计算碳排放。实测法结果较为准确,但耗费的人工和费用成本较高,一般应用于量大面广的碳排放测量。

(2)投入产出法。投入产出法又称物料衡算法,它的原理是遵循质量守恒定律,即生产过程投入某系统或设备的燃料和原料中的碳等于该系统或设备产出的碳。投入产出法可用于计算整个或局部生产过程的碳足迹,但其无法区别出不同施工工艺和技术的差异,且获得结果的准确性有偏差。

(3)过程法。过程法在工程建设领域又叫作施工工序法。它是基于产品生命周期整个过程的物质和能源流动消耗来测算碳排放量,其思路是将施工阶段进行划分,列出分部分项工程的机械清单,然后用单位量乘以量就得到各分部分项工程的施工碳排放。过程法简便易行、精确性较高,但基于过程的物质和能源消耗数据不易获得,在一定程度上限制了该方法的应用。

(4)清单估算法。清单估算法采用IPCC政府间气候变化专门委员会公布的《IPCC温室气体排放清单》计算碳排放,主要原理是用各种能源的实际消耗量乘以碳排放因子加总得到总的碳排放量。碳排放因子指生产单位产品所排放的CO2的当量值,根据正常作业及管理条件,生产同一产品的不同工艺和规模下温室气体排放量加权平均得到,可在相关数据库中查得。清单估算法简单可行、应用面广,关键是要确定温室气体的排放清单并选择适当的碳排放因子。本文的工程建设碳排放量计算是基于生命周期评价理论,将过程法和清单估算法有机结合而成的混合计算方法。具体过程为:首先,采用过程法,按照工程图样列出材料机械消耗清单,也可直接采用清单计价时的分部分项工程材料机械清单;其次,采用清单估算法,将各个材料和机械的消耗量进行汇总并选择合适的碳排放因子;最后,将消耗量数据与对应碳排放因子相乘并加总,即得到整个工程建设阶段的碳排放量。

2案例实证

本文选取铁路工程某建设项目进行工程建设阶段碳排放实例分析,由于该工程的特殊性质,在此不便对工程概况进行介绍,只运用工程造价数据进行计算分析。

2.1清单汇总

根据工程造价文件中的机械台班消耗量和2005年《铁路工程机械台班费用定额》中的单位台班消耗指标,二者相乘即得到总的机械能源消耗量。

2.2碳排放因子确定

碳排放因子(CarbonEmissionFactor)是计算碳排放的基础数据,指消耗单位质量能源所产生的温室气体转化为二氧化碳的量。能源的碳排放因子包括了单位质量能源从开采、加工、使用各个环节中排放的温室气体量转化为二氧化碳量的总和。目前,关于碳排放因子的选用尚无统一标准,不同国家、组织和地区算得的碳排放因子往往有很大差别,在一定程度上影响到计算结果的准确性。本文总结并借鉴了现有碳排放因子,选择其常用值或平均值作为工程建设阶段碳排放计算的参考,各能源或材料的碳排放因子用F表示。

碳排放论文篇6

2实例测算

城市道路汽车、公共汽车、出租车、货车和其他类型车辆及道路设施能耗量估计,可以通过城市统计年鉴,及主管部门年报数据中获得。城市交通能耗测算,各类能源消耗:柴油,汽油,天然气,电力换算标准煤系数由(GB/T2589-2008)获取。其碳排放转化系数分别为2.73kg/L、3.07kg/L、2.26kg/L、1.019kg/kWh。城市各类能源年消耗量可通过统计数据查找,同时给出相关计算参数。可获得某城市碳排放量数据。同时本文以合肥市为查找相关数据例采用excel统计数据计算结果如表2。由此可看出城市交通常用出行方式中人均能耗,人均碳排放各项数据,而私家无论是人均能耗和人均碳排放都是远远高于出租车和公交车。

碳排放论文篇7

近几年,随着纺织产业高速发展,能源消费也显著增长。纺织工业能源消费总量由1995年的3531万吨标准煤增加到2013的6357万吨标准煤,增长了44%。纺织工业的能源消费主要集中在煤、电、热力的消耗上,占到90%左右。从工业企业生产成本构成看,纺织企业能源资源消耗占成本的比重超过70%。“十二五”时期,国家对纺织工业提出了新的要求,主要产品单耗值增加为新的约束性指标,并对单耗下降值提出了明确要求。纺织工业先后出台了《纺织工业“十二五”发展规划》和《建设纺织强国纲要(2011-2020)》两个纲领性文件。文件中明确提出了:“十二五”期间纺织工业节能发展目标:单位增加值能源消耗比2010年降低20%;工业二氧化碳排放强度比2010年降低20%。

3纺织工业的温室气体减排

我国经济发展进入新常态,正从高速增长转向中高速增长,经济发展方式正从规模速度型粗放增长转向质量效率型集约增长,经济结构正从增量扩能为主转向调整存量、做优增量并存的深度调整,经济发展动力正从传统增长点转向新的增长点。从资源环境约束看,过去能源资源和生态环境空间相对较大,现在环境承载能力已经达到或接近上限,必须推动形成绿色低碳循环发展新方式。在经济新常态的态势下,纺织行业也面临生产增速全面下降,出口形势严峻,资源环境承载压力大等情况,节能减排将成为纺织行业发展的突破口。纺织行业必须改变粗放增长方式,通过改变能源结构、提高能源利用效率、采用节能低碳技术来达到温室气体减排目的。纺织工业改变能源结构的方法有利用生物质能及太阳能。提高能源利用效率则可以通过采用厂房节能灯的使用、新型变压器的使用、变频器的使用、新型疏水阀、锅炉过量空气系数控制技术、耗热设备的保温技术、高温废水余热回收技术、热定形机尾气余热回收技术、节能风机等方法。节能低碳技术则包括低浴比印染技术、常温染整技术、无水染整技术、机械整理技术、数码印花技术、短流程印染技术等。

碳排放论文篇8

2.1不同类型出口产品隐含碳排放强度

由表3可知,资本技术密集型和人力资本密集型产品的完全碳排放系数分居第一和第二,3个年份分别为6.65吨/万元、4.53吨/万元、3.60吨/万元和2.31吨/万元、1.83吨/万元、1.31吨/万元。其中,资本技术密集型产品的直接碳排放系数最高,其占完全碳排放系数比重分别为65.10%、61.94%、67.44%,这表明,生产过程中直接能源消耗排放的CO2较多。而人力资本密集型产品的间接碳排放系数较高,其占完全碳排放系数比重分别为71.84%、81.83%、79.66%,说明由于中间投入品比重较高而导致的间接能源消耗排放的CO2较多。值得注意的是,非熟练劳动密集型产品的间接碳排放系数最高,其占完全碳排放系数比重分别为80.09%、86.15%、84.79%。

