智能机器人论文实用13篇

智能机器人论文
智能机器人论文篇1

无独有偶,美国伊利诺伊大学哲学系Haikonen教授则专门撰文强调机器意识是新一代信息技术产业发展的新机遇,他认为新产品与系统的发展机会起因于信息技术的发展,而现有的人工智能基于预先编程算法,机器与程序并不能理解其所执行的内容。显而易见,不考虑意识就没有对自身行为的理解,而机器意识技术的涌现可以弥补这一缺失,因此机器意识技术可以为信息技术产业的发展提供新的契机。意大利巴勒莫大学机器人实验室的Chella教授则指出,开展机器意识不仅是一种技术挑战,也是科学和理论上开展人工智能和机器人研究的新途径。最近,土耳其中东技术大学的Gök和Sayan两位学者进一步认为,开展机器意识的计算建模研究还有助于推进对人类意识现象的理解,推动构建更加合理的意识理论。

上述这些学者的论述,无疑说明,机器意识研究不但对深化人工智能的研究有着重要的推动作用,对从科学上解释神秘的意识现象也同样具有非同寻常的意义。正因为机器意识研究有着如此重要的科学意义和推动未来信息技术革新的潜在价值,随着最近十年的研究发展,该领域已经成为学界广泛关注的热点。与此同时,数量相当可观的研究成果和实验系统已逐步形成,有些成果已经被运用到实际机器认知系统的开发之中。机器意识研究已经成为了人工智能最为前沿的研究领域。

机器意识研究的现状分析

2006年之前的有关机器意识的研究状况,英国皇家学院电子工程系的研究团队已经做过了比较全面的综述。因此,我们这里主要就在此之后国际上有关机器意识的研究概况和发展趋势进行分析。据我们的文献检索,截止到2015年底,在机器意识研究领域发表过的学术论文超过350余篇,其中最近十年发表的论文占了一半以上。归纳起来,由于对意识的哲学解释不同,目前机器意识方面的主流研究往往是以某种意识科学理论为出发点的具体建模研究和实现。由于涉及到的文献过多,无法一一列举,我们仅就一些影响较大的典型研究进行分析。

在意识科学研究领域,一种较早的理论观点是用量子机制来解释意识现象,这样的出发点也波及到有关机器意识建模的研究。利用量子理论来描述意识产生机制的有效性并不是说物质的量子活动可以直接产生意识,而是强调意识产生机制与量子机制具有跨越尺度的相似性。近年来,意识的量子模型发展又有了新的动向。比如,作为量子意识理论的进一步发展,中国科学院电子学研究所的高山(Gao Shan)提出了意识的一种量子理论,研究了量子塌缩与意识之间的关系,假定量子塌缩是一种客观的动态过程。日本Akita国际大学的Schroeder另辟蹊径,在构建统一意识模型中不涉及量子力学的量子相干性方面做出了全新的探索,主要目标是说明现象意识能够依据量子力学的物理解释,用量子力学的形式化代数性质来描述。此外,俄罗斯Lebedev物理研究所的Michael B. Mensky利用意识的量子概念提出了一种主观选择的数学模型,说明意识和超意识的特性如何能够通过简单的数学模型给出。当然,更多的是有关意识量子机制描述的可能性争论,正反两方面的观点都有。特别是在2012年的Physics of Life Reviews第9卷第3期,以Baars和Edelman所著论文“Consciousness, biology and quantum hypotheses”为核心,10余名相关领域的学者分别撰文对是否能够通过量子机制来描述意识现象展开了多方位的辩论。最近,Susmit Bagchi从分布式计算的角度,较为全面地讨论了生物演化与量子意识之间的关系。遗憾的是,迄今为止,学术界对此问题尚未达成一致的结论。

在机器意识研究中,第二种有重大影响的理论观点就是全局工作空间理论。全局工作空间理论(Global workspace theory)是由美国加利福尼亚大学圣地亚哥分校神经科学研究所的Baars研究员1988年提出的意识解释理论。在该理论的指导下,由Baars、Franklin和Ramamurthy等人组成的研究团队开展了长达20多年的机器意识研究工作,最终开发完成了LIDA认知系统。

LIDA(Learning Intelligent Distribution Agent)是在该研究团队等人早期开发的IDA(Intelligent Distribution Agent)基础上发展起来的,主要依据Baars全局工作空间理论,采用神经网络与符号规则混合计算方法,通过在每个软件主体建立内部认知模型来实现诸多方面的意识认知能力,如注意、情感与想象等。该系统可以区分有无意识状态,是否有效运用有意识状态,并具备一定的内省反思能力等。从机器意识的终极目标来看,该系统缺乏现象意识的特征,比如意识主观性、感受性和统一性均不具备。

指导机器意识研究的第三种重要理论观点是意识的信息整合理论。意识的信息整合理论是美国威斯康星—麦迪逊大学精神病学的Tononi教授1998年提出的。自该理论提出以来,不少研究团队以信息整合理论为依据,采用神经网络计算方法来进行机器意识的研究工作。其中,典型代表有英国Aleksander教授的研究团队和美国Haikonen教授的研究团队所开展的系统性研究工作。英国皇家学院的Aleksander教授领导的研究团队长期开展机器意识的研究工作,发表相关论文30余篇。早期的研究主要给出了有关意识的公理系统及其神经表征建模实现,比较强调采用虚拟计算机器来建模意识。最近几年,Aleksander研究团队采取仿脑策略,强调信息整合理论的运用,建立了若干仿脑(brain-inspired)意识实现系统,更好地实现了五个意识公理的最小目标。美国伊利诺伊大学哲学系Haikonen教授的研究团队则主要采用联想神经网络来进行机器意识系统的构建工作。自1999年以来,该团队开展了富有成效的研究工作。Haikonen教授在所提出的认知体系模型的基础上,构建了一个实验型认知机器人XCR-1系统。应该说,虽然Haikonen所开展的机器意识研究的出发点是为了揭示意识现象本性,但他的成果却是目前机器意识研究领域最为典范的工作之一。

在意识科学研究中,也有学者将人类的意识能力看作是一种高阶认知能力,提出意识的高阶理论。在机器意识研究中,以这样的高阶理论为指导,往往会采用传统的符号规则方法来建立某种具有自我意识的机器系统。其中,一个比较系统的研究工程就是意大利巴勒莫大学机器人实验室的Chella教授用10年时间开发的Cicerobot机器人研究项目。该机器人实现了一种自我意识的认知结构机制,该机制主要由三个部分构成:亚概念感知部分、语言处理部分和高阶概念部分。通过机器人的高阶感知(一阶感知是指对外部世界的直接感知,高阶是对机器人内部世界的感知),就形成了具有自我反思能力的机器人。这项研究工作的主要特点是将逻辑形式化方法与概念空间组织相结合,强调对外部事物的一种心理表征能力,并对外部环境进行内部模拟。在高阶认知观点的自我意识建模研究方面,另一个做出突出贡献的是美国乔治梅森大学的Samsonovich教授率领的研究团队。该团队经过10余年的研究,开发了一个仿生认知体系GMU-BICA(George Mason University-Biologically Inspired Cognitive Architecture)。在该系统中定义的心理状态不但包含内容,还包含主观观察者,因此该系统拥有“自我”意识的主观能力。系统实验是利用所提出的认知结构模型来控制虚拟机器人完成一些简单的走迷宫活动,机器人可以表现出具有人类意识所需要的行为。相比而言,与Cicerobot机器人强调自我意识是反思能力的概念不同,GMU-BICA系统则将自我意识理解为“自我”的意识。当然,不管是Cicerobot还是GMU-BICA,这样的高阶认知模型往往对心理扫视、主观体验与统一意识等意识本质方面的表现兼顾不足。

