欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

量子力学论文

摘要::20世纪三次物理学革命之一的量子力学在诸多方面对经典科学世界图景进行了变革。量子力学突破了经典科学的机械决定论,使之转化为非机械决定论;使得科学认识方法由还原论转化为整体论;使得科学思维方式由追求简单性到探索复杂性;确立了科学活动中主客体互动关系。
量子力学论文

量子力学论文:量子力学对经典科学世界图景的变革论文

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的较大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及还原是不可能的,决定了还原论不能揭示世界的全貌。

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得科学思维方式由追求简单性发展到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]

量子力学的发展表明,不存在一个客观的、的世界。存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

[摘要]20世纪三次物理学革命之一的量子力学突破了经典科学的机械决定论,使之转化为非机械决定论;使得科学认识方法由还原论转化为整体论;使得科学思维方式由追求简单性到探索复杂性;确立了科学活动中主客体互动关系。

关键词:量子力学;经典科学世界图景;

量子力学论文:量子力学保守性论文

一、科学、语言和思维

在建立科学理论体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学研究自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。

要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以分析。

作为一种形式化理论的近现代科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。

这一自在的实在具有由它的“自明性”所保障的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保障的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。

上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学哲学家所认为的纯粹出于主体间的共同约定。科学的较高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。

在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少目前还不能放在客观实在的背景上。因此,在科学认识的层次上,思维形态可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保障,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。

科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。

二、数学语言

数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释问题。在自然科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的应用。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。

爱因斯坦曾分析过数学的公理学本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样,欧几里德几何学才成为对刚体行为的一种描述。

爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。

首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。

其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。

由此可见,数学与自然科学的不同仅表现在对于它们的结果的性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。

事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。

三、物理学语言

虽然物理学是严格数学化的典范,但物理学语言的历史却比数学应用于物理学的历史要久远得多。

在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保障一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学计算,它是人类世代传承的关于世界的知识的基元。

然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个电子,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。

当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。

可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。

上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。

四、量子力学的语言问题

上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着时代的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。

量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。

量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有规律地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕

量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(Beruhigunsphilosophie)〔3〕或“文学”〔4〕,这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机内容。薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释,一种全新的语言是可以考虑的。他建议将N个粒子组成的体系的波函数解释为3N维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。

固然,几率波的解释使得理论的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种科学语言而获得充分的意义。

玻姆的隐序观念与薛定谔的解释在语言问题上是相似的。他所说的“机械序”〔6〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物理学的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。

这里所说的“基础”指的是,一种全新的语言涉及主客体间不同的相互介定。它涉及对客体的不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和方法的学科所能为的。

可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。

五、量子力学何种程度上是“革命性”的

量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种应用上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。

正统的量子力学学者们都意识到应该通过发展思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。

另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。

这些努力在很大程度上是具有保守性的。

我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的分析,建立起时间、空间和运动的协变关系,从而推翻了时空、同时性等旧观念,并代之以新的时空观。重要的是,在这里,时空和同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于历史和偶然因素形成的一些含混概念,并给出了更加明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。

量子力学的情况则不同。它的保守性主要表现在:

及时,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。

第二,不连续性、非决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关哲学解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保障的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。

第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。

第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。

本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。

海森堡等人与新康德主义哲学家G·赫尔曼进行讨论时,赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保障,逻辑是它的抽象和提升。

在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?

如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是目前形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕

量子力学论文:量子力学研究论文

摘要:20世纪三次物理学革命之一的量子力学在诸多方面对经典科学世界图景进行了变革。量子力学突破了经典科学的机械决定论,使之转化为非机械决定论;使得科学认识方法由还原论转化为整体论;使得科学思维方式由追求简单性到探索复杂性;确立了科学活动中主客体互动关系。

关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的较大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及还原是不可能的,决定了还原论不能揭示世界的全貌。

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得科学思维方式由追求简单性发展到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]

量子力学的发展表明,不存在一个客观的、的世界。存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

量子力学论文:《量子力学》多媒体教学的优缺点分析

摘要:本文主要通过对《量子力学》教学过程中使用传统板书和多媒体教学各自的优缺点进行比较,为如何更好地进行板书和多媒体相结合教学提供新的思路。

关键词:多媒体;量子力学;教学效率

一、前言

《量子力学》课程是物理学科的一门重要的基础课。量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,还在化学等相关学科和许多近代技术中得到了广泛的应用。

由于《量子力学》课程的重要性,其相关的教学得到了相当的重视,通常每周是4个学时的课程量。众所周知,《量子力学》是一门既难学又难教的课程,一是因为其中涉及的概念和我们日常生活(或者说常识)相距甚远,二是所学习的数学课程比较多,主要有高等数学、数学物理方法、线性代数等,几乎包括了物理专业学生所学过的全部数学课程。概念抽象,远离日常经验,计算复杂,使《量子力学》成为一门难学难教的课程。

随着电气化教学的发展,现在有越来越多的课程开始使用多媒体教学,并且取得了一定的成效,当然同时也显露了一些问题。本文拟对《量子力学》课程中使用多媒体教学的优缺点进行分析,并就如何在传统板书教学和多媒体教学之间达到好的效果给出一些建议。

二、在《量子力学》课程中使用多媒体教学的利弊

众所周知,多媒体教学是教学手段创新的重要内容之一。多媒体教学是现代科学技术在教育工作中的运用,即应用先进的技术手段,把录音机、电视机、录像机、视频展示台、投影机、多媒体计算机等引进课堂,将通讯技术、网络技术、电子邮件、卫星远程通讯、传真通讯、虚拟现实等新的教育媒体逐步运用于教学,充分发挥其优势,增加教学的密度,调动学生的学习积极性。其主要的优点有:

(1)有利于提高课堂教学效率。传统的课堂教学,教师展示知识的空间只是一块容量有限的黑板,教学时间有限,教师不得不将很大一部分精力放在板演文字、绘画等低效的劳动上。这样的课堂教学往往呆板、僵化,缺乏生机与活力,效率不高。运用多媒体教学,可以将大量的教学信息预置在计算机内,随时调用,任意切换,将相关的图形、图像,生动、直观地投影到屏幕上,学生可从视觉、听觉等多方面感受知识,加深对教学内容的理解。

在《量子力学》课程中,如对于氢原子各级波函数,就可以直接使用图像形象地表示出来,可以给学生以强烈的印象,使物理结果更易于理解,同时也容易激起学生的学习热情。若使用传统板书手工绘制电子云图,一则手工画图速度慢,二则不很,直接影响教学效率。有的flash格式的课件,可以通过输入和调整主量子数、角量子数、磁量子数,即时把原子轨道轮廓图和径向分布图表示出来,用色鲜艳,对比强烈,给人以深刻的印象,这样效果是很明显的。

(2)能够激发学生的学习热情。多媒体技术因其图文并茂、声像俱佳的表现形式和跨越时空的非凡表现力,大大增强了学生对事物与过程的理解与感受,体现了极强的直观性,能够多方位、多角度、多层次地调动学生的情绪、注意力和兴趣,使学生能够主动地学习。

在《量子力学》课程中,比如在绪论部分,可适当地介绍一下在量子力学发展史上一些著名科学家的简历,如普朗克、爱因斯坦、玻尔、泡利、海森堡、费曼等,使用多媒体可通过文字、音像资料充分表现,这可以活跃课堂气氛,有助于促进学生对科学的热爱,包括对《量子力学》课程的兴趣。

(3)多媒体教学可以拓展教学时空。学生也可以通过拷贝电子教案和网上阅读电子教案进行课后复习,逐渐改变学生过于依赖课堂、过于依赖教师的传统教学模式,加强学生获取知识的能力,有助于创新人才的培养和学生个性的发展。事实上,我们可从网络上看到许多名师的教学课件,通过对课件的学习,无论对于学生还是教师都是有益的。这不论对《量子力学》课程还是其他课程都是一样的。

(4)动态交互性强。人机交互、立即反馈是多媒体技术的显著特点,也是任何其他媒体所没有的。在这种交互式学习环境中,教师通过创设形象直观、生动活泼的交互式教学情境,为学生提供更多的参与机会。教师与学生的交流、学生与学生交流、人机交流的良性互动,能激发学生的学习兴趣及参与意识,可以充分发挥学生的主观能动性,使学习更为主动,从而有利于学生形成新的认知结构。

(5)理论联系实践的功能大大增强。运用多媒体技术可以采用虚拟实验实现对普通实验的扩充,甚至现实环境很难实现或无法实现的实验项目,可以用图形、图像等多媒体形式,模拟实验全过程。借助有关的教学软件,通过对真实情景的再现和模拟,学生可以随时在电脑上“重温”实验过程。

在《量子力学》课程中涉及的实验不多,主要有黑体辐射、电子衍射实验、stern-gelach实验等。在展现实验过程和结果时,多媒体可发挥其优越性。如电子衍射实验,通过减弱电子流强度使粒子一个一个地被衍射,粒子一个个随机的被打到屏幕各处,显示粒子性,但经过足够长的时间,所得衍射图样和大量电子同时衍射所得图样一样,从而引出波函数的统计诠释。使用多媒体动画,我们可形象地展现电子一个一个打到屏幕上得到衍射图样的过程。这是在黑板上自己手工画图的效果所不能比拟的。

以上我们讨论了使用多媒体教学体现出的优越性。开展多媒体教学时一定要处理好内容与形式的关系。形式为内容服务,这是教学的一个基本原则,多媒体教学也不例外。教学体现的是教师和学生之间的一个沟通过程,在此过程中,如何恰当地使用多媒体技术应引起我们的注意。如果我们仔细分析,可以发现在多媒体教学中,特别是在《量子力学》教学中同样存在着较多的问题,值得引起我们的注意。

(1)忽视双向交流。在多媒体教学中,如果不注意的话,教师可能会较多的注意桌面点击,表演课件,而在一定的程度上忽视和学生的双向交流。不过相对来说,这一点只要讲课老师适当注意,就能够减小这方面的不利影响。

(2)数学推导的欠缺。

在《量子力学》课程中,由于涉及到的数学计算较多,在讲课过程中无法避免地会出现较多的数学推导。面对整个多媒体中大片的公式,学生很容易感到疲倦,甚至失去兴趣,从而使教学效果大打折扣。

从某种意义上来说,如果学了一门理论物理的课,学生却不能够把公式推导出来,就教学效果而言,是一个很大的遗憾。使用板书可让学生真实地看到教师如何把结论一步一步地推导出来,与使用多媒体相比,学生更容易掌握板书的推导,且学生本身的数学推导能力也能较快地提高。甚至教师在推导过程中偶然的失误也会促进学生的了解,至少可以让学生知道哪些地方如果不注意的话可能会弄错。