2.2基于隐含碳角度的出口产品结构变化

对外贸易体现生产要素禀赋的特征及资源的配置效率,也在一定程度上体现了竞争优势的部门分布。从四类商品出口隐含碳占出口隐含碳总量比重来看,人力资本密集型产品出口隐含碳位居第一位,其占出口隐含碳总量的份额较稳定,为46.0%左右。其次是资本技术密集型产品,其占出口隐含碳总量比重呈稳步增长趋势。非熟练劳动密集型产品和自然资源密集型产品出口隐含碳所占份额呈逐步降低趋势。出口隐含碳总量及所占份额虽然一定程度上能说明中国出口贸易结构现状以及变化情况,但由于贸易隐含碳由规模效应、结构效应和技术效应共同决定,将导致出口隐含碳增长的因素进行分解,可以更清晰地看到出口结构的变化。从规模效应来看,2002—2007年和2007—2010年出口隐含碳规模效应均为正,表明四类产品的出口量均增长,但对比2002—2007年,2007—2010年增长幅度大大减少,很大原因在于2008年全球金融危机爆发,导致中国出口形势恶化。其中,人力资本密集型产品的规模效应最大,其次是资本技术密集型产品,说明这两类产品出口规模增长幅度较大,而非熟练劳动密集型产品和自然资源密集型产品出口规模增长较小。结构效应表示某类产品出口量比重的变动情况,其值为正,说明该类产品出口量占总出口量的比重增加,反之亦然。资本技术密集型和人力资本密集型产品出口量占出口总量的比重在增加,自然资源密集型和非熟练劳动密集型产品的出口比重减小,减小幅度基本持平(见表5)。从分解出来的规模效应和结构效应可清晰地看出,2002—2007年与2007—2010年期间,四类产品的出口量均在增长,但是,四类产品的出口份额呈两极分化趋势,即人力资本密集型与资本密集型产品的出口份额呈增长趋势,而自然资源密集型与非熟练劳动密集型产品的出口份额呈下降趋势。这说明,出口重心向碳排放强度较高的人力资本密集型产品以及资本密集型产品转移。

2.3出口产品隐含碳排放强度下降的速率在加快

技术效应反映产品生产过程中完全碳排放系数的增大或减小的问题,技术效应为负表明生产中能源利用效率提高,单位产品耗碳量减少。从表5可以看到,2002—2007年与2007—2010年,四类产品的单位产品耗碳量均减少,说明生产技术不断在改进。值得注意的是,尽管受2008年爆发的全球金融危机的影响,2007—2010年中国出口贸易增长额对比2002—2007年增长额大幅度减少,但是,四类产品的技术效应所带来的出口隐含碳排放的减少幅度均大于2002—2007年,表明能源利用效率提高的速率在加快。其中,2002—2007年完全碳排放系数降低幅度最大的是资本技术密集型产品,其次是人力资本密集型产品,最小的是非熟练劳动密集型产品。2007—2010年完全碳排放系数降低幅度最大的是人力资本密集型产品,其次是资本密集型产品,最小的是自然资源密集型产品。从四类产品的完全碳排放系数进行分析,可以得出同样的结论(见表3)。

2.4人力资本密集型产品中的加工贸易比重最大,其次是非熟练劳动密集型产品

一直以来,加工贸易是中国出口贸易的重要组成部分,所占份额较大。出口隐含碳计算式由两部分组成,一部分是中间投入品与最终产品均在国内生产的出口品所含的隐含碳,另一部分是中间投入品为国外进口品,在国内进行加工生产再出口的产品的隐含碳,即R(I-Ad)-1Am(I-A)-1EX,其所占比重则反映各类出口产品中加工贸易的比重。由表4可知,人力资本密集型产品中的加工贸易比重最大,并呈增长趋势(3个年份分别为29.44%、32.14%、26.91%),其次为非熟练劳动密集型产品中的加工贸易(2002、2007和2010年分别为15.27%、22.47%、19.75%)。这表明,在机械、电气设备、纺织鞋帽等出口产品中,有相当一部分是“两头在外”的加工贸易,其因进口中间投入品,从而“节省”了大量的碳排放。但是,资本技术密集型产品中的加工贸易比重最小,而这类产品的完全碳排放系数最高(3个年份分别为6.65吨/万元、4.53吨/万元、3.60吨/万元)。说明加工贸易集中在完全碳排放系数较低的部门,而化工、运输设备等完全碳排放系数较高的出口产品在生产时的进口中间投入较少。相对人力资本密集型和非熟练劳动密集型产品,自然资源密集型和资本技术密集型产品在生产过程中的中间投入本来较少是原因之一。

3主要结论和几点建议

3.1主要结论

(1)人力资本密集型和资本密集型产品的出口隐含碳排放强度较高。人力资本密集型产品间接消耗带来的碳排放比重大,资本密集型产品直接碳排放系数较高。(2)出口重心向人力资本密集型产品和资本密集型产品转移,自然资源密集型产品与非熟练劳动密集型产品出口份额逐渐降低。出口产品向高端化发展,但碳排放强度也更高,出口结构的调整对碳减排不利。(3)加工贸易总体呈增长趋势,且集中在碳排放强度较低的部门,“节省”了大量碳排放。(4)出口产品能源利用效率提高的速率在加快,资本技术密集型产品与人力资本密集型产品的碳排放强度降低幅度最大。

