欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

实用医学影像技术实用13篇

实用医学影像技术
实用医学影像技术篇1

Research on the Application of the Laboratory of Medical Imaging

Technology in the Experimental Teaching of Image Technology

LIU Nian[1], HUANG Xiaohua[2], LEI Lixing[2]

([1] Medical Imaging Department, North Sichuan Medical College, Nanchong, Sichuan 637007;

[2] Medical Imaging Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007)

Abstract Objective: To explore the teaching value of the laboratory of Medical imaging technology in the experimental course of Medical imaging technology. Methods: Under the premise of the reform of teaching idea, we research and develop the experiment software of Medical imaging technology and use computer simulation technology to execute resource optimization on the existing experimental teaching. Creating a distinctive, digital and multi-functional laboratory, on the basis of the experimental teaching of Medical imaging technology ,we will reform the experimental model .Results: The professional teaching quality of Medical imaging technology was improved, and the experimental teaching method was reformed to promote the training of students' practical ability. Conclusion: We should reform the experimental teaching mode and build innovation laboratory, improve experimental curriculum system, in order to arouse the students' subjective initiative and strengthen students' practical ability. This is not only the need of medical imaging technology curriculum construction and talent training, but also medical image diagnosis and postgraduate education need.

Key words laboratory of medical imaging technology; experimental teaching; medical imaging technology

随着循证医学的发展和精准医学的提出,医学影像学在临床医学的作用越来越重要,它为临床提供了更加精准的诊断信息,指导临床医生的诊断和治疗。而医学影像技术学在其中发挥着非常重要的作用,它不仅决定着不同疾病的不同影像学检查方法,更是临床诊疗获取优质图像的保障。①医学影像检查技术学是一门将多个影像设备综合应用,且具有扎实的专业理论和丰富的实践经验的交叉应用学科。随着医学影像技术日新月异的发展,为了适应影像技术新理论和新方法的不断更新,避免与临床脱节,学校应该注重学生理论知识和实践技能的培养和更新。因此,加强学生医学影像技术实验课程的实践技能尤为重要。改革医学影像技术实验教学理念和教学模式,创建提升学生自主学习能力和实践能力的实验平台,是全面提高医学影像技术学课程教学质量的主要趋势。②本研究通过建设医学影像技术后处理实验室,改革既往的影像技术实验教学思维和手段,以计算机网络为实验环境,将普通X线、CT、磁共振、核医学、超声等检查的图像及后处理信息导入计算机网络系统,从而实现医学影像信息资源共享。本平台是构建“以临床能力为导向的多学科、阶段性、模块化、综合式的临床实践教学课程体系”的医学影像专业教学平台。学生或师生可以通过实验室网络平台进行互动交流,激发学生自主学习的兴趣,提高医学影像技术设备操作实验的效率、质量,节约教学资源,创造个性化学习的环境。

1 医学影像后处理实验室平台建设

医学影像技术后处理实验室是以计算机为硬件基础,Windows 操作系统为平台,联合开发的仿真实验操作系统为应用软件的实验室。本实验室的主要功能有:(1)该软件操作完全模拟医院普通X线、CT、MRI操作流程,让学生身临其境地实践医学影像图像后处理技术,有助于激发学生学习的兴趣和积极性;(2)该实验室共配置24台学生电脑和1台教师电脑,可让每个学生单独上机完成操作,有利于对学生的学习情况进行有效的评价;(3)仿真软件的数据均来源于我院附属医院,有真实可靠的图像,与临床病例无缝连接;(4)该后处理软件不仅包含基本教材上的常规后处理技术,还包含最新、最近的科研软件,根据医学影像检查技术的进展,即时对软件进行升级,为教师和学生开展科研提供有效的应用工具,有利于提高师生的科研创新能力;(5)该实验室对学生全天开放,学生可自行安排时间随时进行实验操作、复习、做科研;(6)避免了大量学生同时到医院见习出现的安全隐患,提高了学习效率和工作效率。

2 应用结果

(1)实验教学方式的改变。通过医学影像技术实验课程在医学影像技术后处理实验室中的应用,原来的教学手段有了明显改变,已由人工教学变成网络化计算机教学,简化并优化了教学流程;过去用胶片展示教学,其图像较小、图像质量参差不齐,数量有限,管理困难,无法满足大量的学生教学和个性化学习。此外,实验教学方式由原来的临床医、技人员现场教学转变成网络化仿真模拟教学,避免了学生只能看不能动手的情况;学生在带教老师的指导下可以对医学影像技术学的相关知识进行网络化搜索、阅读、自学及复习,数字化仿真模拟教学几乎改变了以往了学习模式。第三,原来以教师讲解为主的实验教学方法转变成了以学生自学为主的模式,每个学生可以通过计算机模拟操作,完成实验要求,同时提高学生的自学能力。通过医学影像技术后处理实验室的使用大大增加了课堂与课外的教学信息量。

(2)实验教学内容的完善和丰富。目前医学影像技术后处理实验室的完整资料数据库中已有10 000余份,本实验室根据临床信息的发展会不断更新资料,其中包含普通X线、CT、MRI、超声、核医学、DSA等方向的图像资料,完全能满足实验教学的需要,其丰富的图像信息资料不仅能紧密地结合教科书上的知识框架,还能在实验中丰富学生的课余知识。

(3)学习效率的提高。医学影像技术后处理实验室的开放,不仅提高了学生的学习效率,学生的自主学习空间得到充分利用,明显增强了学生学习的兴趣和积极性;而且还能更好地利用该实验软件进行科研分析,取得科研成果。学生可以随时到实验室学习,有利于学生的复习和个性化培养,极大地提高了学生的实践动手能力,使学生有充分的自由学习空间和内容。

(4)教学管理的优化。在校内实验室进行实验教学,不仅提高了教学效率和教学管理水平,还为学校节省了大量的人力、物力及财力。仿真模拟实验教学明显改变了过去复杂繁琐的管理模式,避免了学生在临床实验教学中损坏精密昂贵的设备,减小了学生到医院见习的安全隐患。

(5)教学效果的反馈。学生在实验课堂教学中,能及时将问题和难点提出,教师可及时解答;通过学生在实验教学中的网络留言和讨论发现教学问题,并能及时反馈信息及解答学生的问题,检验实验教学效果。

3 讨论

医学影像技术专业的快速发展,适应了医疗设备迅速更新的发展,满足社会和广大医疗机构的人才需求。医学影像检查技术学是培养医学影像技术专业人才的主干课程之一,是连接理论与实践的重要桥梁,是一门不可或缺的且实践性非常强的课程。③④学生不仅要扎实掌握专业理论知识,更注重实践动手能力的培养。针对医学影像技术学的实验教学模式,通过对医学影像技术后处理实验室的建设和使用,系统地将丰富的教学内容、创新的教学方法和学生的实践培养相结合,让学生通过对实验情景、实验界面和实验程序的模拟操作,加强了学生对实验原理、方法和完整操作流程的理解。⑤⑥

医学影像技术后处理实验室的使用,优化了实验教学资源配置,转变了实验教学模式,提高了实验教学效率,实现了将理论教学内容与实验教学相适应的结合。实验项目覆盖了基础性、创新性和综合性实验,丰富了实验教学内容,实验教学手段的多样化,不仅使实验教学内涵更加深厚,而且使学生在学校能熟练掌握医学影像常规检查技术,具备图像后处理能力,以便在医院实习阶段能更快适应岗位要求。同时学生还可在教师的指导下开展实验室科研项目,进行个性化实验操作,这对启迪学生科学思维和培养创新的科研意识有重要的意义,在培养学生实践能力和创新思维的同时,充分发挥了学生以学习主体的功能,也促进了学生对理论知识的掌握和应用。

综上所述,通过医学影像技术实验课程在医学影像技术后处理实验室的教学,改革了实验教学模式,建设了创新性实验室,完善了实验课程体系,调动了学生的主观能动性,加强了学生的实际动手能力,适应了现代医学的影像技术学的发展,满足了医学教育事业和临床医技岗位的发展要求。这不仅是医学影像技术专业课程建设和人才培养的需要,也是医学影像学专业和研究生培养的需要,对培养高素质医学影像技术专业人才具有非常重要的意义。

*通讯作者:黄小华

基金项目:本文为川北医学院校级科研项目“基于虚拟现实技术开发医学影像技术模拟仿真教学平台”的研究成果之一,项目编号2015-12-13

注释

① 黄小华,游金辉,马雪华.医学影像技术专业发展的几点思考[J].川北医学院学报,2008.23(1):103-105.

② 汪百真,俞曼华,张俊祥,等.CT、MRI仿真操作系统的研发及在实验教学中的应用[J].蚌埠医学院学报,2012.38(2):219-220.

③ 梁明辉,王晓东,夏力丁.数字化仿真实验系统在医学影像学教学中的应用研究[J].中国医药导报,2011.8(11):122-124.