不过,过于复杂且教学大纲又不作要求的数学推导可以通过多媒体进行,一是让学生看到了结论是如何出来的,二又避免了把过多的时间投入于此,毕竟课堂时间是有限的。比如一维谐振子波函数,氢原子角向波和径向波函数。在教科书上,对氢原子角向波函数,常常直接说在《数学物理方法》课程中已经得到解,为球谐函数,然后就直接给出了结论,由于课时的原因,不可能对此进行详细的阐述。事实上学生有可能已经遗忘了相关内容,因此相应的复习还是必要的。通过多媒体简略地展示下相关推导过程可能是一个比较好的选择。

三、结论

前面我们分别讨论了在《量子力学》课程中使用多媒体教学中存在着的优缺点。为了有效提高教学效果,笔者认为应当综合的使用传统板书教学和多媒体教学,在讲授基本概念和有较多的图表时,可多使用多媒体教学,但应适当使用,而在讲数学推导时仍应使用传统板书,少用甚至不使用多媒体。

量子力学论文:对量子力学互补性诠释的理解

量子力学在本世纪二十年代就形成了其形式系统,然而它的物理意义,亦即对它的解释却一直众说纷纭,时至今日仍是物理学家和哲学家关注的一个中心问题。虽然在其体系形成后不久,玻尔就在玻恩的几率诠释和海森堡的测不准原理基础上,提出了系统一贯的互补性诠释并成为被普遍接受的正统诠释,但互补思想的确切内容却始终没有人能说得清,因为玻尔总是把他深奥的思想,深深藏在晦涩冗长的深思熟虑的句子和事例性的说明之中,而没有任何现成的条条款款,这就使得无论接受它的还是反对它的人都给出了各式各样不同的理解,所以互补含义亟需澄清。关于量子力学诠释研究的主要问题也都与互补性诠释密切相关(如因果性问题、几率性问题、关于测不准关系的理解问题、测量问题、完备性问题等),这些问题的澄清和解决也首先需要正确理解互补性诠释。

1.互补性诠释的逻辑结构

与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行分析和解释,然后从这种对观察结果的分析中推出客体的实在特点和对它进行描述的符号的意义。当然,从一般假设能演绎出一个的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出确定的实在模式和对它描述的符号的确定的意义。因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是确定的,但关于它的描述和解释却可以有多种。这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。互补性诠释通过对观察结果的认识特点和描述的语义方面的分析,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。

互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的量子性出发,以量子公设作为其理论的出发点来构建对具有量子性的原子客体的合理描述。量子公设本身意味着过程的非连续性、个体性,也就意味着观察过程中仪器与客体的相互作用过程是不可细分的,观察结果中必然包含了仪器及其对客体的作用。在经典物理中,仪器对客体的作用比客体本身的物理量小得可以忽略,即使不能忽略也能通过对过程的分析将它剔除,但在对原子客体的观察中,仪器对客体的作用与客体的物理量相比拟,其作用过程又是非连续的,所以不可能将仪器的作用剔除,这样,观察结果中就必然包含了观察仪器的作用,而不是代表客体本身的现象,对客体的描述也必然只能是观察下的客体的描述,而不可能是对没有观察的孤立客体本身的描述,所以对客体的任何描述都依赖一定的观察,没有观察,就没有可描述的确定的现象,即使没有对应于客体本身的观察,也必然存在与之相关的其它客体的观察。这不是说,没有观察,现象世界就不存在,而是说,没有观察,确定的客体就不存在,没有观察,世界上可以发生许多事件,但我们却不能确定对它们的描述。

观察对描述的重要性和观察中仪器对原子客体的作用的不可分性是原子现象及其描述的特殊性之所在。正是观察的特殊性带来了概念的定义和描述上的新特点,从而带来描述方式的根本改变和实在的新特点。

在对原子客体的观察中,仪器与客体间的不可剔除的相互作用,使得对客体的时空确定和态的确定间成为互斥的。当我们通过一种仪器如刚性标尺和时钟对客体进行时空的观察和确定时,观察中仪器的作用和对时空的确定条件,排斥对客体的态进行定义,因为这种确定时空的仪器对客体的作用所带来的客体的态的改变是无法确定的,从而客体在另一种确定它的态的仪器下所确定的对态的定义的条件被破坏,而不再可能对时空观察下的客体进行态的定义。当我们利用另一种仪器对客体的能量和动量进行观察和定义时,由于仪器与客体相互作用的时间的不确定性,使得对客体的时空确定成为不可能。客体的时空标示和态的描述间的互斥,不仅在于时空观察带来的态的不可控制的改变,而且也是定义客体两种属性的条件的互斥的表现。态的定义要求消除除态的观察外的任何观察的外来干扰,而时空的观察必包含有对客体的干扰,两种描述所代表的定义的理想化和观察的理想化的互斥,使得它们不能再统一在一种描述图景中对客体进行时空中的因果描述,只能对客体进行这两种互斥的描述。因为它们都是对客体的描述,并且只有两种描述一起才能构成对客体的描述,所以二者是互补的。这就是对原子客体的互补性描述方式。

量子公设所蕴涵的仪器与客体的不可避免的相互作用是互补性诠释的一个逻辑起点,作用量子的公式所包含的波粒二象性是互补性诠释的另一逻辑起点。

时空和能量动量描述的互补性意味着经典的粒子图象和波动图象都不适于原子客体,它们只是诠释两种原子现象的不同尝试。在这种诠释中,经典概念的局限性以互补的方式表现出来。在粒子图象中,因果要求的满足必伴随对时空描述的放弃;在波动图象中,时空传播规律的描述必伴随因果描述的放弃而只能代之以统计的考虑。如果我们不把时空描述和因果描述看作互补的而坚持经典的时空概念,我们就必会面对光和物质有时表现象波有时又象粒子的矛盾,所以,光和物质粒子的本性不是经典描述的粒子或波,而是时空和因果的互补描述的波粒二象性,即其时空描述遵循波动的叠加规律、其因果描述遵循粒子的守恒定律的两种图象的互补。任何将客体看作经典波或经典粒子的解释都是行不通的。如薛定谔将原子客体看作经典电磁波的电磁波解释,就遇到波包的扩散、波是位形空间而不是真实空间的波以及波函数与测量与所选择的非对易的可观察量有关等问题,这些问题恰恰反映了经典波概念对原子客体描述的局限性。统计系综诠释虽把原子客体看作粒子,但却不是经典的能够对它作时空描述的粒子,而是只能对粒子系综的统计规律进行描述的粒子,因果描述和时空描述的互补性被包含在系综的能量、动量和时间空间的统计散差具有反比性的特殊统计性中。隐变量理论虽然为量子力学描述建立了一个亚量子层的因果描述,但它对可观察的量子层的描述与量子力学的统计描述一样,而且在其亚量子层的因果描述中也加入了与经典描述不同的隐变量与测量的相关性。所以,因果描述和时空描述的互补性是不可避免的,用经典的粒子图象或波动图象来解释所有原子现象都会遇到逻辑困难,因而必须将它们加以修正并使它们互补起来。

2.对量子力学描述的统计性的理解

统计性是量子力学描述的一个基本特点,统计或几率概念是量子理论的基本概念,理解它是理解量子力学的关键所在,各种诠释的主要分歧也在于此。按照互补性诠释,统计性是量子性的必然结果,或者说统计性是逻辑地包含在量子概念之中的。因为作用量子的存在本身就意味着原子过程不再是因果连续的,而是非连续的个体性过程,对于这种过程不可能进行因果描述,而只能对个体事件进行统计描述,而且量子公设还意味着观察对原子客体状态的不可控制的改变,从而使我们无法通过观察建立起客体运动变化的因果规律。量子概念中所蕴涵的时空的确定和能量动量的确定间的互斥关系,也使我们不可能给出客体的一个初始状态而对客体进行因果性的描述和预言,所以,量子性必意味着描述的统计性,对非连续的原子过程只能进行几率描述。描述恰当地反映了原子过程的非连续的变化的可能性而不是因果连续变化的必然性,它对原子客体的物理量的描述不再是具有确定值,而是按一定的统计分布具有一系列的值,这些值及其统计分布就是对原子客体的这一物理属性的描述,而量子力学对原子客体的物理量的值谱和统计分布的变化规律的描述就是对原子客体的统计变化规律的描述。这种由量子公设带来的统计描述也必然包含描述的互补性,只有通过时空描述和能量动量描述的互补性才能理解对原子客体的统计描述的这些特点。量子力学描述中波函数按薛定谔方程随时间的演化,往往给人一种感觉,它就是对客体的态或客体的统计性(或趋向性)的因果变化的描述。其实,薛氏方程并不能满足人们对因果描述的追寻,虽然我们可以从波函数中找到关于客体的所有属性的描述,但是波函数的随时间的演化并不代表客体的状态的因果变化,因为波函数与客体的行为并无对应关系,只有波函数的模方才代表客体的几率,波动方程只是以恰当的数学形式包含了对客体满足叠加原理的波动属性的描述,而这种描述的合理性是以客体作为粒子出现的几率对波函数的诠释来达到的,波动方程的解不是描述代表客体的波,而是描述代表客体的粒子的几率,波动方程描述中对量子描述的互补性就表现在这里。所以波动方程并不表示对客体的因果描述,而是以波动描述形式对粒子几率进行描述的波-粒互补性的表现。

3.对测不准关系的理解

测不准关系是量子力学中的一个重要内容,它是量子力学形式体系的一个直接数学结论,所以接受量子力学的人都能接受它,但对于这个数学公式的理解却千差万别。由于测不准关系表现为对物理量的测量的限制关系,所以,不少早期的量子力学教科书把它作为量子力学的一个核心内容和逻辑基础或操作基础,但是,正如karl r.popper所指出的,从薛定谔方程可导出测不准关系而从测不准关系导不出薛氏方程,这说明测不准关系应是某种基础的推论。在互补性诠释看来,测不准关系是量子公设所蕴涵的波粒二象性的结果,它表现的是经典概念的可定义的度间的互补关系。玻尔从关于作用量子的基本公式et=iλ=h出发,从其中所蕴涵的经典概念的矛盾推出关于这些经典概念的可定义的较大度间的普遍反比关系即测不准关系,从而使这个关系代表了时空和因果描述间的互补性的一种简单的符号化表示,测不准关系中共轭物理量的测量度间的反比关系恰当地反映了两物理量的互斥互补关系。