碳排放论文篇9

我国也在运用不同的政策评价工具来衡量低碳政策的有效性。例如投入产出模型,凯恩斯系数等,希望能够证明低碳建筑与社会经济之间的积极关系。笔者认为,建筑的碳排放量表现在建筑全寿命周期的一次性能源消耗中,因此可以以建筑项目的全生命周期理论为基础计算建筑各阶段的碳排放量,通过各阶段的碳排放量对比,使决策者明确低碳建筑。生命周期理论是指产品从兴起到结束,即从自然中来再回归自然的一个过程。建筑工程的生命周期是从建筑的起步设计、施工,再到使用,最后废弃拆除为止的一个过程。由于建筑项目的技术复杂,建造周期较长,并且风险高,因此,对建筑进行生命周期划分是至关重要的。本文将建筑划分为4个阶段,规划设计阶段,施工阶段,运营维护,拆除阶段。规划设计阶段,包括了建造前期的图纸设计,建材选择,交通运输。施工阶段和拆除阶段可以由不同的施工方式来计算,运营维护阶段包括了建筑使用过程中对各种类能源的消耗。近年来,国内相关领域通过运用生命周期碳排放量的计算方法,基本对四个周期做出了一定的评估。大多数学者认为建筑的整个生命周期中运营维护过程中的碳排放量是最高的,大约在81%左右,此阶段的碳排放量大多集中于供暖,照明和燃气等设备的运行。而其他阶段所占的碳排放比例相对较低,规划和施工阶段,大约占10%~15%,而拆除阶段的碳排比率不超过20%。低碳建筑的核心就在于碳排放量比普通建筑少,建筑材料也大多运用环保绿色材料。通过该种计算方式可以有效的证明一个建筑是否符合低碳建筑标准,以及低碳建筑的优势所在。如果一个建筑在建造过程中运用了绿色环保材料,并且对其运营维护进行合理管理使得它的碳排放量低于其他的普通建筑,那么就可以有效证明该建筑属于环保低碳建筑。因此以生命周期为理论基础,可以帮助我们计算出每个环节的碳排放量,从而针对实际指标来研究相应的技术,制定相应政策法规。

3基于全生命周期理论的碳排放量计算

我们可以通过一栋建筑四个阶段的碳排放量之和来计算该栋建筑的二氧化碳的排放总量。假设CO2排放总量是E,周期内的四个阶段的碳排放量分别为设计规划阶段Em,建筑施工阶段Ec,运行维护阶段Eo和拆除阶段Ed,那么就能得出:E=Ep+Ec+Eo+Ed由此可以得出单位面积的年碳排放量,即CO2排放量评价指标C:C=E/(S*Y)其中,S代表某栋建筑的建筑面积,Y代表使用年限。(大多数资料表示,我国普通房屋的使用年限均为50年,即Y=50)以上两个等式,不仅可以让决策者明晰的看出每一阶段的碳排放量,并且根据此数据制定相关政策,同时也可以作为衡量普通建筑和低碳建筑差异的标准之一。由于低碳建筑的碳排放量比普通建筑要小,等式中的总排放量和单一阶段的排放量成正比关系,所以假如在某一阶段融入了低碳技术使得碳排放量下降,建筑的总碳排放量也会随之下降。建筑周期过程中四个阶段均属于变量,我们可以通过针对每一个阶段的碳排放量进行详细的计算,来推断出建筑的哪个阶段需要引用低碳技术,可以得到更多的政策扶持。首先,在第一阶段设计规划中,我们可以将其Ep分为两个部分,由于设计规划阶段主要包括建筑材料的选择和运输,因此,我们可以使:EP=Em+Et其中Em代表各种建筑材料在用量选择上的CO2排放量,例如水泥,玻璃,混凝土等。Em=Σδmi*δiδmi表示第i种建筑材料的用量,表示第i中建材单位CO2的排放系数。由于运输过程中,与材料的重量,运输工具类型和运输距离相关。因此Et代表运输过程中运输工具所释放的CO2量。Em=Σδmi*Li*ηδmi同样表示第i中建筑材料的用量,Li代表第i种建材的运输距离,而η则表示建材相对应的运输工具的CO2排放系数。第二阶段,是建筑的施工制造阶段,我们可以通过建筑施工量,以及建造过程中不同建筑方式的碳排放量来计算第二阶段的碳排放总量,而此处的不同建筑方式是指在建造过程中所需的不同工种,例如打地基,施工地照明,楼层建设等。由此得出:Em=Σβci*σci表示该工程的建筑施工量,σci相应施工方式的单位CO2排放系数。第三阶段则是当建筑建设完成之后,开始正式运营维护的阶段。由于运营过程中,CO2的排放主要取决于建筑运行过程中的能耗,因此我们可以将能耗划分为两大类,第一类是电能消耗量,即针对照明,电器运行等一系列的消耗。另一类则是化石能源消耗量,即采暖,燃气等一系列能源消耗。由此可以得出:Eo=Y*(Qe*fe+Qg*fg)Qe代表年耗电量,fe表示电力所产生的碳排放系数;Qg表示年耗气量,同样fg代表能源的碳排放系数。最后一个阶段是拆除阶段,与上述同理,也可以通过不同的拆除方式来划分并且计算。Ed=Σβdi*σdi其中,βdi代表拆除建筑所需的施工量,σdi代表不同的拆除方式的单位CO2排放系数。

碳排放论文篇10

2结果及分析

依据式(7)测算和式(6)得到甘肃省农业碳排放与经济发展的相互关系,见表3。1994—2011年甘肃农业碳排放与经济增长关系主要呈现弱脱钩、强负脱钩、扩张连接、扩长负脱钩、强脱钩5种状态(表3)。研究期内,农业碳排放与经济增长脱钩弹性指标出现最多的是弱脱钩状态,共9次,占统计期数的50%;其次为强负脱钩和扩张连接,各出现了3次,占统计期数的16.67%;扩长负脱钩出现了2次,占统计期数的11.11%;最少的是强脱钩,出现了1次,占统计期数的5.56%。总体上,脱钩状态占统计期数的55.56%,说明甘肃省农业碳排放增长速度慢于农业经济的增长速度,呈现良好的态势。甘肃省的农业碳减排工作取得了初步成效,这与甘肃省的实际情况相一致。从图1、图2可见,甘肃省农业碳排放与经济增长总体上呈现周期性的“较理想状态—畸形状态—较理想状态”的“W”型变化。依据脱钩指标变化态势(图2),可将研究期分为三个阶段,分别是1994—1995年、1996—2002年、2003—2011年。第一阶段(1994—1995年)呈现“弱脱钩—弱脱钩”特征,脱钩弹性指数介于0—0.8,脱钩弹性指数分别为0.11、0.31,呈较理想的弱脱钩状态,即农业碳排放增长速度慢于农业GDP的增长速度。从表2可见,两年间农业碳排放总量仅为136.70万t,碳排放强度平均值仅186.27kg/hm2;农业GDP从1993年的99.14亿元增长到1994年的157.91亿元,增速为59.28%,农业GDP40%/hm2的增加值随着农业碳排量5.4%的值增加。原因主要是:①20世纪90年代初,甘肃省农业技术欠发达、农业生产力相对落后,农作物种植主要依赖人力和畜力,对农用机械和灌溉机械的使用相对较少,相应的农用柴油使用量较小,加之农药、化肥等农用资料投入意识相对较弱,碳排放总量不大。②该时段农村劳动力还未大规模向城镇转移,外出务工人员相对较少,农民的主要收入来源于农业经济作物生产变卖所得,农业GDP得到了较快发展。第二阶段(1996—2002年)经历了“不可取状态—较理想状态—不可取状态”的W型变化过程,并出现了两个扩长负脱钩状态的高峰值,农业碳排放增长速度整体上快于农业GDP的增长速度。1996年为第一个高峰值,脱钩弹性值为1.32,农业GDP17.78%/hm2的增加值伴随着农业碳排量23.44%的值增加。