实用医学影像技术篇2

Key words:PACS;Data transmission;Technology of post processing

医学影像归档与通信系统(Pictures Achieving and Communication System,PACS)是应用网络技术,计算机技术和通讯技术,遵循DICOM唯一标准,实现医学图像的数字化显示,存储和传输的综合性系统[1]。图像回传后处理技术是PACS系统在编辑患者影像图像是常用的技术,由于图像后工作站的存储容量有限,随着时间推移,早期患者的影像资料就会从工作站上被自动删除,因此,想要重新后处理这个患者的图像就变得不可能了。数据回传技术是PACS系统的一项新技术,通过网络连接将保存在影像服务器中的数据回传给设备后处理工作站,从而实现无时间限制的后处理能力。本研究基于数据传输与回传技术,通过PACS系统平台,利用计算机软、硬件技术,构建数据回传技术,以研究数据回传技术在临床中的应用。

1 资料与方法

1.1一般资料 研究材料为我院影像中心荷兰飞利浦、德国西门子,美国GE、日本东芝等多家公司多种型号检查设备,以PHILIPS Brilliance 64排CT做典型代表分析。PC应用环境采用Microsoft Windows 7中文版或Windows XPx Professional操作系统。图像采集与传输采用医学数字影像通讯标准DIC0M 3.0,影像数据库采用SQL Server Rv5数据库。

医院局域以太网网络,操作系统是微软WINDOWS7专业版,服务器操作系统是Windows Enterprise Server 2008,数据库操作系统是Sql Enterprise server2008,程序设计开发工具是Microsoft visual studio 2010专业版。

1.2方法 PACS系统的核心是PACS服务器组,它接收影像检查设备传来的DICOM3.0格式的影像数据并存储,将影像数据文件头中包含的患者信息与HIS系统中的患者信息进行匹配,完成图像信息与患者信息的关联,借助数据库对图像进行管理,同时为多个用户和图像使用设备提供影像数据的查询和发送[2]。

2 结果

PACS系统有七个连续不断的运行过程组成(图1所示)。图像回传技术的运作也是基于这七个过程完成的。DICOM(Digital Imaging and Communications in Medicine)医学数字成像与通讯标准[3]:DICOM应用实体的运行与交互是基于客-服务器模型的。SCP(service class provider)服务提供者,相当于客户-服务器模型中的服务器,SCU(service class user)服务使用者,相当于客户-服务器模型中的客户[4]。在DICOM标准中,DIMSE-Service(DICOM message service elements),即DICOM消息服务单元与相关信息对象IOD结合成一个SOP类。

DIMSE服务组包括C-ECHO、C-FIND、C-MOVE、C-STORE。其中C-MOVE是基于两个TCP连接的三方服务,关于C-MOVE的三方通讯机制如图2所示。C-MOVE可以实现从一个AE将DICOM文件发送给另一个AE。关于C-MOVE SCP需要同时实现C-STORE SCP的问题,特此说明一下。并非一定要求C-MOVE SCP来实现C-STORE SCP服务,C-MOVE服务本身并未要求是双方交互,有可能是多方交互。比如A作为C-MOVE SCU向B发出C-MOVE-RQ请求,此时作为C-MOVE SCP的B在查询到结果后可以向C发出C-STORE-RQ请求,只要C提供了C-STORE SCP服务,就可以接收由B发送过来的图像。因此C-MOVE服务可以使三方之间的交互。

数据回传技术使用的是可以实现三方之间交互传输的DIMSE服务组中的C-MOVE服务。数据回传技术是设备(Facility),工作站(work station)和PACS服务器三者之间相互的影像数据之间的传输和回传,三者之间的影像数据均遵从DICOM3.0格式,设备、工作站及PACS服务器三者中任何一方可以为SCU,也可以是SCP。我院采用自主研发的PACS系统,进行数据回传时,首先启动云PACS服务,在远程服务器中首先新建一个新的服务器(例如服务器名称为MRI,既将指定患者的MRI图像进行回传),找到需要处理的患者的信息,提取影像资料到本地服务器,提取之后打开编辑,对影像进行一系列处理以达到想要实现的效果,例如进行匿名化处理发送至学校的教学PACS系统内进行教学,从而保护患者隐私;进行特殊标记处理把想要突出说明的地方标记出来用于科研、临床病例讨论等;对图像进行三维重建、多平面分析、局部放大、调整窗宽窗位等后处理,以协助影像科医生更好的阅片和做出更准确的诊断。最后把编辑好的图像在发送至远程服务器里一开始新建的服务器中去,这样就完成了一次数据的回传。见图3。

PACS数据回传系统的应用,为医学影像科医生的分析及诊断提供了更加清晰的思路,提供了多平面图像重建的可能,而且同意患者图像可多次打印,提高了影像诊断的准确率。

2.1提高医学影像学的诊断水平 准确性是所有诊断手段和工具的立身之本,影像科医生或者临床医生诊断时常常需要结合患者的多种影像资料做出综合诊断,需要看到患者的多种影像资料和报告结果,甚至需要看到患者以往的影像资料。 数据回传技术的应用改变了原有的诊断方式,提高了诊断准确性。以往诊断科室和临床科室医生所接触到的都是由技师调整好窗宽和窗位后的胶片,如果医生认为不能满足需要,还要请医技科医生重新出片,这势必会造成不必要的麻烦和浪费。

而应用数据回传给技术之后,传送的图像经后处理工作站的一系列处理,如对比、标注、测量、缩放、调整窗宽窗位、三维重建、多平面成像等,得到的图像较原始图像更加具体,更能突出问题,为医生的诊断及教学提供更为准确的证据和详尽的资料,帮助医生更准确的定位病灶,减少误诊率。由于存储容量的限制,先前的影像后处理工作站对这种时间过去很久的患者是不能做任何后处理的,甚至是找不到相应的影像资料的,利用图像回传技术,可以不受时间的限制,处理任何时间的患者的图像。加之PACS系统可以将不同类型的设备所产生的影像,通过计算机以太网络,按国际标准的DICOM协议,联为一体,实现全医院的影像资料的集中管理和资源共享[5]。结合PACS系统的这种资源共享性的特点,影像医生和临床医生可以查看患者以往多种的影像检查结果,并可以在同一界面分析比较。与HIS系统集成后,医生还可以通过PACCS系统查看患者的医嘱、电子病历以及检查申请单等临床信息,这就大大丰富了诊断依据[6]。

2.2使影像教学更加生动具体 医学影像学是一门形态学科,其特点是通过对影像资料的观察、对比和分析进行疾病的诊断,从而完成由感性到理性的认识,那种被动而传统的教学模式已不能满足当今高科技时代师生的需求。近年来,随着计算机多媒体技术、可视化技术和网络通讯技术的飞速发展,医学影像归档与通讯系统(pictures achieving and communication system,PACS)的普及与应用为基于PACS的医学影像学远程教学的发展提供了广阔的空间,数据回传技术的应用使这一教学方法更加人性化和形象化。传统医学影像学教学模式基本上采用书本联合影像胶片的方式进行,但由于通过书本和胶片所获得的影像图像数据较为陈旧并难以及时更新。因此,这一传统教学模式已经明显落后于现代化教学的需求。随着计算机技术的发展,使用多媒体幻灯片形式来获取所需的影像图像的现代化教学模式日益成为当前时代的主流选择。虽然后者相较前者与较大的进步,但由于工作量大而繁琐及储存空间不足等问题,因此一种新的快捷而高效的教学模式成为各大医学院校教学追逐的焦点。

远程教学就是在医院PACS服务器、医院远程教学服务器与学校远程教学服务器之间铺设光缆,构建一条专用的h程教学数据通道,利用数据回传技术,将医院PACS服务器上经过一些列处理的影像图像,如比较人性化的保护患者隐私的匿名化处理,突出重点的标注等等,传输到学校远程教学服务器上, 学生通过客户端即可访问远程实训系统点播视频、浏览影像图片、在线与老师互动交流学习。这一动态的教学模式有助于增强教学的直观性与生动性,增强了学生学习的积极性与主动性,并且有利于学生思维能力的训练与培养,明显提高了教学质量。

2.3使科研更加严谨规范 正如著名超声学家应崇福先生所说的:"做科研不一定需要多高的智商,但一定需要有科学严谨的态度,踏踏实实的干劲,一步一个脚印的朴实,戒绝浮躁之风,科学容不得一点掺假"。严谨是科研的必要条件,做医学科研更是应该如此。随着网络技术、存储技术以及计算机技术的发展,医疗领域的PACS/RIS的应用进入了高速发展的时代,并最终实现了医学影像资源的共享,这就为影像科室及临床科室的读片工作以及针对某一领域的科研工作的影像资料的获取提供了非常便捷的方式,数据回传技术则是保证了这些工作更加准确严谨,科学规范。不论是平时科室内部进行的病例讨论,对实习同学进行的读片教育工作还是科学严谨的科研工作,都需要保证影像资料有代表性,图像清晰,突出重点,这些在原始图像上面很难全部反应出来,而应用数据回传技术则可以对图像进行一系列后处理,如调整图像的密度和对比度,对病灶进行标注(大小、CT值等),局部放大,三维重建等等,这些是的病例图像更加形象具体,突出重点,初学同学容易理解,标注清晰,有理有据,科研更加具有说服力。