海森堡把他所发现的测不准关系看作是对经典概念的适用性的限制和对经典物理量的可确定程度的限制,并且正是由于这种不确定性导致因果律的失效和量子力学的统计描述,这种解释带有明显的操作论和实证论倾向,是一种只讲其然而不讲其所以然的解释。互补性诠释则给出了其所以然的说明,是对测不准关系的更深层的理解,避免了上述操作解释的弊端。如海森堡把物理量的测量的不确定度解释为测量的操作结果,而不是不同概念的可定义和可观察的互补性的结果,就会导致由于我们测量和认识能力的限制,使我们对本来可能存在值和因果性的客体只能作有限度和统计描述的实证论的和不可知论的问题。测不准关系所表征的一种物理量的测量中仪器的作用导致另一种物理量的不确定,证明了互补性诠释的仪器对客体的不可控制作用的说法,但是这种仪器的干扰作用是对原子客体进行描述所必需的,也是量子力学描述中所包含的,而不是对客体进行描述所要排除的。

popper的统计系综诠释认为,测不准关系的含义是两个正则共轭变量的标准偏差之积有一下限n/4π,它不象互补性诠释的测不准关系是从对理想实验的分析得到的,而是量子力学形式体系的逻辑数学推论,而且由于现在实际的对测不准关系的实验检验还不能达到个体粒子测量所要求的度,而往往是对许多粒子的统计平均的偏差的测量,所以统计系综诠释显得比互补性诠释有更坚实的经验支持。我认为,也许统计系综诠释较互补性诠释在数学上更严密,但互补性诠释对量子性的描述特点的分析显得更深刻。

4.对描述的完备性问题的回答和理解

完备性问题和测量问题是量子力学诠释之争的两个焦点问题,近几十年量子力学的基础研究主要围绕这两个问题展开且使问题不断演化,并挖掘出不少新的内容,互补性诠释无论对这两个问题的提出还是发展都有着直接的影响,而它对这两个问题的解释也成为互补性诠释本身的重要内容。

完备性问题是爱因斯坦与玻尔论战的第三次交锋中在著名的e-p-r论文中提出的。文中通过一个e-p-r实验论证了量子力学的描述不是对实在的完备描述。此文引起的首先是关于何为实在的讨论,后来讨论的焦点转移到关于e-p-r关联究竟意味着非局域性、非因果性还是不可分离性的问题。

e-p-r的论文从没有干扰而能预言的客体的物理属性为物理实在这一实在概念出发,通过大家所熟知的e-p-r实验,论证了量子力学描述不是对实在的完备描述。简述如下:相互作用后的两粒子,按量子力学描述,可以通过对及时个粒子的两非对易物理量的测量而不加干扰地得到对第二个粒子的同样的两非对易物理量的预言,既然是不加干扰且两粒子相距无限远,第二个粒子的两非对易量虽对应于及时个粒子的不同时的两次测量,但却是同时属于第二个粒子的物理实在,否则就得假设两粒子间具有超距作用;e-p-r又认为,完备描述应同时对同时存在的物理实在进行描述,但量子力学的描述却将对非对易的两个物理实在的描述看作互补的,即对一个进行描述时对另一个则不能进行同时的描述,所以e-p-r得出结论说,量子力学蕴涵着e-p-r悖论,其原因是量子力学描述不完备。

大量实验证实了e-p-r关联的存在,也证明了量子力学描述的成功,但如何解决e-p-r悖论却仍有两条道路可以选择,这便是修正e-p-r的两个前提,或者修正实在概念,或者修正分离原理(包括局域性原理和可分离性原理),前者是玻尔对e-p-r的回答,后者是隐变量实在论者对e-p-r关联的解释,虽然实在概念不同(一个是必包含有观察的实在;一个是不包含观察干扰的实在),但却都包含了仪器与客体的状态、客体与其有相互作用的其它客体的状态的相关。

互补性诠释通过修正实在概念,即认为实在必包含有观察的干扰来解决e-p-r悖论。正如互补性诠释的逻辑前提中所认为的,任何描述必是对观察的描述,任何预言也必是对观察的预言,任何实在也必是观察的实在而不是独立自在的实在,观察的作用必包含在实在之中,观察的作用不仅意味着仪器对客体的直接的物理作用,而且意味着一种仪器所特有的对仪器和所观察客体的整体的反映方式和描述方式,所以客体的描述和实在必与进行观察的仪器的类型相关,无论是直接的观察还是象e-p-r实验中的间接观察。这就是量子力学中的相对性,即客体状态与仪器的相对性。所以e-p-r实验中对第二个粒子的非对易物理量的预言所对应的是不同的测量,因而仍是不同时的实在,对它们的描述也是互补的描述而不能是同时的描述,所以这与量子力学描述并无矛盾。e-p-r关联所反映的是仪器类型和描述预言类型及实在类型的必然联系和仪器作用的不可细分所带来的仪器与客体实在的不可分,对第二个粒子的描述与对及时个粒子测量的关联,恰恰表明了观察和描述类型一致的要求和仪器与所描述客体实在的不可分性,不是仪器或及时个粒子对第二个粒子的超距作用使第二个粒子的实在发生了改变,而是它们的实在本身就是一个不可分的整体,它们的状态必然相关而不是独立的,所以互补性诠释在新的实在概念中包含了对可分离性原理的否定,解决了e-p-r悖论。其实,互补性诠释虽然是在对e-p-r悖论的回答中明确了它的新的实在概念,但它的仪器与客体的实在的不可分性,仪器与客体状态、描述的不可分性早在como演讲中作为互补性诠释、互补描述的逻辑前提就已经提出来了,难怪戈革先生说玻尔提前八年预先回答了e-p-r佯谬。

5.对测量问题的回答和理解

测量问题顾名思义就是关于测量过程的解释和描述问题,由于在微观测量中仪器对客体的作用使客体发生了不可忽略的改变,从而使微观测量不再象经典宏观的测量那样可以忽略仪器对客体的作用,直接将客体对仪器作用产生的仪器上的读数当作客体本身的状态,微观测量的结果是测量后客体的状态,它与测量前客体的状态不同。由测量引起的客体状态的突变叫波包收缩,如何解释和描述波包收缩亦即测量过程中客体状态的变化就是量子力学的测量问题。在量子力学描述中,描述客体状态的ψ(x)的变化有两种方式,一种是按薛定谔方程随时间的因果演变,另一种是测量时突变为所测力学量的一个本征态ψ[,n](x),也就是客体由各种可能值的几率分布变为按一定几率实现的确定值,如果测量前的统计分布

,测量后的统计分布

,其中各本征态的相干项消失了。为什么测量时客体状态要变为本征态?为什么相干项消失?这些问题成为量子力学测量问题的中心问题。各种测量理论大都力图通过分析仪器与客体的相互作用过程,并以薛定谔方程来描述这一过程以求找到问题的解答。互补性诠释认为,波包收缩和干涉项的消失是由一种描述方式向互补的另一种描述转换的结果,这种结果的出现是由互补的两种描述的定义的条件不同和观测中仪器和客体的相互作用关系不同造成的。

首先,ψ(x)所表示的是如果测量客体的位置,其位置分布将是怎样的,而不是说测量前客体的状态是怎样的,|ψ(x)|[2]表示的是在x处找到粒子的几率。算符x在坐标表象中对应于确定值x?的本征函数是δ(x-x?),将ψ(x)按x的本征函数展开即

,虽然包含有干涉项,但对于x[,i]处的几率|ψ(x[,i])|[2]与

是一样的,因为除x?[,n]=x[,i]时δ函数不为零外其余都为零,所以干涉项根本就不存在,|ψ(x)|[2]本身就是指测量位置时测得各种位置数值的几率。

其次,双缝实验中双缝后的波函数ψ(x)是两缝的波函数之和即ψ(x)=ψ[,a](x)+ψ[,b](x)但当测定究竟粒子穿过哪一个缝时就会使干涉项消失,这是因为ψ(x)=ψ[,a](x)+ψ[,b](x)所蕴涵的测量条件和描述方式与|ψ(x)|[2]=|ψ[,a](x)|[2]+|ψ[,b](x)|[2]所蕴涵的不同,前者是在双缝后的屏幕上测得的干涉情况,后者是在各单个缝后测得衍射的相加,由于在测粒子是否穿过一个缝时,测量仪器对客体的作用使客体的互补物理量发生了改变,如测粒子动量时就会使它的位置发生不可控制的改变而引起位置的一个不准量,这种不准量将引起相等的条纹位置的不准量,从而不再出现任何干涉效应。所以这里的干涉项的消失不是客体测量前的自身状态向测量后状态的突变,而是观察干涉效应向寻求粒子轨道的描述的转变,是一种观测条件下的态向另一种观测条件下的态的转变,它所表现的是互补性现象在互斥的实验装置下的不同表现。

对于一般力学量q,ψ(x,t)可按q的本征值所对应的本征函数展开,

其中u[,n](x)为q的本征值q[,1]、q[,2]…q[,n]的本征函数,按量子力学,当测量到本征值q[,1]时,系统就处于本征态u[,1](x),其几率是|a[,1](t)|[2],但在观测到确定数值前,量子力学给出的是ψ(x,t)而不是q[,1]和u[,1](x),但实际上,所给出的预言和实际测得q[,1]的几率|a[,1](t)|[2]是一致的,

,由于u[,n](x)是正交归一函数系,u[*,m](x)u[,n](x)=0,当m≠n时,所以干涉项不出现,

,这就是说,ψ(x,t)给出的就是测量时各本征值出现几率的分布,对客体状态的由ψ(x,t)到u[,n](x)的转变只是对客体测量后所有可能状态的几率分布的集合预定到其中一个状态元素按相同几率实现的描述变化,而并不对应客体本身的在有无测量的不同条件下的状态的变化。

所以按照互补性诠释,由ψ(x,t)到u[,n](x)的波包收缩不是测量引起的测量前后客体状态的变化。测量肯定会引起客体的变化,但这种变化已经包含在ψ(x,t)中,而且不同类型的测量会引起不同的变化,这由所测得的不同类型的本征值和本征函数表现出来,如果

中有干涉项,那么新的测量所引起的变化还会表现在干涉项的消失上。因此,波包收缩中干涉项的消失是由互斥的测量导致的由一种描述向互补的另一种描述的转换造成的,而波包收缩中由对许多可能值的预言到其中一个值的实现的波函数的变化,只是预言条件的变化引起的统计预言的变化,而不对应客体本身的状态变化。

由此可见,在测量的波包收缩过程中,引起客体状态变化的是不同的测量的实验条件和它们对客体的不同类型的作用,关于客体知识的变化引起的是对客体的统计预言条件的变化,而不是客体本身的状态变化,所以,这里没有任何主体的作用,也不需要引入主体意识的一瞥。冯.诺意曼之所以需要引入人的一瞥,是因为他把仪器在测量中的作用当作一个纯粹的量子客体,而没有看到在仪器身上所必须兼有的使确定的观察结果和经典概念的适当运用成为可能的特性,这样一来,就象冯氏所分析的那样,我们的观察和描述就必然要无限后退,直至求助于意识的一瞥。