主要原因是,1996年甘肃省实施了科技推广服务活动和新农业管理措施的推广,农田基本建设得到加强,发展了一系列的基础工程,如地膜覆盖工程、带状种植农业种植工程等。此外,随着农业技术的进步,农户更倾向依靠农业机械以克服人力的不足,不可避免地增加了对柴油、电力等能源的消耗,使农业碳排放量居高不下。农民大多依靠种植农作物来维持家庭生活,收入来源相对单一,为了获取更多的经济收入,农民往往会加大对化肥、农药、农膜等农用资料的投入力度。与1995年相比,该时段在农作物种植面积持平的情况下,农业GDP增长了14.05%,但仅农用薄膜的投入就增加了82.15%,农业碳排放增长了23.13%。2002年为第二个高峰,脱钩弹性指标达到6.17,农业GDP2.37%/hm2的增加值伴随着农业碳排量9.09%的值增加。主要原因是,农民负担过重,“三农”问题进一步凸显。越来越多的农民放弃务农转向城市务工,农民从事农作物种植的积极性下降。与2001年相比,导致1.06%的耕地闲置,农业经济增速放缓,增长速度仅为1.29%,但农业碳排放年均增速仍为12.85%。在此期间,1997年、1999年、2000年表现为强负脱钩状态,脱钩弹性值分别为-1.27、-0.56、-0.36。由图1可见,在农业GDP减少的同时农业碳排放总量仍在增长,1997年与1996年相比、1999年与1998年相比、2000年与1999年相比,农业经济增长速度分别为-5.17%、-3.90%、-1.54%,而农业碳排放增速分别为6.59%、2.17%、0.56%,农业GDP在平均减少3.23%/hm2的情况下农业碳排放仍然增加了3.41%。下降的主要原因是,受1997年亚洲金融危机、特大洪涝灾害和国家整体经济形势的影响,公共财政涉农支出减少,农业公共设施投入停滞,加之农民从事农作物生产的积极性不高,导致农作物生产总值下降。1998年脱钩弹性值为0.44,表现为弱脱钩状态,农业GDP12.91%/hm2的增加值伴随着农业碳排放5.58%的值增加。主要原因是,1998年新《土地管理法》的颁布实施使耕地的数量得到了一定恢复,加之国家政策对农业的倾斜,农民对农业生产的积极性增强,农业生产效率得到了一定提高,以致农业经济的增速为13.21%,而农业碳排放总量的增速仍停留在5.86%。第三阶段(2003—2011年)整体态势良好,农业碳排放增长速度呈递减态势,而农业经济增长速度呈增长态势,经历了“强脱钩—弱脱钩—扩张连接—弱脱钩—扩张连接”的“L”型变化趋势(图2)。其中,2003年脱钩弹性值为-0.08,表现为最理想的强脱钩状态,农业GDP8.07%/hm2的增加值伴随着农业碳排放0.21%的值增加。主要原因是,2003年1月《退耕还林条例》在全国的颁布实施,部分耕地变成了林地和草地,农膜、农药等农业生产物资投入相对减少,以及农业科技的进步使农业生产力得到提高,套种、间种等技术得到进一步推广。与2002年相比,农业GDP增加。

2004—2008年脱钩弹性值小于0.8,表现为弱脱钩状态,农业碳排放增长速度慢于农业GDP的增长速度,脱钩弹性值分别为0.21、0.45、0.27、0.61、0.34;农业平均GDP12.50%/hm2的增长值随着农业碳排量3.75%的值增长。主要原因是,2004年“中央一号文件”的颁布实施,“两减免,三补贴”惠农政策极大地鼓舞了农民的生产积极性,农业生产力得到了快速提高;加上农业科技的进步,产业结构调整的进一步推进,农业GDP得到了较快增长,而循环农业、绿色生态农业等种植模式的推广,使农业碳排放增长速度减缓。2009—2011年甘肃省经历了“扩张连接—弱脱钩—扩张连接”的由耦合到脱钩再到耦合的动态变化,脱钩弹性值分别为0.88、0.21、0.11。主要原因是,在经历了较长时间的农业低碳化管理之后,农业碳排放结构发生了变化,农业技术进步、耕地的科学化管理虽然使农业经济总量得到了快速提高,但碳排放总量却居高不下。该段时间,甘肃省农业GDP平均增长率为9.65%,而农业碳排放的平均增长率为17.30%,农业经济平均增长速度慢于农业碳排放的平均增长速度。

3结论与建议

碳排放论文篇11

1.2碳排放权的计量

碳排放权的计量尚无统一准则,本文的观点是依据碳排放权的确认方法的选取而选取相应的计量属性(。1)如果将碳排放权确认为存货,可以考虑按取得时的历史成本入账并在资产负债表日按照成本与可变现净值孰低法作后续计量(。2)如果将碳排放权确认为无形资产,则需要在初始时选取历史成本,按每期实际发生的碳排放量进行摊销,将摊销额转入当期损益(。3)如果将碳排放权确认为交易性金融资产,计量属性应选择公允价值,后续计量时,需将公允价值变动计入当期损益。

1.3碳排放会计信息披露

本文认为,碳信息披露报告主体应主要分为三部分:碳核算、碳管理与碳审计。碳核算包括碳排放原始数据的记录与汇编并编制低碳报告。碳管理部分本着优化企业碳排放现状的目的具体列出企业的减排目标,为达成此目标所制定的计划与实施的步骤,最后将结果与目标进行对比。碳审计部分包括低碳报告的审核、企业碳排放实际数量的限额审核。碳信息披露报告这三部分循序渐进,详实准确的碳核算是进行有效的碳管理的必要基础,碳审计为碳管理提供了可靠地依据与框架,碳管理水平的不断提高则最终有助于企业真正实现低碳下的健康发展。在我国碳交易发展初期,碳信息报告应更加注重企业碳排放行为而不是碳交易行为,有的放矢。碳信息披露报告的具体编制可分为两种方式:一是在原有传统会计报表中增加与低碳相关的具体项目,在附注中对其进行解释与说明。如:无形资产-碳含量、碳排放费用,附注中增加列报碳减排目标等。二是单独编制碳资产负债表、碳现金流量表等。