3 讨论

PACS系统(图像存档和传输系统)是顺应着计算机技术,医学影像技术和网络技术的进步应运而生的,目的是解决医学图像的获取,显示,存储,传送和管理。它以高速计算机设备为基础,以网络连接各种影像设备和相关科室,利用高容量存储技术,以数字化的方式存储,管理,传送和显示医学影像及其相关信息,具有影像质量高,存储,传输和复制无失真、传送迅速、影像资料可共享等突出的特点,是现代医学影像信息管理的重要条件。在我国,经过近几年的应用及不断创新,目前PACS系统已经比较成熟,它为实现医学资源共享提供了极大的帮助。

数据回传技术是近几年新型的一门图像后处理及分析的新兴交叉学科。通过网络连接将保存在影像服务器中的数据回传给设备后处理工作站,从而实现无时间限制的后处理能力。借助图形、图像技术等有利手段,医学影像的质量和显示方法得到了极大的改善,从而借助于图像处理和分析手段使得诊疗水平大大提高[7]。这不仅可以基于现有的医学影像设备来极大地提高医学临床诊断水平,而且能为医学培训,医学研究与教学,计算机辅助临床外科手术提供数字实现手段,为医学的研究与发展提供坚实的基础,具有不可估量的价值[8]。

作为一门新兴的交叉学科,数据回传技术为影像的质量及医生的诊断都带来了很大的帮助,同时也带来了很多新的技术让我们探索和学习。但作为一个新兴的技术,其必定有其局限性,例如回传工作站的指定性,回传操作的相对复杂性等等,这些技术都有待于以后不断的解决和创新,以建立一个更加科学、有效,实用的影像辅助技术。

4 结论

通过我们回传回去的数据和图像,能够完全满足影像科医生更好的做出临床诊断,为提高临床诊断水平,提高图像质量等方面做出了极大的贡献。

参考文献:

[1]许元甫,黄延磊.基于WEB服务的DICOM应用实现[J].医院数字化,2010,25(04).

[2]刘仲明,郑小林.医学影像归档与存储系统中影像数据长期存储问题的研究[J].第三军医大学报,2005,11:1123-1126.

[3]Ramsdell B,Digital Imaging and Communications in Medicine[S].RFC 3240,1999.

[4]吕晓琪,王磊,赵建峰,基于DICOM俗嫉TLS网络安全传输技术研究与实现[J].生物医学工程杂志,2012,29(1):23.

[5]原卫民,冯卫华,徐文坚.PACS/RIS系统在放射科工作流程优化中的作用[J].医学影像学杂志,2010,20(11).

实用医学影像技术篇3

现阶段我国医疗机构的医学影像技术人员处于饱和状态,但在影像诊断人员十分稀少,一方面由于医学院中影像诊断人才较少,由于医学影像技术的发展,对于影像急速以及诊断的培养目标发生改变,多数院校注重于影像技术的掌握,对于影像诊断的培养实践性不足,因此比较符合医疗结构医学影像技术人员的需求,导致影像诊断人员出现断层现象。熟悉医学影像技术以及医学影响诊断的专业人才处于缺失状态,能够在临床中具备生物医学工程能力的专业人才是医疗体制改革的社会急需人才。因此在医疗改革背景下,医学院校应该强化对影响诊断以及影像技术人才的综合性培养,从培养目标到课程体系实现改革与发展,针对各级医疗机构的需求实现人才与医疗设备的共同发展,从影像诊断与影像技术的关联性入手,实现综合性课程的设定,通过医院实践以及案例分析等等,提高医学诊断技术人才的培养,是提高医学影像诊断以及医学影像技术发展的根本,也是联系两者和谐共进的必要条件。专业独立性是医学影像诊断技术的人才培养特点,由于涉及到多个学科内容,因此人才培养中,既需要从电子学,临床医学以及基础医学理论知识入手,提高对医学影响诊断技术以及临床影像诊断知识的了解,从X线影像技术,超声、SPECT、ECT、PET、MRI等设备以及技术掌握入手,强化基础理论与操作技巧的提升,实现医学影像学的各个分支理论知识与发展方向,从而促进影像诊断技术人才的培养,提高其对疾病诊断以及医疗设备使用的准确性,提高临床诊断正确率以及提高患者治疗的针对性。这是目前论医学影像技术与医学影像诊断的综合型人才培养的社会需求,高校需要进一步提高对医学影像人才的培养。

2医学影像技术与医学影像诊断的专业互补性

2.1影像技术与影像诊断实践工作整体性

在医疗机构中医学影像诊断与影像技术的工作是紧密连接的整体,患者通过影像技术的医疗设备进行影响诊断疾病,然后反馈给医生进行治疗,这是医院医疗过程中常见的流程。实际工作中影像诊断工作的开展需要影像技术的支持,患者以及医院对高水平影像诊断的需求,反馈到影像技术的拓展与发展中,伴随着影像技术的创新,影像诊断标准亦会逐渐上升,如此影像技术与影像诊断之间构成良性循环,互为整体,虽然具有一定的负面影响,但是双方共同制约以及促进对方的发展。实际工作中纵使成像原理存在本质差异,但是影像技术的局限性以及专业性都会在实际应用中展现出现,无论是超声、SPECT、ECT、PET、MRI还是计算机X线技术,都具有自身的特性以及整体的共性,所以在临床诊断中,需要根据实惠、方便以及影响最小原则进行选取,以影像金叉信息的客观性和互补性进行综合利用,确保现代医疗技术促进医学影像诊断技术与医学影像诊断的融合,满足医疗体制改革下临床治疗融合整体的形成,提提高治疗效果以及诊断效率,实现医疗诊断技术整体的共同发展。

2.2医学影像诊断中常见的影像技术临床应用

临床诊断中医学影像诊断技术的应用,是提高工作效率以及实现医疗质量提升的关键,在影像诊断中需要减少对人体的辐射与损伤,软组织鉴别中需要优化工作机制,利用影像技术的先进行以及患者诊断的需求,针对性影像技术的使用。(1)CT技术的应用主要是针对于骨骼肌肉或是心脑血管系统疾病的诊断效率,例如重视系统以及寄生虫等等疾病而言,临床应用价值较高,故而常用鼻窦疾病、鼻咽早期肿瘤疾病。(2)CR技术的临床应用十分广泛,多数临床诊断中都会采用这类工具,因为鉴别能力较高,及时对人体造成一定的损伤,却可以有效发现软组织中的疾病,所以常用与骨骼或是神经系统的疾病诊断。(3)磁共振技术,对直肠的检查效果高于CT,但肺部的检查低于CT与CR,因此在实际应用过程中看需要根据实际需求,多用于人体创伤情况、炎症情况、肿瘤情况、子宫情况,肝脏与胰腺检查中不推荐使用。

3展望

总体而言在影响技术临床诊断应用中,需要根据各技术的使用优势,合理分配技术的应用范围以及区域,才能够实现高校的综合性影像技术应用,不仅全面提高了诊断范围以及诊断内容,其诊断效果以及诊断技术得到改善,提高临床对患者身体生态指标的掌握,有利于临床诊断以及治疗的开展提高影像诊断效果与准确率,便于现代化医疗体制改革下医疗治疗的提升。

【参考文献】

[1]赫明锋.医学影像技术在医学影像诊断中的临床应用[J].中国药物经济学,2015,10(03):171-172.

[2]杨东奇.论医学影像技术与医学影像诊断的关系[J].中国卫生标准管理,2015,6(16):155-156.

实用医学影像技术篇4

1 影像技术成像方法概述

1.1影像技术成像方法及其研究背景 从技术原理的角度来分析影像技术成像方法有一定的实践价值,能够帮助相关的影像技术操作的医疗工作者更熟悉该技术应用的机理,从而依据影像技术得出更加精准的诊断结论。近几年来,我国医学影像检查技术体系当中已经涌现出很多种类,包括X射线、超声、CT以及核磁共振等影像检查技术手段,为医疗领域提供了强有力的技术支撑[1]。从总体情况来看不同的影像技术在成像原理及其方法方面存在着一些异同,因此,将其应用到不同医疗诊断科室之中,有着一定的理论依据。从现实的角度来看,作为从事医疗机构影像诊断工作的医务工作者,需要在临床实践过程中逐步掌握各种类疾病在不同成像技术和检查方法中的异常表现及其诊断要点,从而进一步了解和比较不同成像技术的应用优势,明确将各类型影像技术成像方法作为诊疗依据的优势与劣势,进而得出更精准的医疗诊断结果,为患者提供更优质的检查服务。这样一来,便极大地突显出现代影像技术成像方法的实践价值与社会意义。

1.2影像技术成像方法的基本原理分析 医学影像技术也可以称其为医学影像学,它指的是专业的内科或外科医生用来诊断肉眼无法直接观察到的身体部位的技术,从而提升临床医疗诊断的精准度。通常我们所熟悉的影像技术为X光、超声等,这些技术的成像方法及其原理有所不同。在进行X-射线成像时,实际应用到的成像方法是"平面"和"断层",其基本技术模式为"模拟"与"数字",而核医学成像方法还需要用到"正电子湮灭成像"模式,超声成像的原理为"杜普勒成像",往往通过黑白以及彩色两种方式来成像的。就以X射线成像的基本原理来看,当该类型射线穿过某一具象化的物质时,部分光子被吸收,其强度呈指数趋势衰减,此时,未经吸收的光子穿过物体后被检测设备所接收,这样便形成了图像[2]。