当然,从量子现象的普遍性上讲,仪器也与微观客体一样具有量子性,但量子性又必须通过我们的宏观观察和经典概念来观察和描写,所以,仪器又是认识的一个逻辑起点,它必须能够直接被观察且能用经典概念进行描述。只有这样我们才能通过仪器来观察和描述微观客体。仪器的这种既是量子客体又是宏观客体的二重性是互补描述的基础。我们的认识必须从直接观察和由这种观察而定义的概念开始,但又必须对超出这种直接观察和日常概念框架的新现象进行逻辑一致的描述,这就必然导致概念框架和描述方式的改变。如果没有仪器的直接可观察性,就不能得到任何微观客体的经验、现象和可描述的东西,而如果没有仪器与客体的一致性,仪器也就不可能对客体的信息进行反映记录,所以,仪器的二重性是认识微观客体的必然要求。这并不会引起宏微分界问题(即把世界分为宏观和微观两个截然分裂的世界的问题),而只意味着一个可直接认识,而另一个则需借助于宏观仪器的观察,因为量子性是客观物体具有的普遍特性,只是由于这种特性超出了日常概念的理解范围而必须借助于对日常概念的修正来达到对它的理解。量子性的认识特殊性并不在于它的微观尺度,而在于它的非连续的、个体的观察条件与我们建立日常概念时的连续的、无限可分的观察条件不同,这种不同就需要我们对各概念的适用条件和相互关系进行修正。实际上,宏观客体的观察也一样需要借助于我们建立概念时的观察,这里不是宏观微观的不同,也没有二者的截然分界,只有所描述现象在多大程度上与我们建立概念的观察条件的符合程度的不同,所以,微观描述一方面是对经典描述的修正,一方面又以经典概念为基础,这不是一个逻辑矛盾,而是意味着微观描述必须以可直接理解的经典概念为起点,通过对这些概念在新的观察条件下适用程度和相互关系的修正来达到对微观现象的合理描述,这不是互补性诠释的矛盾,而是理解量子概念与经典描述的矛盾所必需的。

对于企图用量子理论来描述测量过程以求得到一个统一的描述的做法,互补性诠释认为是不会有结果的。因为我们对微观现象的观察和描述必须借助于我们的日常的观察和概念,而这种观察和概念建立的条件是无法形式化的。 

量子力学论文:论科学语言及量子力学的保守性

一、 科学 、语言和思维

在建立科学 理论 体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学 研究 自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。

要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以 分析 。

作为一种形式化理论的近 现代 科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。

这一自在的实在具有由它的“自明性”所保障的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保障的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。

上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学 哲学 家所认为的纯粹出于主体间的共同约定。科学的较高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。

在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少 目前 还不能放在客观实在的背景上。因此,在科学认识的层次上,思维形态可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保障,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。

科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。

二、数学语言

数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释 问题 。在 自然 科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的 应用 。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。

爱因斯坦曾分析过数学的公 理学 本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样, 欧几里德几何学才成为对刚体行为的一种描述。

爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。

首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。

其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。

由此可见,数学与自然科学的不同仅表现在对于它们的结果的性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。

事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。

三、物理学语言

虽然物理学是严格数学化的典范,但物理学语言的 历史 却比数学应用于物理学的历史要久远得多。

在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保障一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学 计算 ,它是人类世代传承的关于世界的知识的基元。

然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个 电子 ,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。

当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。

可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。

上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。

四、量子力学的语言问题

上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着 时代 的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。

量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。

量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有 规律 地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕

量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(beruhigunsphilosophie)〔3〕或“文学”〔4〕, 这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机 内容 。

薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释, 一种全新的语言是可以考虑的。他建议将n 个粒子组成的体系的波函数解释为3n维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。

固然,几率波的解释使得 理论 的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种 科学 语言而获得充分的意义。

玻姆的隐序观念与薛定谔的解释在语言 问题 上是相似的。他所说的“机械序”〔6 〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物 理学 的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。

这里所说的“基础”指的是,一种全新的语言涉及主客体间不同的相互介定。它涉及对客体的不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和 方法 的学科所能为的。

可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。

五、量子力学何种程度上是“革命性”的

量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种 应用 上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。

正统的量子力学学者们都意识到应该通过 发展 思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。

另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。

这些努力在很大程度上是具有保守性的。

我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的 分析 ,建立起时间、空间和运动的协变关系,从而推翻了时空、同时性等旧观念,并代之以新的时空观。重要的是,在这里,时空和同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于 历史 和偶然因素形成的一些含混概念,并给出了更加明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。

量子力学的情况则不同。它的保守性主要表现在:

及时,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。

第二,不连续性、非决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关 哲学 解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保障的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。

第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。

第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。

本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。

海森堡等人与新康德主义哲学家g·赫尔曼进行讨论时, 赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保障,逻辑是它的抽象和提升。

在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?

如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是 目前 形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕

量子力学论文:量子力学对经典科学世界图景的变革

摘 要:20世纪三次物 理学 革命之一的量子力学在诸多方面对经典 科学 世界图景进行了变革。量子力学突破了经典科学的机械决定论,使之转化为非机械决定论;使得科学认识方法由还原论转化为整体论;使得科学思维方式由追求简单性到探索复杂性;确立了科学活动中主客体互动关系。?

关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内 发展 起来的一整套观点、方法、学说。经典科学世界图景的较大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是 自然 界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]?

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动 规律 以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个 电子 一定在什么地方出现,而只能说它在某处出现的几率有多大。?

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。?

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及还原是不可能的,决定了还原论不能揭示世界的全貌。?

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]?

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与 现代 科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得 科学 思维方式由追求简单性 发展 到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过, 自然 界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而 现代 科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。?

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物 理学 所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。?

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。?

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]?

量子力学的发展表明,不存在一个客观的、的世界。存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

量子力学论文:浅谈量子力学的发展及应用

摘 要:量子力学是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、波尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。量子力学是现代物理学基础之一,在低速、微观的现象范围内具有普遍适用的意义。论述了量子力学的发展以及与量子力学相关的物理概念,讨论了量子力学研究的主要内容。

关键词:量子力学 量子力学发展 质子和粒子

前言:量子力学是对牛顿物理学的根本否定。l9世纪末正当人们为经典物理取得重大成就欢呼的时候,一系列经典理论无法解释的现象一个接一个地发现了。在经典力学时期,物理学所探讨的主要是那些描述用比较直接的试验研究就可以接触到的物理现象的定律和理论。在宏观和慢速的世界中,牛顿定律和麦克斯韦电磁理论是很好的自然定律。而对于发生在原子和粒子这样小的物体中的物理现象,经典物理学就显得无能为力,很多现象没法解释。

1.量子力学的起源

量子论起源于经典物理学体系中出现的反常的经验问题,以及相伴随的概念问题。量子力学的发展主要归功于四位物理学家。德国的海森伯于1926年作出了量子力学理论的及时种表述。利用矩阵力学的理论,求得描述原子内部电子行为的一些可观察量的正确数值。接着,奥地利的薛定谔发表了波动力学,是量子力学的另一种数学表述。同年,德国的伯恩对上述两种数学表述作出可以接受的物理解释,并首先使用“量子力学”这个名词。1928年,英国的狄拉克又把上面的理论加以推广,并与狭义相对论结合起来。

量子力学是对牛顿物理学的根本否定。牛顿认为物质是由粒子组成的,粒子是一个实体,量子力学认为粒子是波,波是无边无际的。牛顿认为宇宙是一部机器,可以把研究对象分成几部分,然后对每一部分进行研究。量子力学认为自然界是深深地连通着的,一定不能把微观体系看成是由可以分开的部分组成的。因为两个粒子从实体看可以分开,从波的角度他们是纠缠在一起的。牛顿认为宇宙是可以预言的,而量子力学认为,自然界在微观层次上是由随机性和机遇支配的。牛顿认为自然界的变化是连续的,量子力学认为自然界的变化是以不连续的方式发生的。

2.量子力学的形成

2.1 量子假说的提出

1900年l2月14日,德国物理学家普朗克在柏林德国物理学会一次会议上提出了黑体辐射定律的推导,这24小时被认为是量子力学理论的诞辰日。在推导辐射强度作为波长和温度函数的理论表达式时,普朗克假设构成腔壁的原子的行经像极小电磁振子,各振子均有一个振荡的特征频率。振子发射电磁能量于空腔中,并自空腔中吸收电磁能量,因此可以由在辐射平衡状态的振子的特性而推出空腔辐射的特性。而关于原子的振子,普朗克作了两项

根本的假设,现简述如下:

① 振子不能为“任何能量”,只能为:

(1)

式中:为振子频率,为常数(现称为普朗克常数),只能为整数(现称为量子数),(1)式断言振子的能量只能是一份一份的,而不能是连续的,即振子能量是量子化的。

②振子并不连续放射能量,仅能以“跳跃”方式放射,或称“量子式”放射。当振子自一量状态改变至另一态时,即放出能量量子。因此,当改变一个单位时,放射之能量为:

只要振子仍在同一量子状态,则既不放射能量也不吸收能量。

2.2 爱因斯坦利用量子假说揭开光电效应之谜

爱因斯坦根据普朗克的量子假设推理认为:如果一个振动电荷的能量是量子化的,那么它的能量变化只能是从一个允许的能量瞬时地跃迁到另一个允许的能量,因为根本不允许它具有任何中间的能量值。而能量守恒就意味着,发射出的辐射必须是以一股瞬时的辐射进发的形式从振动电荷产生出来,而不是电磁波理论所预言的长时间的连续波。爱因斯坦得出结论:辐射永远以一个个小包、小粒子的形式出现,但不是象质子、电子那样的实物粒子。这些新粒子是辐射构成的;它们是可见光粒子、红外光粒子、 射线粒子等等。这些辐射粒子叫做光子。光子和实物粒子不同:它们永远以光速运动;它们的静止质量为零;振动的带电粒子产生光子。

3.量子力学的宇宙观

在原子的量子理论的探讨中,从对氢原子的研究中发现,氢原子有无数个量子态。而电子多于一个的原子有更复杂的量子态,这些量子态都从求解适合于该特定原子的薛定谔方程,并且要求其场刚好环绕原子核产生驻波而求得。由于这些量子态的每一个都是有特定频率的驻波,并且波的频率和它的能量相联系,预期每个量子态只有一个特殊的能量。这就是说,预期任何一个态的能量不会有任何量子不确定性。可以对每个态的能量大小作合理的猜测。由于质子作用于电子的力是吸引力,要把一个电子向外拖到离原子核更远的地方就必须做功。因此电子离原子核越远,电子的电磁能量就越高。