除了上述介绍的这些有代表性的研究外,对于机器意识研究而言,还有如何判定机器具有意识能力的检验问题,这是目前机器意识研究领域十分重要的一个方面。显然,要判断开发的机器意识系统是否真正具备预期的意识能力,就需要开展相应的意识特性分析、评判标准建立以及检测方法实现等方面的研究工作。在这方面,由于目前对意识现象的认识存在许多争议,对于意识评测特性分析方面也难以有统一的认识。因此,目前的机器意识特性需求分析也比较零散。倒是在评判标准的建立方面,西班牙卡洛斯三世马德里大学计算机科学系Arrabales教授的研究团队做出了比较系统的研究。该团队自2008年开始就在这方面开展意识特性分析,给出了计算人工意识的一种量化测量方法ConsScale以及对感受质的功能性刻画。之后,该团队又进一步提出了ConsScale的修订版,并讨论了在机器中产生感受质和现象意识状态的可能性。最终,该团队成功构建了CERA-CRANIUM认知体系(采用意识全局工作空间理论建模)来检验产生的视觉感受质以及实现的内部言语。所有的这些成果为机器意识能力的初步检测提供了一种实用的标准。当然,也有将镜像认知看作是机器拥有自我意识能力的一种检测标准,该理论的依据是人类和其他一些动物能够在镜子中认出自己,这一能力被看作是拥有自我意识的明证。因此,Haikonen认为在镜像中的自我识别,即镜像测验,也可以用来确认机器潜在的自我意识能力。于是,在意识能力检测方法的研究中,许多研究工作都是通过镜像测试来确定意识能力的。但也有研究认为,镜像测验并不能证明意识能力的存在,要证明机器具有意识能力还需要通过更加复杂的测验。比如,Edelman就提出三种意识检验的途径,即意识的语言报告、神经生理信号以及意识行为表现。

总而言之,机器意识的研究主要围绕量子涌现机制、全局工作空间、信息整合理论、意识高阶理论以及意识能力检测这五个方面展开的。从研究的策略来看,主要分为算法构造策略(Algorithm)与仿脑构造策略(Brain-Inspiration)两种途径。从具体的实现方法上,主要可以分为三类:一是采用类神经网络的方法;二是采用量子计算方法;三是采用规则计算方法。虽然经过20多年的发展,机器意识的研究取得了众多的研究成果,但相对于人类意识表现方面,目前机器意识能力的表现还是非常局限的。根据笔者以及土耳其中东技术大学的Gök和Sayan发表的论文,目前机器意识系统主要具备的能力都是功能意识方面的,偶尔涉及自我意识和统一性意识(很难说是否真正实现了)。可见,意识计算模型的研究还有很长的路要走,特别是关于内省反思能力、可报告性能力、镜像认知能力、情感感受能力以及主观性现象等,这些方面更加需要进一步的研究和探索。

人类意识能力的唯识学分析

人类意识能力的基础是神经活动,尽管神经活动本身是意识不到的,也不是所有的神经活动都能产生意识,但神经活动却能够产生有意识的心理活动,这便形成了人类的意识能力。

根据现有的相关科学与哲学研究成果,人类意识的运行机制大致是这样的:物质运动变化创生万物,生物的生理活动支持着神经活动,神经活动涌现意识(有意识的心理活动),意识感受生理表现并指导意向性心智活动的实现,从而反观认知万物之理。除了心理活动所涉及的神经系统外,主要的心理能力包括感觉(身体感受)、感知(对外部事物的感知能力,包括视、听、味、嗅、触)、认知(记忆、思考、想象等)、觉知(反思、意识、自我等)、情感(情绪感受)、行为(意志、愿望、情欲等)、返观(禅观、悟解)等。

必须强调的是,迄今为止,对有意识的心理能力最为系统解析的学说体系并非是现在的脑科学研究,而是起源于古印度的唯识学。唯识学所研究的对象就是心识问题,相当于本文界定的有意识的心理活动。如图1所示,其理论体系主要包括五蕴八识的心法体系。

第一,前五识归为色蕴,对应的心法称为色法,相当于当代心理学中的感知,其意识的作用称为五俱意识(所谓“俱”,就是伴随)。如果这种感知是真实外境的感知,则其伴随性意识称为同缘意识;如果是有错觉的感知,则称不同缘意识;如果这种感知活动产生后像效应,则称为五后意识(属于不相应法)。一般而言,色蕴对应的心理活动都是有意向对象的,因此属于意向心理活动。

第二,受蕴是一种心所法(具体的心理能力),主要是指身体与情感状态的感受。注意这里要区分身识中的身体状态感受与色蕴是完全不同的心理能力,身识相当于触觉,是一种感知能力,而身体状态的感受不是感知能力,而是感受身体疼痛、暖冷等的体验能力。受蕴的心理活动,虽然具有意识,但不具有意向对象,因此不属于意向性心理活动。

第三,想蕴是另一种心所法,用现代认知科学的话讲,就是狭义的思维能力,如思考、记忆、想象等,属于认知的高级阶段,显然是属于意向性心理活动。

第四,行蕴也是一种心所法,主要指一切造作之心,用现代认知科学的话讲,如动机、欲望、意愿、行为等。唯识学中的“行”,与“业”的概念相互关联,一般分为三种,即身业(行动)、语业(说话)和意业(意想),但都强调有意作为的方面,因此行蕴也属于意向性心理活动。

第五,识蕴是整体统一的心法,更加强调的是后两识(第七末那识、第八阿赖耶识)的心法,现代西方的认知科学尚无对应的概念。主要强调的是自我意识,特别是返观能力,即对根本心识的悟解能力。

总之,色蕴是色法(感知能力),受蕴、想蕴、行蕴都是心所法(具体的心理能力),它们本身就是具有意识的心理活动(统归于心法),其中色法的意识作用是伴随性的五俱意识,其他三蕴的意识作用与伴随性的意识则又有不同,称为独散意识(受蕴、想蕴、行蕴所涉及的意识,是一种周遍性意识活动)。

当然,如果所有意识作用出现在梦中,唯识学中则另外称之为梦中意识(做梦时的意识活动,属于不相应法)。在唯识学的五蕴学说中,识蕴比较复杂,它是唯识理论特别单列的一种根本心法,除了强调自我意识的末那识“我执”外,更是强调达到定中意识的阿赖耶识“解脱”,属于去意向性心理活动。

总之,从意向性的角度看,我们的心理能力可以分为无意向性的受蕴,意向性的色蕴(前五识)、想蕴、行蕴,元意向性的意识以及去意向性的识蕴。其中,识蕴是一种特定的禅悟能力,对其性质的认识与禅宗的心法观有关。