在以往,菲林影像技术是利用感光材料银化学感光物成像的,现代的医学影像技术是基于以往的技术手段之上升级而来的,尤其是数字化成像设备的出现,使得基于先进技术方法的放射科室无需在暗室之中进行影像操作。实质上,普通的X线的摄影经历了诸多借鉴的演变,最开始的影像成像技术方法是"屏-胶"体系,并在技术升级后,转换为暗室技术,后来,直至计算机技术的快速发展,涌现了数字化摄影技术以及激光打印胶片技术等等,这些不同种类的影像技术成像方法为现代医学注入了活力[3]。医学成像技术可以作为一种极佳的医疗辅助手段用于诊疗以及疾病治疗的过程中,相关技术方法也可以被应用于生命科学项目的研究过程之中,促进我国整体医疗水平的提升。

2 不同的影像技术成像方法的实践特征及其优势研究

在医疗诊断临床过程中了解到,针对不同的人体系统以及解剖部位,需要使用不同类型的影像技术成像方法。实际上,由于各种类型的成像技术的原理及其所呈现出来的图像特征较为不同,所以在利用其给出医疗诊断结果的依据也有所不同。所以,需要根据所要诊断的医疗项目,来选择诊断价值较高的影像技术成像方法来辅以临床医疗决策。

2.1深入了解各类型影像检查技术成像方法的特点 从以往的经验来看,在进行影像学检查时,不同的成像技术的综合应用较为关键,因为往往一种影像技术成像方法并不能精准地判断出患者的疾病种类及其病变的特征,所以,需要凭借临床经验以及技术诊疗方法来进一步确定医疗结论。多项影像技术成像方法的综合运用,能够提升临床诊断的效率及其质量。事实上,选择科学的影像检查方法是在了解各类型技术手段的基础上而来的,就比如,呼吸系统疾病检查最恰当的医疗检查方法则是X线胸部摄影结合CT扫描,选择最佳的影像检查技术,不仅能够节约检查时间,还能够降低患者疾病医疗检查的经济成本。医学影像技术的发展及其应用需要医疗机构当中相关技术人员的助力,技术人员不仅要不断吸收新的技术知识、理论知识等,还要深入研究成像技术的成像方法,进而提升医疗诊断的精度,使其诊断结果更具价值。

2.2关键影像技术的成像方法及其实践效能分析 从临床诊疗以及影像技术操作的工作经验来看,进行"核磁共振成像"所得出的诊疗结果更为精准,因为这种技术是应用于人体内部结构的成像,是一种具备划时代意义的医学诊断技术。在"核磁共振成像"技术手段的应用过程中,融合了快速变化的梯度磁场的应用,从而提升了核磁共振成像的速率,使得"核磁共振成像"技术手段更广泛地应用在医疗临床诊断以及类似项目的科学研究领域之中,促进我国医疗科学诊断方面的快速发展。此外,以"CT成像"方法的原理来分析,该技术手段的检查较为快捷,将其应用在CE结肠成像诊断等项目中,具备较高的实践价值,因其不会对患者的身体状况产生较大的负面影响,较为精准地显示出患者肠管病变的基本情况,有利于及时进行病患诊疗处理。

总之,通过针对影像技术成像方法的深入了解,能够明确这样一个现实问题,对于医疗领域而言,某一疾病的临床检查处理,需要确定所应使用的成像技术后,在进一步选用恰当的检查方法来对患者的病情进行诊断,临床诊断的准确度要高很多,这样能够保证所给出的医疗诊断有一定的参考价值,有助于我国医疗健康服务质量的提升。另外,从事相关工作的技术人员,要不断补充自身的临床知识以及影像诊断知识,掌握必要的影像技术成像方法,并能够灵活地运用不同类型的技术方法,从而更好地驾驭影像技术手段来为现代医疗领域服务。

参考文献:

实用医学影像技术篇5

1.成立影像中心是现代医学影像技术飞速发展对影像科室管理模式的必然要求

技术决定战术,现代医学影像技术的迅猛发展对影像科室的管理模式发挥着决定性的作用。

近二十年来,伴随着影像技术的数字化、计算机化、网络化趋势和介人医学的兴起,医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断及治疗为一体的,包括超声、放射性核素影像、常规X线机、PEI,一CI’, CT, MRI, DSA,CR, DR以及PACS、电子内镜等多种技术组成的现代影像学科体系,成为与外科手术、内科药物治疗并列的现代医学第三大治疗手段。医学影像学科已经是现代化医院的支柱之一,影像学设备占医院固定资产三分之一以上。医学影像技术的革命性变化必将改变医院对影像科室的管理模式,促进影像学科的发展。

1.1影像学科医技人员的专业化和临床实践的标准化将得到进一步的重视和加强,成为学科发展的立足之本。随着数字化、计算机化、网络化技术的广泛应用,在技术和设备进步的新形势下,影像学科的发展需要理、工、医的紧密结合,影像科医技人员按系统分专业将进一步强化,并且逐步向纵深专科领域扩展,影像科人员的工作模式也必须随之改变,向着人员专业化和临床实践标准化方向不断发展、完善、提高。这种专业化、标准化构成了医院医疗质量控制与管理的基础,也是影像学科发展的出发点和落脚点。

1.2随着影像学科医技人员的专业化进程,影像学科的亚专业与各临床学科之间的联系也更加紧密,临床与影像学科之间的互相渗透使彼此界限逐渐模糊,工作配合得更好,效率更高,使由于设立临床、影像科室和划分不同专业而引起彼此工作和知识脱节的问题得到解决。一方面影像学科医生的临床专业知识更加深人,另一方面临床学科医生对医学影像学知识的了解更好,或一人具有两个学科的行医资格,可以身兼两职。同时,影像学科亚专业各科在理论与实践上出现了许多交汇点,在诊断与治疗上相互借鉴、互相支持、密切配合,在一个新的、高层次上协作共进。

1.3数字化成像、存储、传输的实现,PADS系统的建立,使各种影像技术手段得以优势互补、扬长避短、资源共享,使诊断综合化的目标得以实现。

PACS,医学影像存储与通讯系统(Picture archiving and communication system, PALS)是医学影像技术与数字化图像技术、计算机技术和网络通讯技术相结合的产物,它是通过计算机和网络通讯设备对医学影像资料进行采集、存储、处理、传输和管理的综合性系统。它使得影像设备不再是孤立的一台设备,而是PACS网上的一个节点。科室间数据流的屏障被解除,以实现资源共享和医院内数据流的无缝连接。

诊断的综合化是影像学料发展的一个方向,即在诊断台上比较多种诊断设备的图像,发挥各种设备的综合优势,进而可以用工作站将不同检查设备的图像进行“图像融合”,大幅度提高诊断准确率。随着诊断综合化的实现,在影像学科内部管理模式上,必将改变目前以诊断设备为主的“分工”分组,转向以人体器官/系统为主的专业化分组,充分发挥影像技术人员和装备的系统性、整体性优势,进一步提高技术一经济效益。 与技术进步相适应,在管理模式上影像科室的发展也经历了三个阶段:专科化发展阶段~专科协作发展阶段~系统专业化发展阶段。

当前,国内外医院PACS的规模有四种类型:

1.4成立医学影像中心是优化医院诊疗工作流程,提高效率,实现“以病人为中心”的根本保证。在传统的影像科室管理模式下,医学影像信息在医院各影像输出科室之间以及影像输出与输人科室之间传输、存储、使用过程中,存在着流程环节多、周期长、通道狭窄、手工作业化程度高,经常发生诊疗工作的延误和堵塞,影像信息的丢失和误差率也居高不下(有关资料表明:即使一个管理制度十分完善的医院,由于借出、会诊等,X光片丢失率也会在10%一20%之间)。通过对全院医学影像(输出)科室的服务与管理模式调整与改革,组建全院医学影像中心后,就可以通过PACS网络改造和优化医院诊疗工作的作业流程,简化医学影像流通环节、提高效率,为临床一线提供快捷、优良的医学影像信息服务,可以有效地缩短平均住院日、手术待诊时间、提高住院病人的三日确诊率,降低病人的诊疗费用,“把时间还给医生、护士,把医生、护士还给病人”成为现实,力争实现以病人为中心、努力争取最佳诊疗效果、提高医疗质量和服务质量的目标。以先进的技术包装陈旧的医院影像科室管理模式是行不通的。

1.5组建医学影像中心可以大幅度提升医院的学术水平和整体实力,通过组建全院医学影像中心,实现“强强联合”,使医院影像学科体系更加完备、科学、合理,影像学科体系和影像技术装备体系良性互动、相得益彰,人才培养、科研实力和学术水平有大幅度的提升。医院医学影像(输出)学科实力的增强也将带动全院学科建设的发展,从整体上提高医院的医、教、研能力。