量子理论的中心思想是,一切东西都由不可预言的粒子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。1927年,德国物理学家海森伯发现,这种波粒二象性意味着,微观世界具有一种内禀的,可以量化的不确定性。量子理论的较大特点也许是它的不确定性。量子不确定的实质是,相同的物理情况将导致不同的结果。哥本哈根学派解释的结论是,微观事件真的是不可预言的。而且,当我们说一个微观粒子的位置是不确定的时候,意思并不仅仅是我们缺乏有关其位置的知识。相反,意思是这个粒子的确没有确定的位置

结语:量子力学在低速、微观的现象范围内具有普遍适用的意义。它是现代物理学基础之一,在现代科学技术中的表面物理、半导体物理、凝聚态物理、粒子物理、低温超导物理、量子化学以及分子生物学等学科的发展中,都有重要的理论意义。量子力学的产生和发展标志着人类认识自然实现了从宏观世界向微观世界的重大飞跃。

量子力学论文:超流与超导理论及对应量子力学理论的比较研究

【摘 要】 量子力学中超流和超导系统的拉格朗日密度不是相对论协变的,我们可以把它看作是在一定条件下某种相对论协变的拉格朗日密度的近似。基于这个方法本文提出了一个新的拉格朗日密度,比原来的多出一些项。从量子力学拉格朗日密度得到的运动方程是不完整的,它忽略了一些项。相对论协变的拉格朗日密度则解决了这些问题,使运动方程是完整的。在此基础上本文提出并研究了更一般的超流和超导拉格朗日密度及其动力学。

【关键词】 超流 超导 拉格朗日密度 运动方程

1 超流和超导系统拉氏量及其运动方程

众所周知,目前量子力学的超流和超导系统的拉格朗日密度不是相对论协变的,我们给出了超流和超导系统的一般相对论协变的拉格朗日密度,给出将其近似后得到了非相对论协变的拉格朗日密度及相关的理论。从旧的非相对论协变的拉格朗日密度得到的运动方程是不完整的,它失去了一些重要项。新的运动方程可以近似为旧的运动方程,新的动量和能量可以在某些条件下返回到超流和超导系统的能量动量表达式,从一般的拉格朗日密度出发得到的能量和动量是的,没有忽略任何项。我们还推导出,在速度场的散度为零的条件下,经典的超流和超导拉格朗日密度和新的拉格朗日密度给出两种不同的表现形式,但可以得到相同的方程,并得到了它的解。使用两种不同的拉格朗日密度,我们得到不同的力,并且给出了两种超流和超导标量场理论的比较研究,及其相应的量子力学理论。

量子力学中的超流和超导系统的拉格朗日密度不是相对论协变的,可以把它看作是在一定条件下某种相对论协变的拉格朗日密度的近似。基于这个方法,我们提出了一个新的拉格朗日密度,它比原来的多出一些项。计算表明,从原来的拉格朗日密度得到的运动方程是不完整的,它自动消去了二阶项。我们的拉格朗日密度则解决了这些问题,使得运动方程更完整。在附加的近似条件下,它可以近似为现行量子力学中超流和超导系统的运动方程。

2 超流超导守恒流与能动张量

从不协变和协变的拉格朗日密度出发,我们分别得到了现行的不严格的守恒流、动量和能量形式以及新的严格的守恒流、动量和能量形式。在一定条件下,后者可以返回到现行量子力学的超流、超导的动量和能量形式。这进一步说明,现行量子力学的超流和超导系统的拉格朗日密度可以通过本文的拉格朗日密度得到。可以看到原来的拉格朗日密度得到的能量和动量忽略了一些高阶项,它们是近似的。从我们的拉格朗日密度得到的能量和动量是的,没有忽略高阶项,原来的能量动量只是我们新的能量动量的一个特例。

因此,使用严格的、完整的和相对论协变的拉格朗日密度,通过严格的推导,我们为当前超流和超导理论做了修正。也就是说,我们给出了完整和严格的运动方程、能量梯度、渗透动量和马格努斯力。可以看出,目前的超流和超导理论是不严格的,这使得它做了一些近似,并且失去了一些重要的项。然而,我们表明,这些项具有重要的物理意义,不应被丢掉。我们提出了一种新的一般的拉格朗日密度和严格的计算方式,通过这种方式,这些在旧的超流和超导理论中已丢掉的项都被保留了下来,因而一般的超流和超导体理论是完整的。这些新出现的项和超流、超导条件对超流、超导和高温超导的研究具有重要参考价值。因此,我们的工作不仅对超流和超导在理论上有很重要的参考价值,同时对超流和超导的实验也具有非常重要的指导意义。

3 结语

本文在经典超流和超导拉格朗日理论的基础上,提出了一个相对论协变的新的拉格朗日密度,并且由新的拉格朗日密度得到了新的运动方程以及对应的动力学。可以看出,新的拉格朗日密度更加对称。这说明之前在旧拉格朗日密度基础上的对超流和超导的计算是不完整的,而用新的拉格朗日密度进行计算则避免了这一不足。这对于理论的修正和实验的指导都具有很重要的意义。

量子力学论文:类比教学方法在量子力学课程中的教学探讨

摘要:本文通过把经典力学、量子力学作对比,论述它们之间的类似之处。在量子力学教学实践中,重点强调量子力学和经典力学的相似点,将类比教学法应用于实践教学中,让学生有意识地接受新知识,对于培养学生发散思维、巩固学生已学知识发挥了一定的作用,并取得了良好的教学效果。

关键词:类比教学法;量子力学;应用探究

量子力学作为描写微观物质结构、运动与变化规律的学科,是现代物理学的基础之一,而且在化学和很多近代技术中也有广泛应用。量子力学是在旧量子论的基础上发展起来的,对于量子数大到一定的极限的量子系统,可以用经典理论描述。量子力学、经典力学既有区别也有联系,从这些区别和联系入手可以使学生更加容易理解量子力学的新知识。基于此,本文在分析量子力学和经典力学的相似点的基础上,探究并实践了如何让学生加深理解的问题。将类比教学法应用于量子力学的实践教学当中,这样既可以丰富教学内容,提高学生积极性,又可以培养学生创造性思维,同时还可以巩固学生以前学过的经典物理学的相关知识,进而能提升量子力学课教学质量。

一、类比教学法

类比方法是根据两类物理现象在某些性质的相同或相似处,推断出这两类物理现象的另一些性质也相同或相似的一种逻辑推理方法。类比法是专业术语,指由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法。在我们学习一些十分抽象地看不见、摸不着的物理量时,由于不易理解,我们就拿出一个大家能看见的且与之很相似的事物来进行对照学习。类比方法强调在分析、发现不同事物的共同性质的基础上,把一个事物的属性转移到另一类事物上。类比的过程具有创造性,是科学家常用的思维方法。

二、量子力学与经典力学的相似点及类比教学法的应用

物理学研究的目的是总结、概括各种不同物质在时空中的运动规律,并且把这些规律用数学公式表示出来。量子力学和经典力学的研究对象不同,而宏观和微观物质自身性质的巨大差异,造成了学习量子力学相比于学习经典力学的困难。而另一方面,把量子力学和经典力学类比,找到它们之间的共同点,再进一步推理,可以更加容易理解量子力学理论。在处理物体直线运动或是自由落体运动时,我们自然会想到在(x,y,z)所组成的空间坐标系中,根据牛顿运动学定律,分析物体的状态随时间的变化情况。每一时刻,物体的位置可以用三维空间里的任何一个点的坐标表示出来。为了方便地处理不同物理问题,空间直角坐标系可以变换成柱坐标系、球坐标系。处理物体的碰撞时,把实验室坐标系换成质心坐标系,利用动量守恒原理,也可以使表达式更加简单,易于求解。因此,选择的坐标系,可以让复杂的问题变的简单。在微观世界中,量子力学仍然需要在恰当的坐标系中讨论物理问题。在经典力学中,物体处在某个状态的位置和角动量可以被的计算。但是,对于微观体系,比如一个电子在原子中的环绕原子核运动,它的位置、动量不能同时确定。当该电子处于定态时,它的能量不会随时间变化,即它的能量守恒。这时,我们可以把电子放在能量坐标系中讨论。在数学中,希尔伯特空间是欧几里得空间的一个推广,它不再局限于有限维的情形。在量子力学中,能量坐标系被称为能量表象。量子力学中常见的表象包括:动量表象,能量表象,粒子数表象等。在矩阵力学中,把状态Ψ看成是一个列向量。选择一个特定的Q表象,就相当于选取一个特定的坐标系。■的本征函数u1(x1),u2(x2),u3(x3)…un(xn)就是这个表象的基矢,相当于笛卡尔坐标系的单位矢量i,j,k;波函数a1(t),a2(t)…an(t),是态矢量Ψ在Q表象中沿基矢方向的“分量”,正如A沿i,j,k三个方向的分量是(Ax,Ay,Az)一样;■本征函数的归一性,类似于几何坐标系的i・ij・jk・k1;而本征函数的正交性,类似于几何坐标系中i・ji・kj・k0[5]。在量子力学中,■的本征函数有无限多,称态矢量所在空间是无限维的希尔伯特空间。由此看来,几何坐标和力学表象是同一个概念,只是处理不同的问题时,选择不同的坐标系可以减小复杂程度。在量子力学中如果知道了状态的波函数,那么粒子处于空间某点的几率,以及力学量的平均值均可求得,因此说波函数描述粒子体系的运动状态。而对于同一个状态,在不同的表象中,有不同的波函数形式。量子力学的一种基本假设是波函数满足态叠加原理:

ψc1ψ1+c2ψ2+K+cnψn (1)

此式的物理意义是量子体系的一般状态是所有本征态的线性叠加。Ψn是体系的可能态,相应的概率分别为|ck|2,而且满足归一化■c■■1。在经典力学中,伽利略变换可以变换不同的惯性系。量子力学则借助幺正矩阵来实现不同表象之间的变换。那什么是幺正矩阵呢?简单来说就是满足S+S-1的矩阵称为幺正矩阵,而由幺正矩阵所表示的变化称为幺正变换。所以由一个表象到另一个表象的变换是幺正变换。如果以F'表示算符■在B表象中的矩阵,F表示■在A表象中的矩阵,则通过幺正变换可得:F'S-1FS (2) 也就是说力学量F在A表象中的矩阵左右分别乘幺正矩阵的逆矩阵和原矩阵就可以把力学量F转换到B表象中去。量子力学和经典力学间的相似点还有很多。量子力学类比教学法的核心是,注意强调量子力学与经典力学的必然联系,引导学生积极思考、探索量子力学新知识的本质,把新知识与已经掌握的量子力学知识类比,深入透彻的理解量子力学的假设、定义和公式。