二、推进我国碳排放会计发展进程的若干对策

2.1建立健全的碳排放会计准则和相关制度

为了推进碳排放会计的发展进程,我们应该在准确分析我国目前低碳会计与碳排放权交易现状的基础上,明确导向、预测未来发展形势,批判地继承国外研究学者的理论与实践成果,建立适应我国经济发展特点的低碳体系框架,循序渐进。首先,我国建立的碳排放会计应在大方向上与税法、会计准则保持一致,重点探讨碳排放权交易过程中所涉及的确认、计量问题,使之适应于我国交易市场较之国际尚不成熟的现状。其次,在符合我国特点的同时,逐步实现与国际会计核算体系的趋同,促进我国碳排放交易市场中以持有以待增值的投资行为的进程,形成高效、完善的市场环境。最后,从企业自身的碳管理、碳成本核算、碳审计监督等方面出发,制定具体可行的法规制度,从根本因素谋求发展。

2.2设置科学的评价指标,构建宏观调控体系

碳减排会计工作在实际落实时,可以制定一系列科学有效的评价标准,从而对企业考虑环境情况下的经济效益与减排成果作出衡量评级。从传统财务管理的一些评价指标与数据测算中得到启示,创建同样适用于碳排放会计的财务管理框架,并且从不同企业的不同生产经营特点出发寻求自身环境战略性发展,真正使经济效益与社会效益有机结合。在这方面,国家需要对不同行业区别的对待,指定有针对性的不同侧重、不同等级的碳排放会计评价指标体系。按强制性分出的等级标准可以根据国家考察逐一应用于地区、行业、企业等,充分发挥国家在碳减排上的宏观调控能力。

碳排放论文篇12

1.2研究对象、范围

本文的研究对象与范围为建设期的半刚性基层沥青混凝土路面,不包含路基及路面其他相关辅助设施(如标志标线、护栏、照明设施等)。

1.3过程法、边界条件及假设

过程法(P-LCA)是对分析范围内每个与系统相关联的离散过程中的消耗和排放进行逐一量化,而后累计各个离散过程的数据得到总的环境影响[4]。然而,产品的每一个阶段过程都包含复杂的上游过程,如材料运输阶段,除运输过程以外,还包括运输设备的生产,运输设备生产又包括设备制造原料的开采、加工和运输等。若进行如此深入细致的过程分析势必费时费力,而这部份计算结果又仅占有极小的比例,分析效率低下,因此,需要把握分析重点,设定合理研究边界及假设,舍弃细枝末节,提高分析效率。

1.4环境类型和功能单位

沥青混凝土路面生命周期清单分析的环境影响类型为碳排放(以t当量CO2计)以及能耗(以GJ当量热计)。功能单位设定为1km车道,车道道面宽度为3.75m。

2分析模型

2.1原材料生产阶段

(1)生产阶段能耗Ep。沥青混凝土路面建材包括基本的筑路材料和道路辅助设施建材,如沥青、水泥、碎石等,建材开采生产阶段的总能耗计算模型见式(1)。再利用材料视为原材料,材料再利用过程即为其生产过程,并以使用归属为前提进行计算,即当考虑一种再利用材料、工艺或方法的能耗与排放是否计入某项工程时,以该种材料、工艺或方法是否使用于该工程来判定。例如,沥青混凝土路面再利用包括旧路铣刨、旧料粉碎、筛分、运输等工艺过程,由于铣刨形成新的工作面用于旧路施工,整个铣刨过程计入施工中,而旧料粉碎、筛分和运输至堆放地的能耗和排放则视为其旧料的生产能耗及排放,有多少旧料得到再生利用则计入多少能耗与排放,其他工程使用本工程产生的旧料时,应将旧料生产的能耗与排放计入其他工程中。(2)生产阶段排放Ipr。原材料生产阶段排放的计算方法与其能耗计算方法相似,计算模型见式(2)。Ipr=∑i(1+φi)VirMi(2)式中:Vir为开采和生产单位材料时第r种污染物的排放质量;其他符号意义见式(1)。

2.2施工阶段

施工阶段的能耗和排放由两个部分组成:一是原材料、废弃材料的运输;另一是施工机具设备的运行。(1)运输能耗Ect和环境排放Ictr。施工过程中的运输要分为长距离运输和短距离运输,长距离运输包括原材料自产地到现场,以及废弃材料由现场到处置地的运输,短距离运输是材料在施工现场的转运。本文将长距离运输归入施工运输过程中,短距离运输归入施工机具设备分析中。运输过程考虑运输方式、运输距离、燃料类型、运输质量以及返程运输。铁路和水路运输不考虑返程,公路运输考虑返程,设定返程运输的基本流为满载运输的70%[1]。废弃材料运输一般采用公路运输,处置场地固定,运输距离设定为50km。(2)施工机具设备能耗Ece和环境排放Icer。沥青混凝土路面施工的机具设备包括拌和设备、摊铺机、压路机等,施工过程能耗和环境排放的实质是各种机具设备运行能耗与排放的总和。机具运行的能源类型主要有三种:柴油、汽油和电能。计算中将各机具设备按单位工作量换算其能耗强度(MJ/工作量)和排放强度(t/工作量)。如拌和楼的能耗强度单位为MJ/t混合料,压路机的能耗强度为MJ/m2。