实用医学影像技术篇6

1.成立影像中心是现代医学影像技术飞速发展对影像科室管理模式的必然要求

    技术决定战术,现代医学影像技术的迅猛发展对影像科室的管理模式发挥着决定性的作用。

    近二十年来,伴随着影像技术的数字化、计算机化、网络化趋势和介人医学的兴起,医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断及治疗为一体的,包括超声、放射性核素影像、常规x线机、pei,一ci’, ct, mri, dsa,cr, dr以及pacs、电子内镜等多种技术组成的现代影像学科体系,成为与外科手术、内科药物治疗并列的现代医学第三大治疗手段。医学影像学科已经是现代化医院的支柱之一,影像学设备占医院固定资产三分之一以上。医学影像技术的革命性变化必将改变医院对影像科室的管理模式,促进影像学科的发展。

1.1影像学科医技人员的专业化和临床实践的标准化将得到进一步的重视和加强,成为学科发展的立足之本。随着数字化、计算机化、网络化技术的广泛应用,在技术和设备进步的新形势下,影像学科的发展需要理、工、医的紧密结合,影像科医技人员按系统分专业将进一步强化,并且逐步向纵深专科领域扩展,影像科人员的工作模式也必须随之改变,向着人员专业化和临床实践标准化方向不断发展、完善、提高。这种专业化、标准化构成了医院医疗质量控制与管理的基础,也是影像学科发展的出发点和落脚点。

1.2随着影像学科医技人员的专业化进程,影像学科的亚专业与各临床学科之间的联系也更加紧密,临床与影像学科之间的互相渗透使彼此界限逐渐模糊,工作配合得更好,效率更高,使由于设立临床、影像科室和划分不同专业而引起彼此工作和知识脱节的问题得到解决。一方面影像学科医生的临床专业知识更加深人,另一方面临床学科医生对医学影像学知识的了解更好,或一人具有两个学科的行医资格,可以身兼两职。同时,影像学科亚专业各科在理论与实践上出现了许多交汇点,在诊断与治疗上相互借鉴、互相支持、密切配合,在一个新的、高层次上协作共进。

1.3数字化成像、存储、传输的实现,pads系统的建立,使各种影像技术手段得以优势互补、扬长避短、资源共享,使诊断综合化的目标得以实现。

    pacs,医学影像存储与通讯系统(picture archiving and communication system, pals)是医学影像技术与数字化图像技术、计算机技术和网络通讯技术相结合的产物,它是通过计算机和网络通讯设备对医学影像资料进行采集、存储、处理、传输和管理的综合性系统。它使得影像设备不再是孤立的一台设备,而是pacs网上的一个节点。科室间数据流的屏障被解除,以实现资源共享和医院内数据流的无缝连接。

    诊断的综合化是影像学料发展的一个方向,即在诊断台上比较多种诊断设备的图像,发挥各种设备的综合优势,进而可以用工作站将不同检查设备的图像进行“图像融合”,大幅度提高诊断准确率。随着诊断综合化的实现,在影像学科内部管理模式上,必将改变目前以诊断设备为主的“分工”分组,转向以人体器官/系统为主的专业化分组,充分发挥影像技术人员和装备的系统性、整体性优势,进一步提高技术一经济效益。

   与技术进步相适应,在管理模式上影像科室的发展也经历了三个阶段:专科化发展阶段~专科协作发展阶段~系统专业化发展阶段。

    当前,国内外医院pacs的规模有四种类型:

1.4成立医学影像中心是优化医院诊疗工作流程,提高效率,实现“以病人为中心”的根本保证。在传统的影像科室管理模式下,医学影像信息在医院各影像输出科室之间以及影像输出与输人科室之间传输、存储、使用过程中,存在着流程环节多、周期长、通道狭窄、手工作业化程度高,经常发生诊疗工作的延误和堵塞,影像信息的丢失和误差率也居高不下(有关资料表明:即使一个管理制度十分完善的医院,由于借出、会诊等,x光片丢失率也会在10%一20%之间)。通过对全院医学影像(输出)科室的服务与管理模式调整与改革,组建全院医学影像中心后,就可以通过pacs网络改造和优化医院诊疗工作的作业流程,简化医学影像流通环节、提高效率,为临床一线提供快捷、优良的医学影像信息服务,可以有效地缩短平均住院日、手术待诊时间、提高住院病人的三日确诊率,降低病人的诊疗费用,“把时间还给医生、护士,把医生、护士还给病人”成为现实,力争实现以病人为中心、努力争取最佳诊疗效果、提高医疗质量和服务质量的目标。以先进的技术包装陈旧的医院影像科室管理模式是行不通的。

1.5组建医学影像中心可以大幅度提升医院的学术水平和整体实力,通过组建全院医学影像中心,实现“强强联合”,使医院影像学科体系更加完备、科学、合理,影像学科体系和影像技术装备体系良性互动、相得益彰,人才培养、科研实力和学术水平有大幅度的提升。医院医学影像(输出)学科实力的增强也将带动全院学科建设的发展,从整体上提高医院的医、教、研能力。

实用医学影像技术篇7

我院2001年由鹤壁中专、鹤壁师范学校、鹤壁电大和鹤壁教育学院四所学校合并为鹤壁职业技术学院。其中医学影像技术专业是2002年在原鹤壁卫生学校(1995年合并入鹤壁中专)医学影像诊断专业的基础上开设的新专业,现该专业有在校学生350人。

根据大量的市场调研得知,社会对医学影像技术方面应用型人才的需求较大,因此我们设置了医学影像技术专业,确定了特定的培养目标和基本规格以适应相应的职业岗位,并进行了大胆的改革。

明确高职教育特色,促进可持续发展

当前,高职教育成为社会关注的热点,面临大好的发展机遇。同时,经济、科技和社会发展也对高职教育人才培养工作提出了许多新的、更高的要求。因此,高职医学影像技术专业要抓住机遇、与时俱进,以改革教育思想和教育观念为先导,在教学与改革的过程中,逐步建立适应医学发展需求、能顺利实现医学影像技术专业人才培养目标的高职教育思想和观念。为此,我院组织有关人员深入实习医院和用人单位,广泛开展调研和毕业生追踪调查,邀请医学影像专家组成教育教学改革指导委员会,对高职医学影像技术专业人才培养目标进行讨论。

经过充分的论证,我们认识到高职教育是高等教育的重要组成部分,属于高等教育的范畴。高职人才必须具备与高等教育相适应的基本理论知识和技能,掌握相应的新知识、新技术和新工艺,以较强的实践动手能力和分析、解决实际问题的能力,区别于普通高等教育,以较宽的知识面和较深厚的理论知识,区别于中等职业教育。也就是说既不能“吃”本科教育的“压缩饼干”,也不能“蒸”中专教育的“发面馒头”,而应该按照高职教育人才规格和基本特征,把培养目标定位在基础理论适度、技术应用能力强、知识面较宽、素质较高的技术应用型专门人才上,要全面推进素质教育,树立科学的人才观、质量观和教育观。

明确培养目标,创建人才培养新模式

根据高职医学影像技术专业人才的需求形势,我院分析了高职医学影像技术专业教育特点,认识到高职医学影像技术专业要以培养高等技术性医学影像人才为根本任务,以适应社会和医院需求为目标,以培养技术应用能力为主线,创建高职医学影像技术专业人才培养的新模式。将培养目标定位在德、智、体、美全面发展,具有现代医学影像理念,具有良好的职业素质和技术操作能力,能适应现代医学影像设备技术操作需要的高级技术应用型人才上。经过探索,我们将人才培养模式概括为“人文为先,知识宽实,技能熟练,就业多向”。“人文为先”,是指面向就业岗位对医学影像技术专业人才的要求,增设人文课程,加强人文素质教育,充分体现以人为本的医学理念,适应新的“生物—心理—社会”医学模式。“知识宽实”,就是给学生搭建较宽的专业基础知识平台,在专业课开设时,我们就考虑以就业为导向,开设与就业有关的基础课和专业课,充分体现对准岗位开设课程。强化“技能训练”,充分体现高职教育的特点,增强学生的实践动手能力,并改变课程结构。从第一学期开始就在全部教学过程中加大实践训练课比例,采取有效的保障措施,实现课堂训练、业余训练、实习前集中训练、实习中技能操作应用训练相统一,全面提高实践技能操作。“就业多向”即在通用医学影像技术专业知识技能训练的基础上,按照就业岗位需求,寻求“大专业、小专门化”的课程组合模式,除通用放射专业外,还设置CT专业方向、MRI专业方向、超声专业方向、介入专业方向、放疗专业方向,以拓宽就业渠道,提高就业率,实现以就业为导向的培养目的。转贴于

加强专业建设,深化教育教学改革

对于高职院校,培养人才是根本任务,教学工作是中心工作,教学改革是各项改革的核心,提高素质是永恒的主题。近几年来,我们围绕这个思路,结合医学影像技术专业的实际情况,以专业建设为本位,以实际、实用、实践、实效为原则,重点进行了以下三项改革:

改革教学内容,重建理论教学体系按照培养目标和毕业生知识、能力和素质的要求,以突出医学影像技术操作能力,注重临床教学,加强技能实践,适应基层需要为原则,设置了医学影像技术专业的三大模块课程体系,即基本素质模块课程、专业素质模块课程、岗位素质模块课程。根据专业能力要素的具体要求及教学内容的逻辑关系,通过适当的精简、融合、重组、增设等途径,打破原有课程设计界限,优化课程和教学内容体系。如精简了医用物理学、医用化学、医学病原学等非主干课程的内容和教学时数;将原来的X线机结构与维修和X线摄影技术学在增加相关新内容后,分别重组为医学影像设备学、医学影像检查技术学;增设了医学影像新技术课程,如断层解剖学、介入放射学等;增开选修课,如放射治疗学、核医学、医学文献检索等。

改革实验实训环节,完善实践教学体系实践教学是培养学生实际工作能力和创新能力的重要环节。加强实践教学,就必须改革过去实践教学大纲包含于理论教学大纲之中的粗化设置,建立一个目标明确、自成体系、相对独立的实践教学体系。这个体系与理论教学体系相互联系,相辅相成。经过三年来的研究、探索与实践,我院高职医学影像技术专业已基本形成了一个完整、相对独立的“一个强化、四种训练、三个衔接”的实践教学体系。“一个强化”是指强化学生专业技能操作训练。“四种训练”是指基本技能操作训练、校内实训基地仿真演练、医院课间见习带练、毕业临床实习综合应用能力实练。“三个衔接”是指技能训练在校期间与考取技能证书相衔接、毕业后与考取职业资格证书相衔接、就业时与临床相衔接。

实用医学影像技术篇8

1医学影像技术与医学影像诊断的专业互补性

医学影像诊断离不开医学影像技术的支持,二者之间存在十分紧密的关系。医学影像技术水平的提升及工作层面的拓展需要影像诊断的科学指导,而医学影像诊断水平的提升同样需要高水平的医学影像技术作为保障。只有通过医学影像诊断及时将结果反馈出来,才能逐步提升医学影像技术水平。由于不同的医学影像技术的成像原理是存在差别的,并且不同的影像学技术的专业性较高,例如超声检查、CT、MRI等方法各有特点,在临床应用过程中,对检查的结果进行分析与研究,能够发现不同的技术各有优势,但也存在一定的不足和缺陷[1]。对于疾病的诊断,并非通过医学影像技术就能够得出最准确的结论,有时仅通过一种影像学技术就能进行诊断,而采用其他的检查方式则难以检出异常。即使不同的影像学技术都能对一些疾病进行检查,但也应当出于对患者经济角度的考虑,选择最为经济且适合的检查方法。

医学影像技术和医学影像诊断在本质上是紧密联系的,并且二者之间相互依赖、相互渗透、相互制约,在相互促进的过程中促进各自的发展。随着当前医学影像技术的不断成熟与发展,医学影像诊断和医学影像及时之间的界限逐渐变得模糊[3]。在整个医疗环境中,随着新业务、新技术、新材料以及性科学的出现及快速发展,使得医学影像诊断与医学影像技术之间实现了有效的融合,这在一定程度上缩短了患者的治疗周期,大大提升了医疗水平。

2医学影像的专业独立性

在医学影像技术工作中,主要涵盖以下4个方面;(1)是具有常规放射学,超声医学核磁共振及CT等系统理论知识与操作技能;(2)是具有临床医学、基础医学和电子学等有关理论知识;(3)是在疾病诊断中比较熟悉各种影像诊断技术的应用;(4)是比较熟悉医学影像学各专业分支技术和发展趋势。

在医学影像诊断工作中,主要涵盖以下4个方面:(1)是比较熟悉临床医学、基础医学及现代医学有关知识;(2)是在临床疾病诊断中具有应用多种影像技术诊断的能力;(3)是对医学影像领域的各种技术具有深入的认识了了解;(4)是对医学影像学分支的有关前沿技术和发展趋势比较熟悉。

影像技术工作主要是为临床影像诊断提供多角度、多方位准确可靠的医学影像信息,为影像诊断提供重要依据。影像诊断工作主要是详细观察、分析影像技术工作中所能提供的信息,对其进行综合归纳,以获得比较客观的医学诊断结论。

实用医学影像技术篇9

医学影像技术的医学影像技术正变得越来越流行,医学影像技术也是最有前途的专业之一[1]。医学影像技术在临床诊断中的应用可以大大提高临床诊断的准确性,减少误诊的发生。

。X射线成像主要取决于射线波长的穿透。主要用于观察人体器官和组织,如骨骼、形态、位置、性质、金属异物等。如果人体骨骼或器官有损伤或变形,可用射线扫描相关部位,然后在胶片上进行成像。从胶片的成像可以看到体内的病变,然后医生会根据病变的部位或具体情况采取相应的治疗措施[2]. 目前的X射线技术比以前更加完善和先进。以前难以成像的自然组织和器官,如血管、心脏、膀胱等,现在可以通过X射线成像。目前,大多数X射线摄影和透视设备采用多主机系统,然后与各种摄影、诊断床等辅助设备一起使用。结合先进的计算机控制和图像处理系统,X射线技术可以完成一些特殊任务和功能测试。

。CT的工作原理主要是利用人体组织吸收的X射线的不同性质。它可以将人体的一个特定层分成许多立方体。X射线可以通过扫描这些立方体获得临床诊断信息。计算机体层摄影技术主要扫描人体的某个部位或区域,然后在连接的计算机中形成诊断数据或治疗措施。计算机体层摄影技术在组织横断面扫描中的精度非常高。计算机体层摄影技术与射线成像的最大区别在于前者不仅可以定性地监测人体器官的进展,而且可以提供准确的检测数据信息。此外,计算机体层摄影技术不仅具有非常快的扫描速度,而且具有特别高的最终成像分辨率。摄影技术的扫描区域和工作区域的大小也关系到摄影和成像的效率。磁共振成像是一种与人体密切相关的磁共振成像。其工作原理是,当人体受到外部固定脉冲的刺激时,人体内会发生磁共振。一旦磁场消失,质子将发送MR信号以形成图像。磁共振血流成像技术在磁共振成像中可以清晰地显示心脏、心房等器官的精细结构,也为各种心脏病的准确治疗提供了依据。

阴影技术有许多应用,如腰间盘突出、寄生虫、脑血管疾病、肿瘤、鼻炎、头痛、心血管疾病、中枢神经系统疾病等。计算机体层摄影技术可用于诊断。通过CT的成像技术可以了解患者的实际情况。医生可以通过CT的影像为患者制定适当的治疗计划。计算机体层摄影技术可以提高医生诊断病因的准确性[3]。

。然而,使用计算机X线摄影有一个缺点,即在用X射线进行诊断时会对患者的身体功能造成一些损害。一般来说,计算机X线摄影的技术很少应用于腹部器官疾病或中枢神经系统疾病。因此,在使用计算机X线摄影技术之前,医生必须熟悉患者的病情,不能随意使用摄影和成像技术,然后根据患者的实际情况选择合适的摄影和成像技术。

。此外,高频超声成像技术还可以使用微型探头检查和诊断胃肠道疾病和胃肠道肿瘤。通过微型探头,医生可以了解肿瘤的大小、深度和范围,更好地为患者制定治疗方案和治疗方法,降低肿瘤患者的治疗风险,提高肿瘤患者的治愈概率[4]。

。医生可以通过三维超声成像技术了解胎儿的生产情况。此外,三维超声成像技术也将用于生殖医学和围产期观察。

超声造影剂注射到人体静脉后,它会随着毛细血管扩散到全身,然后通过相应的对比成像技术将体内各种器官和组织的实际情况成像到计算机上。此外,超声造影剂还可以反映人体各器官和组织的血流情况,为临床诊断提供坚实的事实依据。总之,随着医学技术的不断进步,他们在医学领域的影响力越来越大。最突出的应该是医学成像技术。在临床诊断中,医学影像技术不仅可以提高临床诊断的准确性,而且可以提高我国的医疗水平。随着医学影像技术的不断进步,我国的医疗水平也在不断提高。医学影像技术对临床诊断的重要性毋庸置疑,因此相关部门和医院必须更加重视医学影像技术,努力提高医院的质量和水平。本文对医学影像技术的工作原理和应用范围进行了简单的分析和研究,希望我国的医疗事业能够不断改进和提高。

[1]程磊。医学影像技术在医学影像诊断中的临床应用[J]。世界最新医学信息文摘,2019年,19(28):212。

实用医学影像技术篇10

计算机图像数字化;医学影像学;技术运用

伴随计算机技术的创新,信息技术以及分子生物学技术呈现出高速发展的运行理念,并在计算机辅助放射成像技术运用的基础上,实现生物学技术的全面发展。通过对计算机辅助放射技术的研究,可以实现分子生物学以及现代生物学中影像学产业的稳定结合,构建经典医学影像技术,并在临床诊断及技术运用的基础上,进行试验的有效探究。而且,在当前社会科学技术不断提升的背景下,计算机图像数字化与医学影像学之间呈现出稳定性的发展变化。通过图像的数字化处理,可以实现计算机信息资源的储存,处境格式的优化及参考资料的提升,从而为计算机图像与医学影像的运用提供稳定支持,实现医学影像学的全面发展。