综上所述,把量子力学与经典力学做类比,就是要发掘出、并重点讲解它们之间的相似点,让学生在这些相似点的基础上,主动的思考分辨量子力学和经典力学的相同和不同。本文以表象为例,把表象变换与数学上几何坐标进行了类比,讲述了对表象及其变换的理解。总之,在讲授抽象的量子力学时,把它和经典物理进行类比可以帮助学生更好的理解、掌握新知识,能起到很好的教学效果,也有助于培养学生的创新精神。但类比法不是万能的,要灵活、恰当地应用到位,才能较大程度地发挥它的积极作用。

量子力学论文:量子力学教学方法研讨

摘要:量子力学是物理本科专业一门重要的理论课程,但由于其抽象、深奥、难学也难教,对于学生的学习增加了难度。文章介绍了大学物理老师在讲授量子力学中的一些心得,以及如何使学生掌握基本知识的同时,提高学生的思维能力和对量子力学的兴趣。

关键词:量子力学;教学方法;教学改革

量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。大批的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。这是量子力学教学中遇到的主要问题。作者从几年的教学中摸索到一些经验,供大家参考。

一、教学内容和方法的改革

传统的本科量子力学教学一般包括了三大部分:及时部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。以上三个部分相互联系构成了量子力学的整体框架[3]。随着量子力学的进一步发展,产生了很多新的现象和成果。例如量子通讯、量子计算机等等。许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。在教学方法上也应该按照量子力学的特点有所改革。由于量子力学的许多观点和经典力学不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。

二、重视绪论课的教学

兴趣是好的老师。作为量子力学课程的及时节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从及时节课开始培养。在上绪论课时作者主要通过以下几点来抓住学生的兴趣。首先列举早期与量子力学相关的诺贝尔物理学奖。诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。

三、重视物理学史的引入

随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个的黑体辐射公式。而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。

四、教学手段的改革

量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。而且在授课过程中有大量的公式推导过程,非常的枯燥。所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。但在具体授课过程中不能地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。

五、加强教学过程的管理

教学过程包括课前、课上和课后,在学生学习量子力学的过程中可以重点利用课堂上的引导和启发,促进学生课前和课后对量子力学的学习。预习是对于学习任何一门学科都很重要,当然,量子力学也不例外,预习是一个提前自我学习的过程,能够大概了解将要学习内容的大概,这样不仅能够更正理解有偏差的部分和加强正确理解部分的记忆,还能够有重点地听课,对于学习量子力学是很重要的。预习也是一个学生独立学习思考的过程,对于增强学生接受新事物的能力、形成自己的观点以及以后学生的终身事业的建立都是很重要的[8]。由于量子力学在理解上难度较大,很难激起学生的学习兴趣,这就要求课堂上教师用更好的上课方式对学生加以引导和启发。活跃的课堂教学气氛和充分的讨论在教学中是必须的,量子力学的课堂一定要避免成为一言堂,要适当地引导和鼓励学生提出问题,这样有助于激发学生的思维能力,帮助学生形成新的思维方式,比如:逆向思维和非规范性思维等,然后在教师的引导下结合实际进行讨论,让学生充分意识到量子力学与我们的生活息息相关,因此,教师可以多介绍一些近代物理、生命科学、化学、现代分析技术和材料科学等学科中量子力学的应用部分,让学生可以真切地感受到量子力学对我们生活的影响,此外,课上可以分配小组每节课前讲述量子力学的近期发展动态,分组的时候可以根据不同基础和不同学习能力的学生来分组,这样增强学生探索性学习的能力和搜集信息的能力[9]。另外,作者建议,引入商业上的PK机制,下课之前教师分配章节,并且对学生加以引导,让相同程度的学生之间进行量子力学认知上的小竞赛,对赢的同学进行奖励,或者输的同学上讲台唱歌,这样做不仅能够活跃课堂氛围,效果好的话能够激发学生对量子力学的极大兴趣。

量子力学的教学不仅仅只是因为它是近代物理的一大基础,更主要的价值是在学习过程中培养出来的从事科学研究的方法和对自然科学的兴趣,这些是其他课程所不能替代的。希望能通过我们广大物理教师的不断摸索,对教学的内容和方法进行改革,使学生更好地掌握这门认识世界和改造世界的武器。

量子力学论文:量子力学课程教学改革与实践

摘 要:量子力学课程是工科电类专业基础课程的重要组成部分。课程的物理概念抽象,应用的数学知识较多,历来都是反映“老师难教、学生难学”的课程。结合课程组多年的教学和研究的经历,从激发学生兴趣,构建物理图像,结合学科近期发展成果等方面对课程的教学进行了有益的探索和思考。实践表明,这样的教学模式得到了学生的肯定,取得了良好的效果。

关键词:量子力学 教学内容 教学方法

量子力学课程是工科电类专业的一门非常重要的专业基础课程。通过该课程的学习,使学生初步掌握量子力学的基本原理和基本方法,认识微观世界的物理图像以及微观粒子的运动规律,了解宏观世界与微观世界的内在联系和本质的区别。量子力学课程教学质量的好坏直接影响后续的如“固体物理学”、“半导体物理学”、“集成电路工艺原理”、“量子电子学”、“纳米电子学”、“微电子技术”等课程的学习。

量子力学课程的学习要求学生具有良好的数学和物理基础,对学生的逻辑思维能力和空间想象能力等要求较高,因此要学好量子力学,在我们教学的过程中,需要充分发挥学生的学习主动性和积极性。同时,随着科学日新月异的发展,对量子力学课程的教学也不断提出新的要求。如何充分激发学生的学习兴趣,充分调动学生的学习主动性和能动性,切实提高量子力学课程的教学质量和教师的教学水平,已经成为摆在高校教师目前的一项重要课题。

该课程组在近几年的教学改革和教学实践中,本着高校应用型人才的培养需求,强调量子力学基本原理、基本思维方法的训练,结合物理学史,充分激发学生的学习积极性;充分利用熟知软件,理解物理图像,激发学生学习主动性;结合现代科学知识,强调理论在实践中的应用,取得了良好的教学效果。

1 当前的现状及存在的主要问题

目前工科电类专业普遍感觉量子力学课程难学,其主要原因在于:及时,量子力学它是一门全新的课程理论体系,其基本理论思想与解决问题的方法都没有经典的对应,而学习量子力学必须脱离以前在头脑中根深蒂固的“经典”的观念;第二,量子力学的概念与规律抽象,应用的数学知识比较多,公式推导复杂,计算困难;第三,虽然量子力学问题接近实际,但要学生理解和解决问题,还需要一个过程;由于上述问题的存在,使初学者都感到量子力学课程枯燥无味、晦涩难懂,而且随着学科知识的飞速发展,知识的更新周期空前缩短,在有限的课时情况下,如何使学生在掌握扎实的基础知识的同时,跟上时代的步伐,了解科学的前沿,以适应新世纪人才培养的需求,是摆在我们教育工作者面前的巨大挑战。

2 结合物理学史激发学生学习兴趣

兴趣是好的老师,在大学物理中,谈到了19世纪末物理学所遇到的“两朵乌云”,光电效应和紫外灾难,1900年,普朗克提出了能量子的概念,解决了黑体辐射的问题;后来,爱因斯坦在普朗克的启发下,提出了光量子的概念,解释了光电效应,并提出了光的波粒二象性;德布罗意又在爱因斯坦的启发下,大胆的提出实物粒子也具有波粒二象性;对于物理学的第三朵乌云“原子的线状光谱,”玻尔提出了关于氢原子的量子假设,解释了氢原子的结构以及线状光谱的实验。后来还有薛定谔、海森堡、狄拉克等伟大的物理学家的努力,建立了一套崭新的理论体系-量子力学。在教学的过程中,适当穿插量子力学的发展历史以及伟大科学家的传记故事,避免了量子力学课程“全是数学的推导”的现状,这样激发学生的学习兴趣和学习热情,通过对伟大科学家的介绍,培养刻苦钻研的精神。实践表明,这样的教学模式大大提高了学生的学习主动性。

3 结合熟知软件化抽象为形象

量子力学内容抽象,对一些典型的结论,可以用软件模拟的方式实现物理图像的重现。很多软件如matlab、c语言等很多学生不是很熟练,而且编程较难,结合物理结论作图较为困难;Excell是学生常用的软件之一,简单易学却功能强大,几乎每位同学都非常熟练,我们充分利用这一点,将Excell软件应用到量子力学的教学过程中,取得了良好的效果。

如在一维无限深势阱中,我们用解析法严格求解得到了波函数和能级的方程。而波函数的模方表示几率密度。我们要求学生用Excell作图,这样得到粒子阱中的几率分布,通过与经典几率的比较(经典粒子在阱中各处出现的几率应该相等)和经典能级的比较(经典的能量分布应该是连续的函数),通过学生的自我参与,充分激发了学生的求知欲望;从简单的作图,学生深刻理解了微观粒子的运动状态的波函数;微观粒子的能量不再是连续的,而是量子化了的能级,当n趋于无穷大时微观趋向于经典的结果,即经典是量子的极限情况;通过学生熟知的软件,直观的再现了物理图像,学生会进一步来深刻思考这个结论的由来,传统的教学中,我们先讲薛定谔方程,然后再解这个方程,再利用边界条件和波函数的标准条件,一步一步推导下来,这样的教学模式有很多学生由于数学的基础较为薄弱,推导过程又比较繁琐,因此会逐步对课程失去了兴趣,这也直接影响了后面章节的学习,而通过学生亲自作图实现的物理图像,改变了传统的“填鸭式”教学,较大限度的使学生参与到课程中,这样的效果也将事半功倍了,大大提高了教学的效果。

4 结合科学发展前沿拓宽学生视野

在课程的教学中,除了注重理论基础知识的讲解和基础知识的应用以外,还需介绍量子力学学科前沿发展的一些动态。结合教师的教学科研工作,将国内外反映量子力学方面的一些近期的成果融入到课程的教学之中,推荐和鼓励学生阅读反映这类问题的网站、科研文章,使学生了解量子力学学科的发展前沿,从而达到拓宽学生视野,培养学生创新能力的目的。例如近年兴起并迅速发展起来的量子信息、量子通讯、量子计算机等学科,其基础理论就是量子力学的应用,了解了这些发展,学生会反过来进一步理解课程中如量子态、自旋等概念,量子态和自旋本身就是非常抽象的物理概念,他们没有经典的对应,通过对实验结果的理解,学生会进一步理解用态矢来表示一个量子态,由于电子的自旋只有两个取向,正好与计算机存储中二进制0和1相对应,这也正是量子计算机的基本原理,通过学生的主动学习,从而达到提高教学质量的目的。另外我们还要介绍量子力学在近代物理学、化学、材料学、生命学等交叉学科中的应用,拓宽学生的视野。