机器意识研究面临的困境

对于目前的人工智能研究而言,我们涉及到的心智能力,如果按照五蕴分类体系来分析,那么大致只有色蕴、想蕴与行蕴中的部分能力。如果考虑目前有关机器意识的研究,也仅仅涉及到五俱同缘的伴随性意识、想蕴与行蕴中的独散意识、识蕴中的自我意识以及意识活动本身的机制问题,其他意识比如不相应法的梦中意识、五后意识、定中意识、五俱不同缘意识等都没有涉及。

根据上述有关心识能力的唯识学分析,对于机器而言,真正困难的机器意识实现问题是受蕴性独散心识(体验性意识能力)与识蕴性心识两个方面,一个涉及无意向心理活动的表征问题,一个涉及去意向性心理活动的表征问题,这两方面都是目前计算理论与方法无法解决的问题。反过来讲,机器最有可能实现的心智能力部分应当是那些具有意向性的心识能力(色蕴、想蕴与行蕴),即唯识学心法中的色法与若干心所法。

很明显,意向性心理活动一定伴随有意向对象,于是就有可能对此进行计算表证,并完成相关的某种计算任务。因此,反过来说,我们认为意向性心理能力是人工智能的理论限度(是上界,但并非是上确界),机器实现的人类意识能力不可能超越意向性心识的范围。这也就是本文观点讨论的基点,并具体给出如下方面论据的分析。

首先,我们来分析心智机器的成功标准。从我们的立场看,如果要构建具有人类心智能力的机器,成功的标准起码应该通过图灵测验。主要理由是,由于“他心知”问题的存在,行为表现可能是唯一的判断标准,此时图灵测验不失为一种可行的测试途径,关键是“巧问”的设计。原则上,图灵测验通过言行交流,这是人类之间默认具有心智能力的唯一途径。再者,根据摩根准则,在没有把握的情况下,宁肯选择比较简单的解释。因而,对图灵测验的解释中,也必须注意摩根准则,诸如机器思维或者机器经过思考的行动这类有关心智能力的假设在大多数情况下应该丢弃。

现在我们就来一场图灵测验,看看机器到底会遭遇什么样的困境。为了看清本质,我们的提问异常简单,就是进行如下提问(所谓“多大年纪”思想实验,参见笔者以前的文章“重新发现图灵测验的意义”):你多大年纪?此时会发生怎样复杂的情形呢?当提问者一而再、再而三不断重复这一问题时,机器很快就会暴露出其致命的缺陷,就是缺乏不可预见性反应能力。那么,面对这么简单的提问,机器为什么会无所适从呢?其实这跟机器形式系统的局限性有关。众所周知,图灵机是个形式系统,而哥德尔不完全性说明足够复杂的形式系统不能证明某些真命题。这是否说明人的某些知识是计算机器永远不能得到的?或者反过来说,是否说明不是所有的知识都能形式化呢?这样就引出了如下第二个论据的讨论。

从形式系统角度看,确实存在不可计算(证明)的问题,而且是大量的,但这些问题对于人类同样也是不可计算(证明)的。比如图灵停机问题,如果换成了人,结果是一样的。至于知识,可能首先要分清知识的含义与性质,知识是动词还是名词,要不要考虑元知识?如果这样看待知识,那么肯定不是所有知识都可以形式化的。因此,我们可以发现,问题不在于形式系统是否有局限性,而在于对于意识现象能不能给出一致性的形式描述。

那么,我们可以对人类的意识现象给出一致性描述吗?回答显然是否定的。因为在人类的意识现象中,存在着意识的自反映心理现象:我们的意识活动是自明性的。从逻辑上讲,如果一个系统允许自涉,那么该系统一定是不一致的,也就是说无法对该系统给出一致性的形式化描述。其实,人类的心理活动本来就是建立在神经集群活动的自组织涌现机制之上的。因此,出现意识的自明性现象是必然的。这也就是美国哲学家普特南给出“钵中之脑”思想实验所要说明的道理。比如,对于“我们都是钵中之脑”命题,在事先并不知晓这一事实的前提下,使用知道逻辑的反证法,可以明确加以否定。因此,我们人类的意识能力,显然不可能为机器所操纵。这样,由于计算机器形式化能力的局限性,靠逻辑机器是不可能拥有人类全部意识能力的,起码意识的自明性能力不可能为机器所拥有。

进一步,作为第三个论据讨论,我们再来看人类的意义指称能力问题。我们需要明确的问题是:机器能处理符号,但它能真正理解符号所代表的意义吗?如果人的概念依赖于人类的躯体和动机(涉身性认知),那机器怎么可能掌握它们呢?这个问题主要是指机器是否能够拥有指称能力。塞尔的“中文之屋”提出了反对意见。其实这个问题的关键还是要弄清什么是“意义”?如果意义是指所谓抽象的“概念”内涵而非表征形式,那么就必然存在一条语义鸿沟,因为机器内部能够处理或变换的只是不同的形式语言而已。但如果意义是指“行为表现”,那么这个问题就回到了上面图灵测验的第一个论据上去了。

人类语言表达意义不在语言形式本身,而在于意识能力。正因为这样,才会有许多超出常规的意义表达方式。从根本上讲,我们也不必一一列举机器难以拥有的指称能力,诸如矛盾性言辞、元语言表述以及整体性语境等难以一致性描述的状况;而只需指出,机器不可能拥有人类的终极指称能力即可。那么什么是终极指称能力呢?宋代临济宗禅师惠洪在《临济宗旨》中指出:“心之妙不可以语言传,而可以语言见。盖语言者,心之源、道之标帜也。标帜审则心契,故学者每以语言为得道浅深之候。”其中所谓的“心之妙”者,就是终极指称。由于超越了概念分别,是难以用语言来描述的,这就为形式化描述带来了根本的困境。

第四个论据的讨论涉及到所谓预先设定程序的问题。我们知道,目前的机器只能遵循给定的程序运行(预先设定的程序),这样的话,机器又怎么可能拥有真正的创造性和灵活性?也许人工智能的目的就是要让机器的“计算”更加“聪明”,但目前预先设定程序的机器不可能是灵活的,更不用说创造性能力了。显然,事情越有规则,机器就越能掌控,这就是预先设定程序的界限。比如对于表面复杂结构的分形图案,由于可以靠简单规则加以迭代产生,机器就可以靠预先编程规则自如产生。但是对于人类常常出现的出错性,由于毫无规律可言,机器便不可能预先加以编程,机器也就不可能拥有出错性了。人是易于犯错误的,而机器按照设定的程序运行,永远不会出错,这就是预先编程的一个致命弱点,这也是第一个论据讨论中机器无法通过图灵测验的根本原因。

要知道出错性表面上似乎是一个负面品质,但其实质上则包含着灵活性和创造性,是一切新事物涌现机制的基础。如果没有生物基因的出错性,自然选择就没有了作用的对象,繁复的生物多样性也就无从谈起。同样,如果没有了思想模因的出错性,文化选择也同样没有了作用的对象,博大的思想多样性同样无从谈起。可见,出错性是机器难以企及人类心智能力的一个分界线,而这一切都归结为机器的预先编程的局限性。

同样的道理,由于预先编程问题,也带来了机器不可能真正拥有情感能力的新问题,这也构成了机器难以拥有人类心识能力的第五个论据。我们知道,情感从某种意义上讲就是常规理性活动过程中的“出错性”,是非理性的,但基于逻辑的机器是理性的。也许人们会说,非理性的情感在心理表现中是不重要的,甚至是不起作用的。但我们要强调,即使是理性思维,情感和其他非理性因素也在其中扮演重要角色(倾向性指导作用)。如果说理性的认知能力是前进的方向,那么非理性的情感能力就是前进的动力,人类的心理活动中岂可或缺情感能力?!而对于机器而言,缺少了情感能力,机器怎么能够像人类一样思维?!