3路面结构、分析清单及计算软件

3.1沥青混凝土路面结构

参照我国沥青混凝土路面设计规范[11,12]以图1所示的半刚性基层沥青混凝土路面结构为典型路面结构,分析该路面结构在建设期的能耗及环境碳排放。

3.2分析清单

分析清单即计算所需的各类原材料、施工机具设备的能耗与碳排放强度数据,是通过对过程流的划分及数据的收集和处理,得到的过程流中组成要素的环境数据。过程流的划分一般采用过程法,将材料的生产和施工过程逐一分解至可计算的过程流。以沥青为例:沥青制炼和生产的流程主要由原油开采、运输、提炼加工、存储四个环节组成。根据前述确定的研究范围,分析沥青制炼加工的能耗与排放。我国道路沥青生产用的原油主要来自国内和中东,2010年,我国约开采原油19000万t,进口原油24000万t,假定两类原油用于生产道路沥青的比例是相等,而国产原油的沥青收率(即单位质量原油产出沥青的比率)为25%,进口原油的收率为40%。原油提炼沥青的生产能耗参考《清洁生产标准-石油炼制业(沥青)》(HJ443-2008),该标准适用于以石油为原料用连续氧化法(养护沥青装置)和溶剂法。其中清洁等级三级为我国沥青生产能耗的基本水平,取表3中清洁等级三级的平均值代表我国沥青制炼的平均水平,得沥青生产的平均能耗为34kg标油/t原油,按能耗将标油换算为标准煤,1kg标油=1.43kg标准煤,由标准煤的排放换算标油的排放。文献[13]中采用上述过程法,收集并计算得到我国70余类相关原材料和施工机具设备的能耗与排放清单,为沥青混凝土路面的LCA评价奠定了数据基础。3.3计算软件计算采用由上海市城市建设设计研究总院编制的《沥青路面建设期能耗与碳排放计算软件》软件(软件著作权号:2013R11L142356)。该软件由网络服务器、数据处理后台和输入页面组成,输入页面为网页形式,目前可供局域网用户进行使用,后台处理器为EXCEL软件,结果以EXCEL文件形式输出,清单数据主要来源于文献[13]。

4计算结果与分析

4.1典型结构与材料组合的能耗、碳排放分析

将路面结构和材料参数输入软件中,各结构层在生产、运输和施工阶段的能耗与碳排放。典型沥青混凝土路面结构中沥青混凝土面层由上至下建设能耗占比分别为8.6%、11.2%和15.6%,基层由上至下能耗占比分别为27.9%、23.7%和11.9%,其中水稳碎石上基层能耗占比最大,基层材料能耗与碳排放整体占比约62%,面层材料占比约38%,层间材料能耗占比最小约1.4%,如图2所示。路面各层在碳排放占比方面与能耗占比分布相似,但基层材料尤其是水稳碎石材料的碳排放占比明显高于其能耗占比,水稳碎石基层的碳排放占比高达65%,表明以水泥为结合料的半刚性基层材料是沥青混凝土路面建设期碳排放的主要来源,如图3所示。各阶段能耗与碳排放分布分析,原材料生产阶段的能耗与碳排放占建设期能耗与碳排放的比例分别为65.0%和77.0%,施工阶段占比分别为27%和18%,运输阶段的能耗与碳排放占比最小,分别为8%和5%,如图4和图5所示。说明原材料生产期间的能耗与碳排放是沥青混凝土路面建设期能耗与碳排放的主要组成部分。而在原材料生产阶段能耗与碳排放占比最高的是水泥,能耗占比为57.1%,碳排放占比达到73.4%,而集料和沥青类结合料在这两项指标中的占比分别为17.2%、25.7%以及10.5%、16.1%。水泥生产期能耗与碳排放,在沥青混凝土路面建设期占比分别达到37.1%和56.6%,水泥掺量是影响半刚性基层沥青混凝土路面能耗与碳排放的关键因素。根据路面结构设计寿命,算得路面结构承载标准荷载每百万轴次作用的能耗为84.9GJ和9.9t碳排放。

4.2不同环保沥青混凝土路面技术下能耗与碳排放的比较分析

将路面结构层材料的能耗与碳排放换算为1cm厚3.75m宽和1000m长的单位体积下的能耗与碳排放,结果见表6。单位体积下路面材料的能耗随层位降低而下降,与材料的性能和费用成正比。其中SBS改性沥青混合料的能耗达到70.7GJ,是各类材料中最高的,其能耗与碳排放高出普通热拌沥青混合料约15%,主要是因为SBS改性剂的生产,具有高能耗与高排放的特征以及成品SBS改性沥青在生产和施工中存在二次加热。水稳碎石的单位体积能耗低于沥青混凝土,而6%水泥掺量的水稳碎石单位体积碳排放则高于SBS改性沥青混凝土,达6.1t,相比4%水泥掺量其能耗与碳排放增加约30%,能耗增加约23.2%,进一步说明水泥掺量是影响水稳碎石能耗与碳排放的主要因素。选择三类对与减少路面能耗与排放具有明显效果的材料和技术进行分析,分别是:沥青混合料温拌技术、沥青混合料再生技术以及替代部分水泥的脱硫石膏水稳碎石。分析设定:(1)温拌技术,集料加热、沥青加热温度相比热拌混合料降低30℃[14];(2)再生技术,以旧料替代集料及部分沥青,不添加再生剂,旧料总量为30%,分别替代29%的集料及1%的沥青,旧料往返运距为20km,考虑旧料破碎加工;(3)脱硫石膏水稳碎石,以7%的脱硫石膏替代2%的水泥及5%的细集料,脱硫石膏往返运距为20km。算得上述材料或技术单位体积材料建设期能耗与碳排放,见表6。(1)温拌技术:沥青混合料温拌能耗降低约5.2~5.3GJ,碳排放减少约0.4t,能耗与碳排放降幅分为7.5%~8.6%和6.7%~8%。(2)再生技术:再生混合料能耗降低约5.6GJ,碳排放建设约0.5t,降幅分为9.3%和10%,另计算,当旧料往返运输量相比集料多133km·t时,能耗优势消失,当旧料往返运输量相比集料多160km·t时,碳排放优势消失,考虑旧料弃置的运输时,在上述技术基础上增加旧料运输距离。(3)温拌+再生技术:由表6可见,两种技术同时使用时形成节能减排的叠加效果。(4)脱硫石膏稳定碎石:能耗降低3.2GJ,降幅约9.6%,碳排放减少1.2t,降幅约25.5%。三种技术中,脱硫石膏水稳碎石的环境友好性最好,尤其是对碳排放的减少起到良好效果。再生技术需考虑旧料运输的距离,当旧料弃置的运距大于旧料利用的运距可认为旧料利用是有效的。