5 结语

该课程组经过多年的教学实践和教学改革,已经逐步形成了一套行之有效的教学方法,在使学生充分理解和掌握量子力学的基本概念和基本思想的基础上,初步具备利用量子力学基本理论进行分析和解决相关实际问题的能力,改革和研究的结果对于推动高校工科电类专业的量子力学课程的教学具有一定的理论和实践指导意义。

量子力学论文:牛顿、爱因斯坦以及量子力学

如果我们想知道未来,唯有通过行动,因为未来不可预知。

19世纪末,20世纪初不但是世纪的转折点,更是人类知识体系的转折点。哲学上,尼采代表的存在主义哲学对理性主义发出了怒吼,那个抽象的上帝已死,感性的“人”回归。而在物理学上,一个叫爱因斯坦的年轻人和他同时代的物理天才们正在对牛顿体系发起反抗。尽管,爱因斯坦将自己做了传统理论的捍卫者,并对量子物理产生抗拒心理。不可否认的是,这些天才科学家已经整体被认为是新世界的奠基人。

从古希腊哲学到牛顿力学

对于过去300年来,人类对于牛顿体系的依赖,波普尔有过一句相当的描述:“自然和自然法则在夜间隐去。上帝说,让牛顿来!于是,一切变得光明起来。”

从古希腊时期,哲学家们就开始思考自然运行的法则。比如,物体下落是因为它们有趋于宇宙中心的本能(此时,人们认为地球就是宇宙的中心)。物体越重,本能越强,所以,重的物体会下落得更快。天体的运行估计是圆形的,因为这是天堂的形式。

古希腊的科学观由哲学家建立,缺少实验精神和更多的审美诉求。因此,在那个时期,出现了百家争鸣的局面。直到中世纪,亚理斯多德的科学观和托勒密的“地心说”被宗教所采用,成为描述天堂和地狱的依据。

16世纪,哥白尼和开普勒分别利用算法技巧对宗教宇宙观发起挑战,“地心说”在数学上被推翻,“日心说”掀起了新的知识革命。但是,真正对后世物理思想产生影响的是帕多瓦大学的一位年轻教授,年仅27岁的伽里略。作为哥白尼的信徒,为了避免布鲁诺所遭受的宗教迫害,他放弃了哥白尼学说。但是,他直接对地心说的源头,也就是亚理斯多德的“本能论”进行驳斥。他的驳斥方法在当时被认为是开天辟地,即“实验”。其中,最著名的当属比萨斜塔的落球实验。

伽里略对物理学发展的意义极为深远:科学只应该处理能被证实的事情,直觉和是没有意义的。科学终于摆脱了空想和计算,带着“实验”精神取得了前所未有的进步。

1647年,伽里略去世,艾萨克・牛顿出生。这个声称自己是通过观察苹果落地而发现万有引力的天才,一手建立的“钟表”世界观影响了人类的方方面面。甚至可以说,伟大的工业革命以及曾经牢不可破的资本主义世界都是牛顿定律的产物。

牛顿世界观最直接打破了中世纪的物质世界和精神世界合一的世界观,比如天堂也无法摆脱物理规律的束缚。自牛顿开始,物理学就一直在构建一个日益精巧,且以力学为基础的世界观。整个宇宙被假定为一个巨大的机械钟表,所谓科学就是无限地去发现隐藏其中的错综复杂的运转细节。借助于万有引力、热力学、光学,物质世界的每个方面,原则上都可以显示为一个巨大的、联动的、合乎逻辑的机械装置的一部分。每一个物理原理都能产生可预知的结果,而每一个结果都能追溯出的原因。

物理学家们认为穷尽一生探索的因果关系,正是我们了解过去和未来的线索。也正是因果关系,让爱因斯坦面对新的知识革命时纠结万分。没有了因果,科学探索还有什么意义吗?

牛顿体系的影响力远远超出了物理学范畴,社会学正是建立在“原子论”基础之上,引力被亚当斯密直接引用到了政治经济学中,生出了那只“看不见的手”。

牛顿理论也被称为经典物理理论,它在人类冲破宗教统治的过程中,起到了根本性作用,它贯穿了整个资本主义的黄金岁月,显得如此坚固。

惴惴不安的爱因斯坦

然而,物理学界在19世纪的24小时,迎来了其崭新的篇章。英国著名物理学家开尔文爵士在欧洲物理学家的聚会上发表了著名的“两朵乌云”说。他认为,物理学的整体性日趋完善,但是“地平线上还有两朵乌云”。正是这两朵乌云,使得几乎封顶的物理学体系土崩瓦解。

“及时朵乌云出现在光的波动理论上”,“第二朵乌云出现在关于能量均分的麦克斯韦-玻尔兹曼理论上”。开尔文爵士所言的及时朵乌云,日后演化成了爱因斯坦的相对论,第二朵乌云则是量子力学。

19世纪,人们发现了光的波动性,按照经典物理学理念,光波的传播和水波一样,需要在某种介质中传播,这就是所谓的“定域性”。于是,“以太说”再次盛行(“以太”本是一个哲学概念,是古希腊人想象出来的空间介质)。在以太中静止的物体为静止,相对以太运动的物体为运动。

以太的假设事实上代表了传统的观点:电磁波的传播需要一个“静止”的参照系,当参照系改变,光速也改变。这个“静止系”就是“以太系”。其他惯性系的观察者所测量到的光速,应该是 “以太系”的光速,是这个观察者在 “以太系”上的速度之矢量

既然“以太”存在于宇宙之间,那么一定可以通过对光波的测量,来显示出地球相对于太阳的运动。然而,这样的实验以失败告终。按照“以太说”,地球并没有运动。这个失败的实验震动了整个物理学界,像一朵乌云一样,笼罩在经典物理理论大厦的上空。

年轻的爱因斯坦在20世纪初,发表了狭义相对论,他大胆抛弃了“以太说”,电磁场本身就是物质存在的一种形式,而场可以在真空中以波的形式传播。也就是说,没有静止的空间。光速则是恒定的,且是速度最快的物质。

而要理解光速为何在所有的参照体系中都相同,就必须改变牛顿的时空观。

牛顿认为时间和空间是的,毫无关联的存在。时间就像河流,延续不断,好比“逝者如斯夫”,它不依赖于我们的感慨而减缓流逝。但是,爱因斯坦抛弃了以太论,也就抛弃了静止的概念。对时间的测量取决于观测者的运动。由于“空-时”体系的稳定性,时间变成相对的了,空间自然也就变成相对了。

虽然时间和空间各自不再,但是它们的测量关系的稳定性导致了光速的不变。举一个例子:把一把尺子放在飞驰的火车上。如果我们在看台上,这列火车飞驰而过,那么尺子的长度会缩短,我们感受到的时间流逝得也会很快。但是,时空之间的测量关系保持不变。正如爱因斯坦的老师闵可夫斯基在提出四维理论时所说,“空间本身和时间本身都注定要蜕变为纯粹的幻影,只有两者的某种联合才能保持独立的实在性。”

狭义相对论的另一个重要定律是,质量和能量是一回事,两者可以进行转换。空间和时间随物质运动而变化,质量随运动而变化,质量和能量的相互转化。

爱因斯坦虽然不愿承认自己是在革牛顿的命,但事实上,正是他对牛顿体系中时空的重新定义,以及质量与能量的转换,推动了量子力学体系的建立。量子力学是开尔文爵士说的第二朵乌云。

1926年,量子力学的奠基人海森博格在柏林和偶像爱因斯坦进行了一次谈话,第二年,他便提出了量子力学的基础性概念“测不准原理”。海森博格认为:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越,动量的测定就越不,反之亦然。”

这是一个彻底摧毁牛顿体系的原理,即概率取代了确定性。如果说牛顿构建的世界是齿轮之间高度咬合的精密机器的话,海森博格带来的则是一个混沌的,对结果无法预知的生命体。因果论彻底失效,反而是带有中国传统文化味道的阴阳论占据了主导地位。定量与位置的关系,就像阴阳,彼此矛盾,此消彼长。

在量子力学确立的过程中,最为知名的假说便是“薛定锷的猫”。即在打开盒子的一刹那,我们无法预知猫是死还是活,只能认为它是既死又活。量子力学推翻了牛顿体系中的“实在性”常识,也超越了唯物主义和唯心主义的争辩局面。

如果我们想知道未来,唯有通过行动,因为未来不可预知。

同时,量子力学对空间概念进一步颠覆。牛顿认为,重力来自于重力场,由地球统一发出。量子力学认为,磁场本身就是一种力。而在空间中,分布着各种各样的场。比如,在时间和空间形成的曲面中,地球就像脸盆中的乒乓球,始终围绕着太阳运行,而不是引力在起作用。

场的理论颠覆了牛顿体系中单调的力学原理,物质在场里不是靠外力相互作用,而是本身具有的能量场在相互联系。而场的能量,则来自于活跃的量子自身。其在管理学中的延伸,便是野中郁次郎的场理论。

空间-时间、概率性以及场,这三大理论支撑起了自20世纪初发展起来的新科学,同时也掀起了托马斯・库恩所说的新范式革命。就像牛顿体系对人类世界的影响一样,新科学范式带来了全新的关于组织,关于个人的世界观。

(作者单位 毕节职业技术学院)

量子力学论文:材料物理专业量子力学教学方法探索与实践

摘 要 针对材料物理专业学生学习量子力学课程所面临的困难,通过对近年来教学实践的总结,从教学内容、教学方法和手段进行探索和实践,调动了学生学习的积极性和主动性,取得了较好的教学成果。

关键词 量子力学 教学内容 教学方法

0 引言

量子力学是研究微观粒子(如原子、分子、原子核和基本粒子等)运动规律的物理学分支学科,它和相对论是矗立在20世纪之初的两座科学丰碑,一起构成了现代物理学的两块理论基石。相对论和量子力学彻底改变了经典物理学的世界观,并且深化了人类对自然界的认识,改造了人类的宇宙观和思想方法,它使人们对物质存在的方式及其运动形态等的认识产生了一个质的飞跃。

量子力学是材料物理专业一门承前启后的专业基础必修课:量子力学的教学必须以数学为基础,包括线性代数、概率论、高等数学、数理方法等,其又是后续课程材料科学基础、固体物理、材料物理、纳米材料等的理论基础。可见,量子力学课程在材料物理专业的课程体系中占有非常重要的地位,学生掌握的程度直接影响后续专业课程的学习。作者近年来一直从事量子力学的教学工作,针对量子力学课程教学过程中存在的现象和问题,进行了较深入细致的思考与探讨,在实际教学过程中对本课程的教学方法进行了探索与实践,收到了较好的教学效果。