机器是逻辑的,难以体现情感本性,目前有关情感的计算只是实现了情感的理性成份。笔者比较赞同这样的观点:理智是方向性的舵手,情感是驱动性的马达,在航行中情感与理智相互依存。因此,如果情感不能计算,那么也谈不上实现人类意识的计算,因为情感难以计算的本质就是意识的感受问题。

机器能拥有意识能力吗

通过上述对机器实现人类心智能力所面临的困境的讨论,就可以进一步引申出机器是否能够跟人类一样拥有意识能力的问题。为了避免陷入不必要的信念之争,笔者认为学术辩论主要应对事实或可能事实开展分析讨论。由于计算机器的概念相对明确,争论的焦点多半会聚焦到有关人类“意识能力”的界定之上。所以,下面先给出笔者所理解的人类“意识能力”的分析描述,然后再围绕着我们讨论的主题,展开观点的陈述。

意识包括功能意识、自我意识和现象意识,其中功能意识大体上涉及到意向性的心理能力,除了前面已经讨论过的五个论据外,似乎并不存在特别的新困难。但自我意识和现象意识则不同,由于涉及到去意向性和非意向性的表征问题,这便构成了机器心识的最大困扰。首先,我们要清楚“自我意识”不是关于“自我”的意识,而是一种自身内省反思能力。因此,自我意识是意识的核心功能。其次,我们必须澄清所谓的“体验意识(qualia)”到底指什么?是精神的本性,还是虚构的对象?这涉及到哲学基本问题,非常复杂,观点纷呈。机器能否拥有意识能力的核心问题,其实就在于此。

由于涉及到心灵的一些本质问题,机器意识研究一开始就引起了哲学领域的广泛关注,有专家专门讨论机器意识研究的哲学基础,也有学者讨论机器意识会面临的困难,包括像意识(consciousness)、感受质(qualia)和自我觉知(self-awareness)这些回避不了的、显而易见的困难问题,以及一些与意识相关的认知加工,如感知、想象、动机和内部言语等方面的技术挑战。除此之外,更多的则是延续早期对人工智能的哲学反思,对机器意识的可能性提出质疑。涉及到强弱人工智能之争、人工通用智能问题、意识的难问题、“中文之屋”悖论的新应用、人工算法在实现意识能力方面的局限性、蛇神机器人不可能拥有主观性、现象意识等众多方面的争论。

那么机器能够拥有这种现象意识状态吗?对于现象意识的存在性问题,有截然相左的两种观点。一种是神秘论的观点,认为我们神经生物系统唯一共有的就是主观体验,这种现象意识是不可还原为物理机制或逻辑描述的,靠人类心智是无法把握的。另一种是取消论的观点,认为机器仅仅是一个蛇神(zombie)而已,除了机器还是机器,不可能具有任何主观体验的东西。在这两种极端观点之间,还存在各种不同偏向的观点,如还原论、涌现论、唯心论、二元论,等等。其实,依笔者看来,无需做上述复杂的讨论,只须从意向性的角度来看,便可以澄清机器意识的可能性问题。笔者观点是,凡是具有意向性的心理能力,理论上机器均有可能实现,反之则肯定不能实现。因为一旦缺少了意向对象,机器连可表征的内容都不存在,又如何形式化并进行计算呢!

通过上述分析讨论,可以发现,机器意识难以达成的主要困境可以归纳为这样三个方面。第一个是形式化要求,特别是一致性要求导致的局限性,使得机器智能局限于具有意向性的心识能力,如色蕴、想蕴、行蕴。第二个则是机器缺乏不预见性的反应能力,只能通过预先设定的程序来应对环境。第三个就是无法拥有终极指称能力,无法实现去意向性的识蕴能力。最后补充一点则是,对于涉及到现象意识的感受性能力(受蕴),由于没有意向对象可以作为形式化的载体,因而对其进行的计算完全无从入手。

于是,我们可以很清楚地看到,意向性就是实现机器意识能力的一条不可逾越之界线。用数学的术语说,机器能够拥有的意识能力的上界就是意向性心识能力。当然这并非是上确界,因为不可预见性的反应能力也属于意向性能力,但从前面的分析中可以看出,目前基于预先编程的机器仍然无法拥有不可预见的反应能力。或许我们可以期待更为先进的量子计算机器来突破预先编程能力,但意向性心识能力的边界,依然是无法突破的。

因此,当我们把目前有关机器意识的研究分为面向感知能力实现的、面向具体特定意识能力实现的、面向意识机制实现的、面向自我意识实现的以及面向受蕴能力实现的这五个类别时,就可以同唯识学中意识的五蕴学说相对比,从而更加清楚地认识其中的本质问题所在。我们的结论是,对于机器意识的研究与开发,应当搁置有争论的主观体验方面(身心感受)的实现研究,围绕意向性心识能力(环境感知、认知推理、语言交流、想象思维、情感发生、行为控制),采用仿脑与量子计算思想相结合的策略,来开发具有一定意向能力的机器人,并应用到社会服务领域。

机器意识研究未来展望

围绕着上述分析所得出的主要结论,我们认为,未来机器意识的研究,主要应该开展如下5个方面的研究工作。

首先,构建面向机器实现的意识解释理论。由于意识问题本身的复杂性,目前存在众多不同的意识解释理论,其中只有部分理论用于指导机器意识的研究。为了更好地开展机器意识研究工作,取得更加理想的机器意识表现效果,必须直接面向机器意识实现问题本身,综合并兼顾已有意识解释理论,提出一种更加有利于机器意识研究的、有针对性的、全新的意识解释理论。提出的新理论应该不但能够清晰地刻画各种意识特性及其关系,而且应该符合机器意识实现的要求,更好地用以指导机器意识的开展。为此,具体需要开展现有意识解释理论的梳理研究、机器意识限度与范围的分析研究、意识特性刻画标准规范的构建研究等方面的研究工作。

其次,探索机器意识的计算策略与方法。过去的研究表明,要想让机器拥有意识能力,传统的人工智能方法是无能为力的,我们必须寻找全新的计算方法。因此,机器意识的深入展开,需要有不同于传统人工智能的计算策略和方法。就目前机器意识研究中所遇到的问题而言,在计算方法方面起码需要开展亚符号(神经信号)表征到符号(逻辑规则)表征之间的相互转换计算方法、在非量子体系中实现类量子纠缠性的计算方法,以及神经联结与符号规则相互融合的计算方法等方面的研究。而在计算策略方面则需要开展仿脑与算法相结合策略的研究。只有确定了行之有效的计算策略和方法,才能真正推动机器意识进一步深入发展。