1计算机图像数字化与医学影像的关系分析

对于计算机图像数字化处理技术而言,是在计算机图像处理结束之后进行的数字化处理,在这种数字化资源运用的过程中,可以将计算机的数据资源进行储存及后期处理。通常情况下,在图像数字化资源过程分析的过程中,基本的过程会分为采样及量化两个最基本的步骤,其中采样的是指就是需要通过多个点的描述进行图像的绘制,而采样的结果也就是通常所说的图像分辨率。而量化主要是在图像采样之后,通过不同点的使用,可以运用大范围的数据值进行内容的表示,该范围包含了颜色总数、量化结果以及图像,通过对这些元素的有效运用可以实现系统颜色的容纳等。对于最初的影像资料而言,其获取患者的资料都是模拟信号图像,并将x线系统作为基础,患者的影像资料以及模拟信号中的表现形式会在胶片中进行展示,但是,在这种图片图像调节的过程中,应该对影像图像进行模拟分析,对于图像中不可调节的资料进行后续处理,由于与计算机软件系统中的储存空间相对较大,患者影像资料在长期储存的过程中存在难度较大的问题,这些问题的出现都会在某种程度上对影像资料的储存造成制约。

2计算机图像数字化在医学影像运用中的问题分析

2.1计算机图像数字化中原始数据的问题分析

对于计算机图像数字化的技术形式而言,当其运用在影像学之中时,虽然其技术内容会提高医学影像的数字处理水平,但是,在数字图像显示率较高的状态下,计算机图像中的数据分析也就会呈现出复杂、信息量大的问题。这种原始数据处理技术的存在也就在某种程度上为计算机图像数字化处理技术的运用造成了一定的制约。

2.2计算机图像数字化处理技术较难控制

在计算机图像数字化技术处理的过程中,由于图像数字化处理中的技术涉及范围的广泛性,在资源控制中面临着较难的局面,这种控制较难的问题也就成为医学影像技术运用中出现的较难问题之一。对于计算机图像数字化处理技术而言,其设计的范围相对较广,而且一些数据资源在运用的过程中存在难以控制的问题,主要是由于计算机图像处理中,会涉及到很多专业知识及技术内容,这种现象的出现在某种程度上为计算机图像数字化的处理产生了一定的负面影响。

3计算机图像数字化及其在医学影像学中的运用

3.1医学数字成像技术

CR数字摄影技术已经发展了多年,其技术成为较为熟悉的数字化x线成像技术,其具体的项目优势可以体现在以下几个方面:

3.1.1成像板的技术改进

IP板在结构设计的过程中主要会采用新感线材料形式,在现阶段针状结构的荧线物质作为基础,使荧线散射的现象在某种程度上呈现出降低的现象,逐渐提升了税力度以及细节项目的分辨能力,使图像的整体质量得到了明显的改善。随着技术的优化及发展,一些厂家通过技术的研究及优化,推出了双面读出IP的技术形式,并采用透明基板进行信息数据的扫描及分析,通过这一技术的运用,可以使NEQ提高30%-40%,通过技术和的不断优化,IP板也逐渐发展到第七代柔性IP影像板。

3.1.2扫描方式的技术改进

对于CR技术而言,在运用的过程中通常会采用飞点扫描的技术方法,通过对点状激光IP板的信息分析,实现图像的重建及扫描处理,但是,在改技术运用的过程中,由于扫描速度以及图像空间分辨率不足问题的出现,会为CR技术的发展造成一定的制约,因此,在技术优化的过程中,为了有效解决这一问题的限制,线扫描技术就得到了广泛性的运用。同时,在每次读出图像信息的过程中,会提升信息扫描的整体时间,并在此基础上,实现图像质量的稳定提升。

3.1.3后处理软件加强技术及改进

由于计算机技术的发展及处理方式的改进,不同厂家在软件分析的过程中提出了不同的技术优化形式,同时也推出了多种软件设计形式。在组织均衡软件处理的过程中,其软件可以通过对不同部位自动幅度的分析,进行图像资源的优化处理,在自动消除原曝光图像中,可以降低图像细节损失的问题,有效提升图像细节中的对比度,充分满足计算机图像结构设计的协调性及稳定性。而且,在计算机软件处理集成固化分析的过程中,图像卡制作方法在某种程度上有了长足性的发展,在统计中可以发现,图像卡采样矩阵在某种程度上可以达到4096×4096像素,灰度的分辨率也可以达到12bit。

3.1.4CR工作流程的发展方向

对于传统CR技术而言,主要将片盒式操作以及集中图像的读数操作作为基础,通过对DR直接的接触,可以发现CR技术存在的不同。但是,由于CR技术的不断改进及其成本下降问题的限制,CR技术克服了很多潜在性的问题,导致技术得到了明确提升,并在某种程度上拉近了CR技术与DR技术之间的差异。首先,盒式IP板技术系统得到了优化。在该系统设计的过程中,需要技术人员将IP板送到中央处理室进行图像信息的处理,由于现阶段CR盒式读片器的体积逐渐降低,而且运用成本也逐渐降低,所读取信息资源的速度不断增加,使每个X线摄片室或是操作台都可以安装一个完善的读片器资源,完善系统的工作流程,实现资源的优化处理。其次,五盒式x线系统会将二次扫描接收器直接接入到摄影系统之中,实现自动化的图像扫描及图像重建,这种中间与DR系统中图像自动生成技术相一致。最后,在便携式x线机会安装集成CR读片器,床边摄片后也就呈现出图像的读数,从而获得与DR相似的功能技术。但是,在IP板技术操作的环境下,DR探测器轻薄、操作方便以及节约人力等方面会明显低于DR系统。

3.2DR技术的研究分析

3.2.1非晶硅及非晶硅平板的成像探测技术

在非晶硅以及非晶系平板探测技术运用的过程中,其技术探测本身发生了结构性的改进,而且,在目前技术研究的过程中,能够有效减少x线散射的问题,全面提高图像的锐利度及清晰度。在DR系统结构设计及软件技术改进的过程中,一些系统的结构设计应该充分满足市场上的双板结构、C形架结构以及悬吊式x线管组件,通过这种配单端固定升降浮动式平穿及可移动当班探测器的运用,可以提供单板多用的项目功能,实现X线摄影技术的有效优化。同时,在软件技术设计的及运用的过程中,通过DR影像处理以及相关软件工程的运用,可以均衡图像处理功能,通过分层摄影实现软件的拼接,从而为DR影像质量及功能的优化提供完善的支撑技术。

3.2.2CMOS平板探测器技术

对于CMOS平板探测器而言,其荧线层在运用的过程中可以产生于入射线x线束相对应的荧线,充分保证芯片在电信号之间的稳定转换。并在此基础上,通过转换器实现像素探测的合理性。同时,在平面空间分辨达到最高的状态时,由于系统成像速度较慢,这会使医疗诊断图像从曝光到完成经过120秒,对于这种成像速度而言,其平板探测器成为发展中的瓶颈问题。

3.2.3CCD数字成像技术

由于科学技术及信息技术的不断创新及发展,计算机图像数字测量技术会随着材料、结构以及图像的处理和实现新技术的不断创新,而且,在CCD平面数字成像技术优化设计的过程中,由于技术的创新,使数字成像技术呈现出全面的改进。在CCD数字成像技术运用中,可以为医学影像技术的优化提供稳定支持,因此,在技术优化中,应该做到以下几点创新内容:(1)通过针状结构的X射线运用,可以提升烁体材料,减少X线的散射问题,并逐渐提升图像处理中相关内容的清晰度。(2)在高清晰高倍光学组合镜运用的过程中,在某种程度上会逐渐提高成像的灵敏度及可靠性,从而为技术的优化提供稳定支持。(3)在CCD数字成像技术运用中,通过充填系数为100%CCD芯片的运用,可以有效缩短小像素点并在某种程度上增大物体的接收面积,提高空间的分辨率,使所获得的图像信噪比得到稳步加强,从而为图像数字测量技术的优化提供良好依据。对于DR成像技术而言,在运用的过程中具有X射线剂量小、辐射低以及图像清晰的系统优势性,在现阶段技术优化的过程中,DR技术得到了稳定的拓展及优化,并在医学影像学中,将其运用在了远程发射学、三维立体学以及低剂量的透视摆位技术中,实现了多平面图像资源的稳步优化。同时,在医学影像学技术优化设计的过程中,DR成像机器本身的技术含量就相对较高,而且曝线条件也会呈现出自动检测的最终目的,这一项目的出现也就对专业技术人员的要求相对较高。所以可以发现,该种技术在某种程度上具有较为明显的推广意义,但是存在的唯一不足就是价格过高,加大了医学影像学的成本支出。

4结束语

总而言之,在当前医学及科学技术创新发展的环境下,通过对现代医学影像技术的优化,可以为整个行业的运行提供稳定性的技术支持,并通过计算机图像数字化与医学影像之间的技术优化运用,可以使医学影像在原技术运用的基础上得到稳步创新。同时,在计算机完善处理技术应用中,也应该在提高医学影像发展水平,提升医学检测技术的精准性,实现医学影像数字化转换的有效性,从而为社会经济的运行及医学影像学的啊发展提供稳定支持。

参考文献

[1]赵波.计算机图像数字化与医学影像学之应用[J].科技信息,2010(19):75.