1 量子力学教学面临的难点

量子力学研究的是微观粒子的运动规律,微观粒子同宏观粒子不同,看不见,摸不着,只有借助于探测器才能察觉它的存在和属性。材料物理专业学生之前学习的基本上是经典物理,而量子力学理论无法用经典理论进行解释,学生对此感到难于理解。因此,经典物理的传统观念对学生思想的束缚,构成了学生学习量子力学的思想障碍;量子力学可以说无处不“数学”, 由于材料物理专业学生在数学基础方面与物理专业学生相比较为薄弱,在学习过程中普遍感到数学计算繁难,对大段的数学推导表现出畏难情绪。可见,量子力学对数学的精彩诠释却构成了学生学习量子力学的心理障碍。这两大障碍势必会影响量子力学和后续课程的学习。在这种情况下,我们应当怎样开展量子力学教学从而使学生重视并努力学好该课程就成了一个严峻的挑战。

2 明确教学重点和难点、有的放矢

要讲授一门课程,首先应该对课程内容有一个清晰的认识。量子力学的内容可以包括三个方面:一是介绍产生新概念的历史背景及一些重要实验;二是提出一系列不同于经典物理学的基本概念与原理,如波函数、算符等概念和相关原理,是该课程的核心;三是给出解决具体实际问题的方法。三部分内容相互联系,层层推进,形成完整的知识体系。作为引导者,教师应在这三部分内容的教学过程中帮助学生成功地突破两大束缚。及时部分内容教师应考虑如何引导学生入门,从习惯古典概念转而接受量子概念。在讲授这部分内容时要将重点放在“经典”向“量子”的过渡上,引出量子力学与经典力学在研究方法上的显著不同:经典力学是将其研究对象作为连续的不间断的整体对待,而量子力学将其研究对象看成的间断的、不连续的。学生在学习这部分时应仔细“品尝”其中的“滋味”,以便启发自己的思维自然地产生一个飞跃,完成思想的突破。第二、三部分是量子力学学习的重点与难点,并且涉及大量的数学推导,教师应采取适当的教学手段,突出重点,强调难点。在物理学研究中,数学只是用来表达物理思想并在此基础上进行逻辑演算的工具,不能将物理内容淹没在复杂的数学形式当中。通过数学推导才能得到的结论,只需告诉学生,从数学上可以得到这样的结果就可以了,无需将重点放在繁难的数学推导上,否则会使学生本末倒置,忽略了对量子力学思想的理解。这样的教学可以帮助学生突破心理障碍,不会一提量子力学就想到复杂的数学推导,从而产生抵触情绪。成功地突破这两大障碍,是学习量子力学的关键。

3 教学方法的改革

3.1 利用现代技术改进教学手段

传统的板书教学能够形成系统性的知识框架,教师在板书推导的过程中,学生有时间反应和思考,紧跟教师的思路,从而可以详细、循序渐进地吸收所学知识,并培养了良好的思维习惯。但全程板书会导致上课节奏慢,授课内容有限。目前随着高校教学改革的推进,授课学时相继减少,对于传统教学方式来讲,要完成教学任务比较困难。这就要借助现代科技手段进行教学改革,包括多媒体课件的使用和网络教学。但是在量子力学教学中,一些繁杂公式的推导,如果使用多媒体课件,节奏会较快,导致学生目不暇接,来不及做笔记,更来不及思考,不利于讲授内容的消化吸收。鉴于此,对于量子力学课程,教学过程应采用板书和多媒体技术相结合的方式,充分发挥二者的优势,调动学生的学习积极性。

3.2 建设习题库

量子力学课程理论抽象,要深入理解这些理论,在熟练掌握教材基本知识的基础上,需要通过大量习题的演练,循序渐近,才能检验自己理解的程度,真正学好这门课程。因此在教学过程中,强调做习题的重要性。有针对性地根据材料物理专业量子力学的教学大纲和教学内容,参考多本量子力学教材和习题集,利用计算机技术建设量子力学习题库,题型包括选择、填空、证明、简答和计算题等,内容涵盖各知识点,从简到繁、由浅至深。题库操作方便,学生可自行操作,并对所做结果进行实时检查,从而清楚自己掌握本课程的程度。这一方式在近几年的教学中取得了良好的教学效果。

3.3 加强与学生互动,调动学生的学习积极性

教学是一个师生互动的过程,应让学生始终处于主动学习的位置而不是被动的接受。量子力学课程的学习更应积极调动学生的积极性,因此教师应在教学过程中加强与学生的互动。增设课前提问、课后讨论环节,认真批改作业,积极发现学生学习过程中存在的问题,并及时对问题进行深入讲解,解决问题。另外,由于量子力学是建立在一系列基本假定基础之上的,抽象难懂,鉴于学生难接受的情况,在授课时注意理论联系实际,尽可能进行知识的渗透和迁移,将量子力学在实际中的应用穿插于教学之中,丰富教学内容,开拓学生视野,从而调动学生的学习兴趣和积极性。

4 结语

通过近年来教学经验的总结和探索,形成了一套适合材料物理专业量子力学课程教学的方法,该方法教学效果良好。在近几年的研究生入学考试中,学生量子力学课程的成绩,说明采用这样的教学方法是成功的。

量子力学论文:论量子力学与国内CG产业格局发展

摘要:从量子力学的角度对国内CG产业发展的格局进行探讨。

关键词:CG产业;格局;发展

计算机多媒体数字图像艺术和其它艺术范畴相比有着很多不同的地方,它的主要特征就在于图像和数字技术的而紧密的契合。我们在平面设计上可以通过这种新型的技术很大的程度上优化整个工作流程,提高工作效率,而且在表现力上也可以得到很大范畴上的提升,视觉效果更具有冲击性和艺术张力,当然,CG还能和其它的设计艺术协同发展,以创造出更多维的艺术作品。

而如果有人探讨同属于CG产业链中的电影特效和网游场景发展的协同性和融合性,我相信这是一个非常值得实践的话题,不管是哪个板块向另外一个靠近,对于整个CG产业格局的变动总是有利的推动力。好莱坞很早就有把经典电影改编成火爆网游的成功案例,他们凭借CG产业中的科技化手法创造出比单一产业链更有前景的周边价值。

在这个多维产业格局往更加成熟的方向发展的同时,很多人必然将其变动前景和发展过程中的附属价值做出权衡,但由于变动格局的不可预知性,这个美好的远景就俨然成为了薛定谔试验中的那只经典处在叠加状体的猫。

因为箱子的密封性,我们无从观察出猫的状态,因为原子处在衰变或者不衰变的叠加状态,这种状态的不确定性,导致猫的状态也不确定,只有当我们打开箱子,才能知道最终的真相。问题的关键并不在此,而在于在观测者打开箱子之前,这只猫的状态我们究竟怎么定义,所以我们只能认为,它和放射性原子一样,处在叠加态,这只猫当时陷于一种既死又活的混合态,我们无从观测和确认,所以既是信息量为零。

将这个结论带入现有数字创意产业发展现状即表现为:当我们对CG产业格局的未来变化做出设想和展望的时候,一些具象的客观假设并不存在,只有让产业发展到一定程度,已经带动格局变化的时候,结果才能出现,没有具体的需求和条件,没办法详细做出预案,但是如果没有针对发展的预案,所有客户或者行业关注着就没有一个参考体系来提出具体的措施要求,这样就显然形成了一个DNA式的螺旋式发展道路,假使把薛定谔的这条猫看作一个产业发展形成的新型产品,本来客户不知道猫的死活,也就是产品的好坏,只有等待盒子打开了,有了结论,才能再提出需求,然后让这条可怜的猫进入另外一只盒子,开始另一个薛定谔猫试验。

我们知道,一个新兴的产业格局要想做大,通常只有两种可能:或者横向相加成为大型跨界集团;或者纵向相加通吃形成完整的多维度产业链。美国的数字化创意产业比较发达,内容资源和相关人才储备比较充沛,题材几乎没有禁区,因此适合走前面一条路。而国内市场则正好相反,上游资源严重匮乏,题材方面限制较多,因此很多相关公司做到一定阶段后最有可能走的是后一条路。

也因此,国内公司在产业格局多维度的整合方面迈出一大步的可能并不是没有,而尤为可喜的是,近几年来国内数字创意产业相关企业正努力增加与国际市场交流合作的机会,使得国产数字化产业结构和内容产品无论从营销策略、新的产业链扩展方面都日趋成熟。不过我们说产业链的整合和新技术的运用对于CG和艺术各类的推动,并不是强调这些炫目技术的频繁运用就一定能推动整个产业的往有利的方向发展。CG产业链的整合不单单是从成本上进行控制和把关,而是以效率为出发点,加快整个产业链的周转速度以应变瞬息万变的行业市场。

《WONDERFUL DAYS》是2003年韩国TIN HOUSE公司投入了巨款制作出来的一部高科技动画电影,这部动画电影用二维和三维相结合的艺术风格,无疑这部高投入的电影是运用了当时最顶尖的CG基数,整个动画效果非常具有冲击力,但就是这部高投入高画质的电影却收获了极其低迷的票房,出人意料的是,画面简单朴素却细节精致的小鸡快跑却赢得了相当高收益率,这个案例足以证明,CG产业的发展并不是单纯的只依靠高超的科技化手法,更不是巨额的投资,而是其自身的艺术表现力,

国内CG产业需要良性发展,那么亟待解决的几个问题就资源的整合,国内多媒体出版环境的整治,政府对版权的保护,包括资金保护和法律保护,端正审美取向,提高美学素养,不要盲目的炫技和追求技术效果,整个媒体导向和舆论氛围要坚决的引领受众群体的民族文化回归,不要盲从日本和欧美路线和审美风格,规范整个行业体系,提高从业人员的素质。

国内的CG产业虽然起步晚,但发展速度并不慢,目前,整个行业也日趋走向成熟,无可否认的是在当今这种全球经济高度一体化的局势下,国内整个CG产业的发展和其核心竞争力的提升已经成为是否能在世界舞台上赢得更大优势的关键所在,我们在CG产业的迅速发展中发掘它自身的各种有利因素,找出其中最突出的一个环节,然后根据这个环节的主导作用引出一系列的配套领域,在内部和外部相结合的前提下做大整个产业,做出有自身特色的产业链条和主导作品,成为最强势的竞争点,对于整个国内行业来说,能否利用这个经济一体化创造出自身价值和影响力出众的产业平台是最重要的。

也许,在不久的将来,我们打开这个预想中的神秘盒子,这只猫会以最健康的状态敏捷的跳出来。

在线咨询