第三,构建机器意识的综合认知体系。作为机器意识研究的主要任务,就是要构建具有(部分)意识现象表现的机器认知体系。给出的意识机器认知体系应该满足一些基本需求,起码应该包括:实现具有感受质和外部感知对象的感知过程;实现过程内容的内省反思;允许各模块无缝整合的可报告性以及配备本体感知系统的基本自我概念。因此,这部分的研究内容应该结合机器意识计算策略与方法的探索,参照已有各种机器意识认知体系的优点,有针对性地进行构建工作,以期满足基本的意识特性需求。

智能机器人论文篇2

1 引言

“智能科学与技术”专业教育意指将“智能科学与技术的知识体系”传授给本科生或研究生。构建智能科学与技术的知识体系通常有两种途径:(1)经验归纳法,从社会实践和科学研究已经获得的知识集合中选择出若干,认为这些知识应该归属于“智能科学与技术”,且将其结构化与系统化。(2)概念演绎法。追问“智能科学与技术”的确切含义为何,由此联想其涉及的主要方面,概念推演形成的轨迹即是知识体系。两种方法的结论应是一致的。就实际操作而言,前者的主要环节是“选择知识”和“搭建体系”,而“选择什么”和“搭建成何样”就与研究者的偏好相关,常出现观点相左的情形;后者的主要环节是“明确语义”和“语义延伸”,能被称为概念的东西总是成熟的,即已有大量的先前研究,对此人们的分歧较少,而从概念出发的语义延伸又是遵循演绎逻辑的,由此而得的知识体系就易被公认。

本文的研究采用概念演绎法,具体的讨论依层次递进展开,首先明确“智能科学与技术”的中文语义,其次讨论该语义涉及的关键概念之内涵,进而合成这些关键概念的具体内容,继之概括“智能科学与技术的知识体系”,最后设计“智能科学与技术专业教育的课程体系”。

2 “智能科学与技术”的语义

尽管有逻辑上的先后,“科学”与“技术”通常被认为是并列的两种人类文化活动。“智能科学与技术”就应被分为“智能科学”与“智能技术”。

智能是某种行为主体所具有的能力和所表现的行为。这种具有智能的行为主体目前(也许永远)只有两类:生物(其中主要是人类)和机器。若以人类代表生物,智能就有两种表现形态,人类智能(human intelligence)和人工智能(artificial intelligence),后者是对前者的模仿与延展。

科学是为了获得所考察对象的知识体系,技术则是依据某种原理设计制造各种人工系统。由此,“人类智能科学”、“人工智能科学”、“人工智能技术”是无歧义的,而“人类智能技术”就不成立(确切地说,是间接地通过“人工智能技术”的方式表现出来)。

基于上述分析,“智能科学与技术”的语义由三部分构成,“关于人类智能的科学”、“关于人工智能的科学”和“应用人工智能的技术”。根据惯常的教育与研究分工,前者是心理科学领域的重点所在,后二者则是信息科学领域的前沿方向。目前国内所开办的“智能科学与技术”专业教育大多属于理工科本科,其侧重所在自然是“人工智能”。

支撑着“智能科学与技术”及其三部分构成的关键概念是“智能”、“科学”与“技术”,对其进行深入剖析有助于推演出“智能科学与技术的知识体系”。

3 关键概念的剖析

3.1 “智”对应于Intelligence

汉语中的“智”是“知”的后起字,而“知”是“出于口者疾如矢也”,意指认识的事物可以脱口而出。“知”添加了“曰”即为“智”,再清楚不过,“智,知而道出也”。智,就是人们日常口语中的“知道”。

英语中的Intelligence源于拉丁语的动词intellegere,意思是to understand。而intellegere是inter(interl与legere(to choose)的合成词,故它所表达的是“在推理基础上的理解”。

可见,汉语的“智”关注知识(识,知也。《说文》)及其共享;英文的Intelligence则强调知识及其可靠来源。有所差异并不妨碍将不同文化系统中的这两个概念对应起来。

3.2 “智”的派生词

尽管语义十分贴切,却不可将Intelligence直接汉译为“智”。在现代汉语中,单字形式的名词一般不用于表达抽象概念,因为单音节的高频率使用在言语交流中难以通畅顺口。通常都是采用双字形式的名词。“智”需要再添加一字。处理的办法无非两类,同义重复或附加意义。前者生成的是“智慧”,后者得到的是“智能”和“智力”。

智慧之“慧”,一方面与“智”同义(知或谓之慧。《方言》),另一方面又与佛教名词“般若”(Praina)相连,在中国的文化传统中,佛是高深至上的,这样,智慧的真理性就毋庸置疑。作为汉语词汇的“智慧”固定下来之后,除了与英文的Intelligence相对应,还与英文的wisdom(wise“聪明的”+dom“性质或状态”)相一致。更重要的是,wisdom就是希腊语的sophy,由此构成了philosophia(英文philosophy)。“智慧”连接着中国的佛教(与中国哲学相通)和西方的哲学。智慧是哲学层面的。

“智能”和“智力”都是“智的能力”的简称。推敲其中的意味饶是有趣。作为物理学概念的“能”和“力”,二者是一种源流关系,因而在汉语的习惯中,“能”更本质,“力”则外显,暗含着有高下之分。这样,智能有“智能人”、“智能机器”、“智能科学”等,智力则是“智力游戏”、“智力玩具”、“智力商数”等。层次的感觉是明显的。智能和智力是科学层面的。

“智”的派生词最常用的有三个:智慧、智能和智力,它们均可英译为Intelligence,但在汉语中分别属于三个层次,即哲学领域、科学领域(较高层次)和科学领域(较低层次)。

3.3 关键概念的文化比较

将与“智”相关的中文概念和与Intelligence相关的英文概念进行对比,可看出中西方文化的相通与差异,有助于更深刻明晰地理解“智能”的语义。表1是基于英语概念的文化比较。从中可见,“智能”较高于“智力”在西方文化中表现为对现在分词的偏爱。

表2是基于汉语概念的文化比较。英语的Intelligence可以笼统地表示汉语的“智、智慧、智能、智力”。现限定“构建智能科学与技术的知识体系”是一项科学研究(即不考虑“智慧”),再用“智能”作为“智能”和“智力”的统称,这样,“智能”就成为将要继续讨论的唯一概念。

3.4 智能之“能”

前已阐明,智能就是“智的能力”。这种能力究竟为何,学者们曾有过大量的讨论。其中一种通俗简洁的表述 被包含于后者之中。在人工智能中将二者分开,缘于它们的对象不同,前者针对的是自然界,后者则面向人类已有的知识积累。“推理”是生命体存在的基本前提。所以,关于人工智能的科学只有两个分支:机器感知/发现理论(派生于人的认识论)和机器推理理论(基于人脑推理理论的讨论)。

(4)应用人工智能的技术。第3.6节说明,技术就是应用手段、技能和方法设计与制造人工系统。图4模型所示意要设计与制造的人工系统只有专家系统和机器人。所以,应用人工智能的技术主要有两个:专家系统技术和机器人技术。