碳排放论文篇13

一、碳交易的内涵

碳排放权交易(简称碳交易)的概念源于20世纪60年代经济学家们提出的排污权交易概念。科斯定理一直被认为是排污权交易的理论基础。企业是以利润最大化为目的进行生产经营,为社会提品和服务的,问题在于企业获得利润的同时并未承担排放二氧化碳的环境污染成本,使得经济活动不能体现环境资源的经济价值,稀缺的环境资源得不到有效配置。科斯认为解决环境资源市场失灵的关键是产权,明确环境资源的所有权或财产权,使其成为稀缺资源,可以解决污染外部性问题。据此,经济学家们提议建立碳排放权交易市场,让市场机制评价环境资源的价值,使其外部性内部化。《京都议定书》的签订意味着包括二氧化碳在内的温室气体的排放行为要受到限制,由此导致碳的排放权和减排量额度(信用)开始稀缺,并成为一种有价产品,称为碳资产或碳产权。目前,在欧洲、美国等金融发达的地区和国家已经形成了一些大型的碳排放交易中心,如欧盟CO2排放量交易体系、欧洲气候交易所、芝加哥气候交易所。交易主要有两种类型:其一是基于配额的交易。买家在“限量与贸易”体制下购买由管理者制定、分配(或拍卖)的减排配额,譬如《京都议定书》下的分配数量单位(AAU),或者欧盟排放交易体系(EUETS)下的欧盟配额(EUAs)。其二是基于项目的交易。买主向可证实减低温室气体排放的项目购买减排额。

碳交易从资本的层面人手,通过划分环境容易,对温室气体排放权进行定义,延伸出碳资产这一新型的资本类型。将气候变化因素纳入了企业的资产负债表,改变了企业的收支结构。而碳交易市场则为碳资产的定价和流通创造了条件。来自不同项目和企业产生的减排量进入碳市场进行交易,被开发成标准的金融工具,使得金融资本通过碳交易市场直接或间接投资于创造碳资产的绿色技术的实体经济。碳交易将金融资本和实体经济联通起来,通过金融资本的力量引导实体经济的发展。碳交易的一般做法是:首先由政府部门确定一定区域的环境质量目标,并据此评估该区域的环境容量;然后,推算出二氧化碳的最大的允许排放量,并将最大允许排放量分割成若干规定的排放量,即若干排放权;接着,政府选择不同的方式分配碳排放权,如公开竞价拍卖、定价出售或无偿公配等,并通过建立排放权交易市场使这种权力能合法交易。在市场上,排放者从其自身利益出发,自主决定其污染治理程度,从而买入或卖出排放权。碳排放权交易市场的本质就是承认碳资产商品化,提供二氧化碳排放空间数量化、资产化、市场化的途径,使之成为非公共物品,成为一种生产过程中必须付出代价才能得到的资源,通过市场机制对碳排放权的有效配置达到二氧化碳减排的目的。

二、碳交易对我国发展低碳经济的现实意义

(一)有利于宏观经济帕累托改进

发展碳交易市场首先要确定我国范围内二氧化碳的排放总量,凸显环境资源稀缺性。碳交易市场机制的价格发现功能可实现碳排放权的合理定价,使环境资源成本外部性向企业生产活动内部化转化。碳排放权获得类似垄断资源的身份,微观经济主体受成本一收益的驱动会珍惜有限的碳排放权和减少二氧化碳排放,并可诱发一系列的低碳经济活动。二氧化碳排放总量限制、微观主体排放成本控制及低碳经济活动将会使我国宏观经济碳排放总量得到有效控制,使污染治理总体费用得到大幅降低,逐步建立起高效的经济一能源系统。在不影响经济增长的前提下最大限度地减少对能源需求与二氧化碳排放,最终达到环境资源优化配置及整体经济的帕累托改进。

(二)能使减排成本收益转化

碳交易市场机制下的碳排放权具有商品属性,其价格信号功能引导经济主体把碳排放成本作为投资决策的一个重要因素。随着碳市场交易规模的扩大和碳货币化程度的提高,碳排放权进一步衍生为具有流动性的金融资产。企业通过实施积极有效的碳资产管理将促进经济发展的碳成本向碳收益转化。碳交易市场兴起并可带动形成以碳排放权为中心的碳交易货币以及包括直接投资融资、银行贷款、碳指标交易、碳期权期货等一系列金融衍生品为支撑的碳金融体系,形成能源链转型的资金融通——减排成本收益转化——低碳资金投入的良性低碳循环。

(三)促进低碳技术转移

通过建立碳排放权的交易机制使得碳排放边际成本较低的排污企业可以通过自身的技术优势或成本优势转让或储存剩余的排放权,碳排放边际成本较高的企业则通过购买的方式来获得环境容量资源的使用权。购买行为的本身既包含实际减排额度的转让也包含低碳技术的交易。通过碳排放权的交易,污染治理的最终任务必将落在减排成本最低的企业或专业化减排处理的企业身上,客观上促进了包括节能和清洁能源、煤的清洁高效利用、油气资源和煤层气的勘探开发、可再生能源、核能、碳捕集和封存、清洁汽车技术、农业和土地利用方式等涉及温室气体排放的低碳技术应用和创新。

(四)引发低碳能源革命

低碳能源是低碳经济的基本保证。新能源属于低碳能源,新能源的各种形式都是直接或者间接地来自于太阳或地球内部深处所产生的热能,包括太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。碳交易市场机制解决了二氧化碳的供求、价格、竞争、风险等要素问题,实现二氧化碳排放量的定价,使其成为经济主体生产活动的要素。基于成本收益的考虑,势必会引发能源革命,促进我国可再生能源、清洁能源的开发,降低化石能源比重,改变能源结构,促进经济主体提高能源效率,降低二氧化碳等温室气体和其它污染物的排放量,能源消费由传统高碳能源逐渐向低碳新能源过渡。

(五)促进低碳经济转型

碳排放权交易的减排成本收益转化、资金融通功能以及促进低碳技术转移功能有利于企业加强低碳产品的投资,有利于打破产业投资锁定效应,促进产业升级换代及新型低碳产业的兴起。宏观上有利于政府以低碳经济低能耗、低排放、低污染的要求,调整投资、出口和消费这“三驾马车”的重点和方向,进一步优化经济结构,降低“高碳”产业的比例,优化产业结构,扩大低碳产品的出口。调整我国目前技术含量、环保标准和附加值都比较低的出口产业结构,鼓励能效较高的产品出口,以应对各类环境贸易壁垒,最终构建以低碳农业、低碳工业、低碳服务业为核心的新型低碳经济体系。