[2]刘楷正,刘刚战.计算机图像数字化与医学影像学之应用[J].通讯世界,2016(08):43.

[3]杨帆.计算机数字化技术与超声影像医学应用新进展[J].承德医学院学报,2015(06):528-530.

[4]刘磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012(24):5642-5643.

[5]余爱民,阜艳.数字化医学影像技术的进展分析[J].中国医疗设备,2010(12):38-41.

实用医学影像技术篇11

在疾病诊断过程中,处理好医学影像传统技术与医学影像高新技术的关系

实用医学影像技术篇12

随着现代医学的飞速发展,现代医学影像技术与传统的影像技术发生了根本的变化,这就对医学影像技术专业学生的培养提出了更高的要求。[1]然而长期以来高校在医学影像技术专业人才培养上,存在教学内容陈旧、理论与实践脱节,学生动手操作能力差,不清楚影像技术岗位需求和今后的职业发展方向等诸多问题。而医学影像从业人员普遍学历层次低、系统理论知识缺乏、专业设备的操作单一、缺乏创新精神。目前,医学影像技术专业人才培养情况主要体现在以下几个方面:

(1)专业内容陈旧

随着医学技术的发展,各种高新设备的研制、开发、引进和应用,各项业务技术的开展,相关学科的渗透与交叉,计算机的广泛应用不断开拓医学影像科学的新领域。而早些年出版的书刊对这些知识介绍的不够全面,许多高校开设的医学影像技术专业都处在建设发展阶段,学生接受最新知识的机遇和方式者非常有限。而在迅速更新的知识面前,由于受到知识深度和广度的局限,致使医学影像技术人员对专业发展、学科建设、人才培养、学科管理等方面均立足于陈旧的观念,不能适应专业的快速发展,大部分专业人员的专业知识还停滞在原有设备的基础上,跟不上时代步伐,这也是目前医学影像技术从业队伍中存在的普遍问题。

(2)教学方法单调

目前我国高校的教学方法主要采用教材结合多媒体的教学方法,单纯将书本上的内容“ 灌注” 给学生,难以激发学生的主动性及学习热情;实践能力与 理论知识不能有机结合,使学生不能充分理解和应用课堂上讲授的内容;科研意识和科研能力缺乏,不利于培养创新型人才。

(3)专业知识单一

影像技术是一门交叉学科,是电子、机械、数字技术、光学工程等专业综合发展的结果,各专业技术的飞速发展致使从业人员跟不上发展的步伐。加上分学科、分专业学习不合理的工作模式和人才培养方式,很多单位根据医学影像设备而非学科系统来进行专业划分,从而使很多专业人员的专业知识单一,成为只懂某一种检查设备知识的技工人员。这样既割裂了专业知识的立体联系,又束缚了个体思维,必然会扭曲整个学科的知识结构。

(4)从业人员素质偏低

目前我国影像学从业队伍学历结构不尽理想,尤其是在县、市及其以下级别医疗单位,招工、顶职上岗者不乏其人,而技师中则更多见。中专、高职学历者所占比例过大,本科以上层次学历者为数不多。大部分从事人员缺乏钻研精神,只管操作,只管维修,脱离思考,就事论事。没有通过系统的理论学习和高层次的专业培训,想要较好掌握、运用医学影像新技术并使之创新和发展,并非易事。为此,加强医学影像技术高层次人才的培养是一项十分紧迫的任务。

2 培养目标的确定

目前,四年制医学影像学本科专业只在不多的高校刚刚开办,由于在对医学影像学理学学士培养认识上的差异, 致使出现许多学校培养目标及方向不明、 培养模式混乱,大多数学校都是借鉴甚至沿用原来五年制医学影像学本科(医学士)专业的人才培养模式,学生一时也很难明确自己的专业方向,导致学生专业思想不稳定、毕业生“医师、技师”就业尴尬的现象。

2012年9月国家教育部印发的《普通高等学校本科专业目录(2012年)》(教高[2012]9号)文件中明确指出原医学影像学专业(四年制)更改为医学影像技术专业(四年制),专业类别也于原来的“临床医学与医学技术类(部分)”改为“医学技术类”,授予理学学士学位。[2]这就更加确定了其专业方向,即毕业生能在各级各类医疗卫生机构和医学影像技术领域从事医学影像设备研究、管理、流通、客户服务等,以及能在医学院校从事教学和科研工作的高级应用型人才。

我校于2010年开始招收医学影像学本科(理学士)专业学生,2013年9月将招收第一届医学影像技术(更名后)本科专业的学生,几年来的办学实践在不断的促进我们思考,建立符合当前社会需要和专业方向的人才培养模式是我们亟待探讨的课题。

3 创新人才培养模式

基于目前医学影像本科专业的现状,结合我校的办学情况,创新医学影像技术专业人才培养模式,从以下几个方面着手:

(1)教育教学方案改革

通过问卷调查方式,向医院、企业等用人单位发放问卷调查表,收集用人单位对近5年招聘的医学影像学专业本科生的质量评价及实际工作中对医学影像技术人员知识、能力、素质的要求,对结果进行研究分析,根据分析的结果结合医学影像技术本科专业(理学士)的服务面与职业岗位能力,以全面提高教育教学质量为出发点和落脚点,借鉴“项目导向、任务驱动”的教育教学模式,设计教学改革方案。

(2)完善教学计划,整合教学内容

培养目标确定以后,课程设置和教学内容就应围绕培养目标来确定。这是一个不断探索的过程。医学影像技术人才的培养涉及到医学知识、操作技能、职业态度等多学科、多门类的知识,理、工、医相交叉,因此完善的课程设置是医学影像技术专业教育成功与否的关键之一。

根据医学影像学科发展的方向,紧密结合学生职业岗位能力,结合用人单位的反馈意见,以职业能力为导向,调整专业教学计划,完善医学影像技术专业的课程体系,突出医学物理学与现代信息技术模块相关教学内容的设置。随着现代微电子技术、计算机网络技术、计算机图像处理技术、人工智能和自动控制技术的蓬勃发展,数字化、网络化、智能化等“三化”已成为现代医学影像技术的发展方向。CT,MR,DSA,CR,DR,PACS等技术的应用需要集医学、医学物理学、现代信息技术、成像技术等知识与技术于一身的复合型人才。

因此,在课程设置上我们应该更侧重于理学和工科的内容,如:先让学生掌握信号分析的基础理论知识,为进一步提高专业技能打下基础。在硬件方面,完成各种电子技术知识的学习之后,着重让学生掌握医学成像设备的特点与成像原理;软件方面,完成计算机应用和基本语言程序设计的学习后,结合医学图像处理技术重点培养医学图像分析的技能。使学生能够循序渐进地掌握较为熟练的操作技能和应用能力,达到在具有较宽知识面的同时具备一定专业深度的水平。

(3)建立“校院企一体”的人才培养模式

由于之前国家没有明确四年制本科医学影像学的培养目标,很多高校都沿用原有五年制医学影像学(医学士)的培养思路,因此,除了学校的理论和实验教学外,就是在医院进行实习与见习。显然,这种模式无法满足医学影像技术(理学士)专业的培养目标的要求,若能充分利用高等医学院校的资源与医院、企业构建三位一体合作教育的人才培养模式,不仅可以提高学生的实践操作能力,提高学生的综合素质,从而创造良好的就业前景,实现“零距离”就业,稳固学生的专业思想,扩大学校的影响力,而且大大地节约了学校对实践教学的资金投入,优化社会资源;另一方面,与企业建立长期合作关系,可以及时了解当代医学影像的发展趋势及社会对医学影像技术毕业生的需求和要求,实现“按需”培养,提高就业率;同时,校院企一体的人才培养模式把工程师“请进来”,把教师“送出去”,可促进“双师型”教师队伍的建设,提高教师实践能力及教学水平,进一步提高高校办学能力。此外,校院企一体的人才培养模式中产学研结合可让高校的科研成果直接应用到企业实际生产中,从而提高社会生产力,促进社会经济健康和谐地发展。

(4)编写活页教材

随着高科技和信息技术的飞速发展,医学科学发展的步伐正在加快,医学影像学设备也随之日新月异,新的治疗手段不断涌现。这就要求我们在对医学影像技术人才的培养上要与时俱进,而选用合适的教材开展教学显得尤为重要。受教材需从编写、出版到定购这个时间周期的限制,很难满足要求。因此,高校可与医院、企业一起编写活页教材,与定购的材配套使用,不断更新、完善、充实教学内容,让学生能真正学以致用。

结束语:

为适应现代医学发展对医学影像的新要求,高校在医学影像技术本科专业人才培养模式上应借鉴国内外成功的培养模式,明确专业培养目标,拓宽办学思路,积极推动“校院企”三方参与的合作教育模式,提高办学能力,扩大影响力,优化社会资源,促进社会经济健康和谐发展。

实用医学影像技术篇13

1 传统摄影技术在摸索中进行

1.1 计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后, 分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer Radiography.CR)]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled Derices.CCD)为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

1.2 X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

1.3 磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

1.4 数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术----分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、及其他部位的成像提供新的信息。

7.1 磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

7.2 PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

7.3 阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

7.4 光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读