(5)基于现状的人工智能科学与人工智能技术的内容调整。前面将“机器感知”和“知识发现”归于科学范畴,其根据就是因为它们均是客观存在。然而,现在的“机器感知”还非常简单,对于诸如表情、语气等稍微复杂的客观现象就无能为力:“知识发现”也主要依赖于基于语法的关键词匹配,而对于如何有效地理解语义特别是语用还差得很远。鉴于如此现状,将“机器感知”和“知识发现”归于技术更合适一些。

(6)智能科学与技术的知识体系。集成上述的观点可得图5所示的知识体系。理论是概念、原理的体系(《辞海》),本身就是知识体系。技术包括手段、技能和方法,也是知识或知识指导下的操作。所以,智能科学与技术的知识体系由两个理论和四种技术构成。

图5的表示是粗线条的。正是因为它没有将与“智能”有关的科学理论和技术方法全部罗列出来,才有了一个简洁的框架,以便在此基础上进一步细分和添加,最终形成一个系统的图景。

6 “智能科学与技术”专业教育的课程体系

“智能科学与技术”专业教育的使命就是将图5所示的知识体系教授给本科生或研究生。学校教育总是以课程方式进行的。智能科学与技术的知识体系必须转化为课程体系。基于图5所示模型、兼顾目前大学课程设置的现状、特别是参照国内学者的研究成果和国内率先开办智能科学与技术专业的大学的探索性经验,提出“智能科学与技术专业教育的课程体系”的一种方案,见表3。

如表3所示,“智能科学与技术”专业的课程设置对应于智能科学与技术知识体系的主要内容(见图5),共六门主干课程:

(1)“脑与认知科学”。包括“脑科学”与“认知科学”。

(2)“机器学习”。推理是学习过程中所采用的主要方法,机器学习包含机器推理,在一般意义上可以认为二者同义。目前讲授机器学习的大学课程主要有:“机器学习”、“模式识别”(是实现机器学习的一种方法)、“计算智能”。后者包括“模糊计算”、“神经计算”、“进化计算”,讲授一些具有前沿性的理论与方法。

(3)“机器感知”。包括“机器视觉”模仿人类的视觉、“计算机语音技术”模仿人类的听觉、“自然语言理解”模仿人类对语言与文字的理解。

(4)“知识发现”。包括“信息检索”和“数据挖掘”,前者在数据库中进行关键字匹配、在万维网上进行关键字匹配、在语义网上进行语义匹配以获取所需要的信息,后者将信息组织到数据仓库中以便寻求信息之间的规律性关联即获得知识。

(5)“专家系统”。该课程所讲授的内容包括管理信息系统、专家系统、决策支持系统、多Agent系统。它们是人工智能为人类提供的实用型信息产品。

(6)“机器人”。利用机器来获得身心的解放与扩展是人类的梦想和永远的追求。拟人机器的设计与制造涉及诸多学科,在大学的专业教育中只能讲授一些基础概念。

可以将整个“智能科学与技术的知识体系”看作是一个对知识进行“输入一加工一输出”的结构。由表3可见,与知识输入有关的是“机器感知技术”和“知识发现技术”;与知识加工有关的是“脑科学理论”和“机器推理理论”;与知识输出有关的是“专家系统技术”和“机器人技术”。在智能科学与技术学科中,分工专门研究知识输入、知识加工、知识输出,就构成了其三个主要的研究方向:知识处理、智能理论与方法、智能系统与应用(如表3所示)。

7 结论

(1)智能科学与技术是人类智能科学、人工智能科学和人工智能技术的总称。技术的标志是用于设计与制造人工系统,因而“人类智能技术”并不直接存在。

(2)“智能”是“智的能力”的统称。中文的“智”之本义是“知而道出”,与英文的Intelligence(本义“推理基础上的理解”)尽管侧重不同,仍被认为语义相等。现代汉语不习惯单字形式的概念,“智”便有了三个常用派生名词“智慧”、“智能”和“智力”。前者属于哲学概念:后二者属于科学对象,是“智的能力”的两种不同简称,亦有层次高下之分。在科学领域,“智能”通常涵盖“智能”和“智力”。

(3)智能科学是指,认知智能事实、归纳智能规律、总结智能理论。

(4)智能技术是指,设计与制造人工智能系统的手段、技能和方法。

(5)智能(intelligence)应该是“能智”。即能知、能日、能推理、能理解、能应用。

(6)智能是以知识为主线的三个环节的序贯过程。智能表现为知识在知识获取、知识推理、知识应用三类活动中的定向流动和逐级提升。

(7)智能首先遇到的问题是知识表示。人类智能的知识表示是在文化传承中自然实现的,而人工智能的知识表示则依赖于专门的人为规定。这样,智能的内容就有四个部分:知识表示、知识获取、知识推理、知识应用。

(8)智能最简明最本质的定义是:知识+推理。人类智能的特征是,知识用自然语言表示、推理在人脑中进行;人工智能的特征是,知识用机器语言表示、推理用机器实现。

(9)人类智能的内容主要有五个:感官感知、信息检索、人脑推理、实际问题解决方案、实际问题解决方案的执行。

(10)人工智能是对人类智能的模仿与延伸,其主要内容也相应有五个:机器感知、知识发现、机器推理、专家系统、机器人。

智能机器人论文篇3

人工智能(Artificial Intelligence),英文缩写为AI,是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机。二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。

1 人工智能的发展历程

(1)人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德摩尔根提出了“思维定律”,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器”,它被认为是计算机硬件,也是人工智能硬件的前身。1936年,24岁的英国数学家图灵提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,在定义智慧时,图灵做出了解释,如果一台机器能够通过称之为图灵实验的测试,那它就是智慧的,图灵实验的本质就是让人在不看外型的情况下不能区别是机器的行为还是人的行为。(2)上世纪三四十年代,维纳、弗雷治、罗素的数理逻辑,和丘奇、图灵的数字功用以及计算机处理发展促使了1956年夏Dartmouth会议上人工智能学科(由“人工智能之父”麦卡锡提出,麦卡锡曾是Stanford人工智能实验室主任)的诞生20世纪60年代以来,采用生物模仿来建立功能强大的算法,包括进化计算等,人工生命以进化计算为基础,研究自组织、自复制、自修复以及形成这些特征的进化和环境适应。70年代以来,Conrad等研究人工仿生系统中的自适应、进化和群体动力学,提出不断完善的“人工世界”模型。80年代,人工神经网络再度兴起促进人工生命的发展。(3)1992年贝兹德克提出计算智能。专家系统在90年代兴起,模拟人类专家解决领域问题。

2 人工智能的研究

强人工智能的观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。弱人工智能的观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。现在主流科研集中在弱人工智能上,强人工智能的研究则处于停滞不前的状态下。

目前人工智能主要研究内容是:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面,分布式人工智能与多智能主体系统、人工思维模型、知识系统、知识发现与数据挖掘、遗传与演化计算、人工生命应用等等。未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

3 人工智能的应用

IBM公司“deep blue”电脑击败了人类的世界国际象棋冠军,美国Sandia实验室建立了国际上最庞大的“虚拟现实”实验室,拟通过数据头盔和数据手套实现更友好的人机交互。国际各大计算机公司相继开始将人工智能作为其研究内容,几乎包括所有IT企业,以及很多金融巨头,纷纷建立自己的人工智能产业部,利用“智能”来解决问题。无人驾驶车的诞生,打破了汽车靠人驾驶的时代。