三、我国建立碳交易市场的路径选择

(一)碳交易市场体系构建的要素

1污染总量控制。只有控制了碳排放空间的使用上限,才能使碳排放权成为稀缺的经济物品,碳排放权才可以作为商品在市场上进行交易。因此,构建碳排放权交易体系必须以实现排放总量控制为前提。碳排放总量由环境主管部门根据区域的环境质量标准、环境质量现状、污染源情况、经济技术水平等因素综合考虑来确定。碳排放总量限定直接关系到交易能否顺利开展,排放权数量过大,会使区域内碳排放超过环境容量,减排效果难以实现;排放权数量过小,则会导致碳排放成本超越社会经济技术承受能力,较高的碳排放权价格使得企业不愿购买排放权而引发非法排放行为。

2环境产权明晰。环境资源等属于公共物品的范畴,具有非排他性和非竞争性消费的特征,即产权通常是不明晰的,私人对其的损耗和破坏带来的后果皆由社会分担,导致外部不经济性的产生。科斯定理将外部不经济性与产权联系起来,强调通过或依靠私人行为来解决外部不经济性问题,关键在于建立一套界定完善的资源产权制度。据此,在环境产权界定明晰的前提下,建立有效率的市场,可以执行市场转让的产权制度,充分发挥市场机制的作用,以解决二氧化碳排放不经济问题,达到环境资源优化配置。

3市场自由交易。碳交易市场必须保证经济主体之间能够自由交易。对排放权卖方而言,由于超量减排而剩余排放权,出售排放权获得的经济回报实质上是市场对有利于环境的外部经济性的补偿;对买方而言,由于无法按政府要求减排而购买排放权,支出的费用实质上是外部不经济性的代价。市场决定着碳排放权的价格,市场机制的配置促使经济主体约束自身排放行为。允许碳排放权自由交易的市场既能控制二氧化碳排放总量,又能有效地配置环境资源。企业为了节约环保开支,必然要采用先进的治理技术,并不断地开发更加有效的技术,由技术进步而带来的排放权节余又会给企业带来收益。

4政府适度干预。市场机制固有的缺陷会导致环境问题上的“市场失灵”,政府调控行为则可以弥补市场机制的不足。政府主要作用在于保证市场机制的正常运作,尽可能发挥市场机制特别是价格机制在环境保护中的作用。政府行为包括:制定排放总量、排放权的初始分配、监督排放权交易制度的执行情况、对交易进行管理等。在排放权交易市场中政府也作为普通的市场主体进行购买或出售排放权的交易,但政府主要行使监管职能,参与市场交易是次要的,并且政府交易在整个交易市场中不占主要份额。

(二)我国建立碳排放权交易市场的路径选择

1以总量控制为前提的碳排放权初始分配。碳排放权一级市场是指排放者与政府之间进行交易,即排放权的初始分配和有偿取得。首先,必须坚持碳排放总量控制为前提,对我国环境容量科学测算,规定一定时间和区域内可供使用的容量资源的总量和上限。然后,按照“污染者付费”(PoIluterPayPrinciple,PPP)原则,排放权应以一定方式有偿分配给排放者。从美国等国家的情况看,一般情况下政府每年定期与排放者进行交易,交易形式主要有招标、拍卖、以固定价值出售,甚至无偿划拨等。对社会公用事业、排放量小且不超过一定排放标准的排放者,可以采取无偿给予或低价出售的办法;而对于经营性单位、排放量大的排放者,多采取拍卖或其他市场方式出售。一级市场无需固定交易地点,交易时间由政府主管部门决定。

由于我国碳排放权交易制度还处于探索阶段,初始分配方式的设定必须考虑国情的适应性。当前我国企业面临着国内改革和外部竞争的双重挑战,对于政策风险的冲击比较敏感,企业排放权拍卖会增加企业交易成本,而免费分配模式则可以在不改变现有排放权分配总体格局的前提下,顺利实现排放权交易制度和现存排放收费制度的对接。因此,我国碳排放权初始分配方式宜采用混合分配方式,在排放权交易计划的最初,可以确定一个免费分配或固定价格出售的比例,再将该比例进一步划分成若干个阶段,逐渐降低免费分配或固定价格出售的比例数额,直到实行完全拍卖。

2以市场自我调节为主导的二级市场。在排放权交易市场中,主要由法律决定排放权一级市场(初始分配)的公平性,由市场决定排放权二级市场(再分配)的效率,两者在实施手段、参与主体、风险大小、作用效果等方面具有较大的差别。二级市场是排放者之间的交易场所,是实现碳排放权优化配置的关键环节。(1)价格机制。定位为政府指导下的市场自我调节机制,主要由市场主导。二级市场一般需要有固定场所、固定时间和固定交易方式。排放者在一级市场上购买排放权后,如果排放需求大,就可以在满足区域污染物排放总量不变的情况下在二级市场上买人;相反,如果企业减少排放有富余的排放指标,则可以在二级市场售出获利。新建、扩建和改建企业可以从一级市场获得排放指标,也可通过二级市场获得排放指标。(2)交易方式。由于我国市场经济尚不完善,碳排放权现货交易具有分散性、低透明度、信息不易收集、不易调控的特点,导致市场供求关系形成的价格信号具有一定的盲目性、不准确性。碳排放权期货交易的透明度高,竞争公开化、公平化,交易者众多,有助于形成公正的价格,合约标准化、交易成本低,并可进行套期保值交易,以控制风险。因此,我国碳排放权交易机制可采用现货交易为基础,期货交易为辅的交易方式,期货市场为现货市场上碳排放权的供给和需求的企业提供经营决策的主要依据。(3)交易平台。第一,区域性与全国易平台相结合。碳交易平台以经济发展为基础,由于我国区域经济发展不均衡,全国性的碳交易市场必须考虑区域差异性,首先应按照区域发展条件和经济基础内在一致性与区外有较大的差异性、区域中心城市带动性和区域联系紧密性的原则成立若干区域性碳交易市场。在此基础上,整合各种资源和信息,逐步形成全国碳交易统一市场框架体系。第二,实体交易与网络交易相结合。在建立实体性的交易市场同时,构建基于网络的市场交易平台,以便注册用户通过网上进行交易。利用此交易平台,会员可以卖出超标减排量来获得额外利润,或者买人不足的减排量以履行义务;系统地做好可持续发展和温室气体减排计划;向股东、评议机构、市民、消费者和客户展示有关气候变化的战略远景;通过及早采取具有信用度的减排和认购补偿行动,使企业在同行业中的领导地位得到认同;通过交易所聘请的具有温室气体减排量审核资质的独立第三方定期测量温室气体排放量,并有选择地采用各种减排技术和措施进行碳减排。

在线咨询