MIT开发出了SHRDLU,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,它头一次让人知道计算机可以代替人类专家进行工作。在理论方面,计算机开始有了简单的思维和视觉,而不能不提的是人工智能语言Prolog语言诞生了,它和Lisp一起几乎成了人工智能工作者不可缺少的工具。

4 人工智能的影响及发展必须注意的问题

(1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类最终认识自身智能的形成。(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。

伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。

5 智能机器人

智能机器人具有类似于人的智能,它装备了高灵敏度的传感器,因而具有超过一般人的视觉、听觉、嗅觉、触觉的能力,能对感知的信息进行分析,控制自己的行为,处理环境发生的变化,完成交给的各种复杂、困难的任务。而且有自我学习、归纳、总结、提高已掌握知识的能力。目前研制的智能机器人大都只具有部分的智能,和真正的意义上的智能机器人,还差得很远。

6 结语

当然,虽然人工智能一直都处于计算机技术的最前沿,但人工智能的发展也并不是一帆风顺的,并不象我们期待的那样迅速,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷。人工智能的问题的在于,一方面哲学、认知科学、思维科学和心理学等学科所研究的智能层次高而抽象;另一方面AI逻辑符号、神经网络和行为主义所研究的智能层次太基本。由于对中间机制知之甚少,这种背景下提出的各种AI理论,就只能是或者完全不同于人类思维,与人类的思维模式相距太远,同时在人类思维方式的理解上也有待突破,不然很难形成更新的AI框架和理论体系。尽管如此,多学科的联合协作研究也带来了足够引人注目的增长。因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,我们相信它会给世界带来难以预料的变化。

参考文献:

[1][美]StuartJ.Russell[美]PeterNorvig人工智能:一种现代的方法(第3版).

[2]人工智能及其应用蔡自兴徐光佑.

智能机器人论文篇4

Artificial Intelligence Overview

HU Qin

(Baiyun Middle School in Zongyang Country, Anqing 246728, China)

Abstract:The paper introduces current general research and hot research topic of artificial intelligence. The paper looks forward to the future development direction of artificial intelligence. In addition, the paper analyzes implication of concepts, theoretical foundation, discipline system, scientific approaches, scientific significance and application value of generalized artificial intelligence.

Key words: artificial intelligence; artificial intelligence research; generalized artificial intelligence

人工智能是计算机学科的一个分支,是一门正在发展中的综合性的前沿学科,它是研究人类智能活动的规律,并用于模拟、延伸和扩展人类智能的一门新的技术科学,是在计算机、控制论、信息论、数学、心理学等多种学科相互综合、相互渗透的基础上发展起来的一门新兴边缘学科[1]。人工智能目前已在指纹及人脸识别、专家系统、智能搜索、定理证明、博弈、自动程序设计以及航空航天领域取得了广义的应用。

1 人工智能研究概况

当20世纪40年代数字计算机研制成功时,当时的研究者就采用启发式思维,运用领域知识,编写了能够完成复杂问题求解的计算机程序,包括可以下国际象棋和证明平面几何定理的计算机程序[2]。运用计算机处理这些复杂问题的方法具有显著人类智能的特色,从而导致了人工智能的诞生。1956年,McCarthy决定把Dartmouth会议用人工智能来命名,开创了具有真正意义的人工智能的研究。

图灵(Alan Turing)所著的“计算机器与智能”[3]讨论了人类智能机械化的可能性,提出了图灵机的理论模型,为现代计算机的出现莫定了理论基础。同时该文中还提出了著名的图灵准则,在人工智能研究领域,“图灵检验”已成为最重要的智能机标准。同一时期,Warren McCullocli和Walter Pitts发表了“神经活动内在概念的逻辑演算”的开创之作[4],该文证明了:一定类型的可严格定义的神经网络,原则上能够计算一定类型的逻辑函数并开创了当前人工智能研究的两大类别:“符号论”和“联结论”。

从20世纪60年代至70年代初,人工智能领域有影响的工作是通用问题求解程序,主要包括:Robinson于1965年提出了归结原理,成为自动定理证明的基础[5] ;Feigenbaum于1968年研制成功了DENDRAL化学专家系统,是人工智能走向实用化的标志。Quillian于1968年提出了语义网络的知识表示等。20世纪70年代,人工智能研究以自然语言理解、知识表示为主。Winograd于1972年研制开发了自然语言理解系统Shrdlu,同时期Colmeraue创建了Prolog语言。Shank于1973年提出了概念从属理论。Minsky于1974年提出了框架知识表示法。1977年,Feigenbaum提出了知识工程,专家系统开始得到广泛应用。

20世纪80年代以来,以推理技术、知识获取机器视觉的研究为主。开始了不确定性推理和确定性推理方法的研究。日本计算机界推出了“第五代计算机研制计划”,该计划最终未能实现当初的目标―以非数字化方式在日常范围内全面的模仿人类行为,但该计划也为人工智能的进一步发展积累了很多经验。20世纪90年代,人工智能研究在博弈这一领域有了实质性的进展。1997年5月11日,一个名为“深蓝”的IBM计算机以2胜1负3平的成绩战胜了国际象棋世界冠军卡斯帕罗夫,这举世震惊的一步大大地振奋了整个人工智能界,而事实上“深蓝”打败卡斯帕罗夫仍是从专家系统提供的所有可能的走步中选择最优的,并未有理论上的实质性的突破。

中国人在人工智能领域的突出贡献主要有:1960年,华裔美国数理逻辑学家王浩提出了命题逻辑的机器定理证明的新算法,利用计算机证明了集合论中的300 多条定理。1977 年, 我国数学家、人工智能学家吴文俊提出了初等几何判定问题的机器定理证明方法,并进一步推广到初等微分几何、非欧几何领域,被称为“吴氏方法”。 80-90年代,我国高等院校和研究机构在智能控制与智能机器人的研究开发方面,取得了丰硕的成果。

回顾人工智能发展的历史进程,从科学方法论的角度分析,其发展有三条途径,分别是结构模拟、功能模拟和行为模拟。在学术观点上有人工神经网络、专家系统和智能机器人三大学派。

2 人工智能当前的热点研究

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。目前人工智能研究的3个热点是: 智能接口[6]、智能信息处理[7]、主体及多主体系统[8]。

2.1 智能接口技术

智能接口技术是研究如何使人们能够方便自然地使用计算机。这一目标的实现要求计算机能够看懂文字、听懂语言,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化,如:微软提出的云计算、百度提出的框计算都与智能接口技术有关。

2.2 智能信息处理

计算机的广泛应用是人类进入一个信息爆炸的时代,国民经济和社会信息化发展所面临的一个重要课题是如何把大量的数据转化为有用的知识,并将知识转化为智能,用于决策、管理、检索、过程控制等。智能信息处理使从海量数据中提起有用知识成为可能,当前,图形模式作为一种有效的智能数据处理手段正在引起人们的重视,图形模式具有多功能性、有效性及开放性等特征,能有效地转化数据为知识,并利用这些知识进行推理,以解决分类、聚类、预测和因果分析等问题,其有效性已在软件智能化、医疗故障诊断、金融风险分析、DNA 功能分析和 Web 采掘等方面得到验证。随着图形模式学习和基于图形模式推理等问题的解决,图形模式必将成为重要和有力的智能化数据分析与处理工具。

2.3 主体及多主体系统

主体是具有信念、愿望、意图、能力、选择等心智状态的智能性实体,而且具有一定自主性。主体试图自治地、独立地完成任务,同时又可以和环境交互,与其他主体通信,并通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。

3 人工智能未来的研究方向

当前,人工智能学科已从学派分歧的、传统的、狭义的人工智能,走向多学派兼容、多层次结合现代的广义人工智能,并将发展成为人机集成的、群体协同的、未来的智能科学技术 [9]。广义人工智能学科的理论基础是广义智能信息系统论,主要包括广义智能论、智能信息论和智能系统论。

3.1 广义人工智能的概念涵义和学科体系

多学派人工智能是指模拟、延伸与扩展人的智能及其它动物智能,既研究机器智能,也开发智能机器。多层次人工智能是指不仅研究专家系统,而且研究人工神经网络、模式识别、智能机器人等。多智体人工智能研究群体的、网络的多智体、分布式人工智能。研究如何使分散的个体人工智能协调配合,形成协同的群体人工智能,模拟、延伸与扩展人的群体智能或其它动物的群体智能。

广义人工智能的研究对象是自然智能、人工智能、集成智能和协同智能,根据广义智能学的研究对象,广义人工智能学的学科体系主要包括四个方面:①自然智能学:自然智能学研究人的智能及其他生物智能的个体智能、群体智能的基本概念和特性。②人工智能学:人工智能学研究机器智能与智能机器二方面,思维、感知、行为三层次的广义人工智能的基本概念和特性,分析设计、协调协同、进化开拓、评价测度、信息处理、系统构成、管理控制的理论和方法。③集成智能学:集成智能学研究自然智能与人工智能,主要是人的智能与机器智能如何协调配合、取长补短、合理分工、智能结合,形成集成智能、构成人机和谐集成智能系统的基本理论和方法。④协同智能学:协同智能学研究智能个体如何相互协调、友好协商、分工协作,组成智能群体,组成分布式网络群体协同智能系统的基本理论和方法。

3.2 广义人工智能的科学方法

①多学科协同:广义人工智能是跨学科的综合性边缘学科,必须需要包含信息科学、生物科学、系统科学等多学科协同的科学研究方法。② 多途径结合:广义人工智能是对广义自然智能的模拟、延伸和扩展,需要采取功能模拟、结构模拟、行为模拟等定性研究与定量分析,综合集成的多途径相结合的科学方法。③多学派兼容:广义人工智能的研究应当也需要采取符号主义,联结主义,行为主义等多学派兼容的科学方法。

3.3 广义人工智能的科学意义

研究发展广义智能学具有重要科学意义和应用价值,广义人工智能协同地、综合地研究自然智能、人工智能,开发人机集成智能、群体协同智能的基础理论和方法,如:协同研究自然智能与人工智能;研究开发人机集成智能;研究开发群体协同智能;广义人工智能为研究人工智能和自热智能提供新思路和新方法,并为发展智能科学技术提供新理论。

4 结论

本文全面综述了人工智能的发展过程、研究热点和研究趋势,介绍了广义人工智能的基础理论和方法,认识到广义人工智能将为智能科学技术提供宽广、深厚的理论基础,并将有力促进智能科学技术的迅速发展与广泛应用。

参考文献:

[1] 马少平,朱小燕.人工智能[M].北京:清华大学出版社,2004.

[2] 石纯一,黄吕宁,土家钦.人工智能原理[M].北京:清华大学出版社,1993.

[3] L.A. Zadeh, Fuzzy Sets[J].Information and Control,1965(8).

[4] Bord M A. 人工智能哲学[M].刘西瑞,王汉琦,译.上海:上海译文出版社,2001.

[5] 刘叙华.基于归结方法的自动推理[M].北京:科学出版社,1994.

[6] 顾明.基于模糊ART神经网络的在线人脸识别模型的设计和实现[J].计算机科学,2007(8):92-94.

智能机器人论文篇5

Key words: artificial intelligence; electrical engineering; automation

中图分类号:V242 文献标识码: 文章编号

引言:社会的进步和人类的长寿要求生产力更加发达,要求人类的经济生活更加智能化,以节省宝贵的人类时间去做其它有益的事情。电气自动化控制领域的革新需要人工智能的大力支持,而人工智能在自动化控制方面的优势在这个领域也确实能够得到极大的发挥。促进自动化控制的发展进步,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。人工智能主要包括思维能力、行为能力和感知能力三个方面。人工智能指的是人类制作的机器所表达出来的智能,体现了自动化的特征。因此智能化技术在电气工程自动化控制中可以发挥最大的效用,促进电气的优化设计、诊断故障和智能控制等。

一、人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。

当今社会,计算机技术已经渗透到生产生活的方方面面,计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

二、智能化技术应用优势

在电气自动化控制中应用到智能化技术,主要是以智能化控制器的形式,这种智能化控制器较过去的控制器相比的确具有不少优势,下面我们就对其进行详细的分析。

1.无需控制模型

过去的控制器在进行自动化控制时,往往会因为控制对象的动态方程比较复杂而无法精确到位地掌握,这会使得该对象模型的设计过程中会出现较多不可预估、不可测量的客观因素,比如一些参数的变化。无法掌握这些因素,也就不能设计出精准的模型,自动化控制工作的实际效率也会下降。而智能化控制器并不需要对控制对象模型进行设计,这就可以从根本上避免一些不确定因素的产生,提高自动化控制的精密系数。

2.方便调整控制

智能化控制器还有另一个大好处,就是可以随时根据下降时间、响应时间以及鲁棒性的变化来调节控制程度,从而有效提高自身工作性能,为自动化控制提供最基础的保障。无论是在什么样的情况下,智能化控制器的调节控制与过去的控制器相比具有更方便调节的优势,更适合投入实际使用。还有一点好处,就是智能化控制器在进行调节控制时完全只需要根据相关数据的变化来自行调节,即使没有专门的技术人员在旁边也可以,同样远程调节控制也是可行的,充分体现了电气工程自动化控制的无人操作性要求,对行业未来发展的重要性不言而喻。

3.一致性很强

智能化控制器的一致性很强,这表现在它对不同数据的处理上,及时输入完全陌生的数据也可以收到很高的估计,完美达到自动化控制的相关要求。不同的控制对象的效果也是不同的,虽然在对有些控制对象实施控制时智能化控制器暂时没有采取行动,其控制效果也是非常优秀的,但这并不是绝对的,可能在换了控制对象的时候就无法收到预期的效果了。所以我们技术人员在设计阶段还是不能松懈,要认真落实具体化原则,即在面对不同的对象时一定要根据其具体情况详细分析,不能因为马虎就降低了控制要求。一旦出现智能化控制器使用效果不佳的情况,不能盲目否定智能化技术,一定要从每个工程环节详细排查、认真分析,因为上述人为因素会给自动化控制结果带来很大的误差,影响试验的准确性。

三、人工智能技术的应用

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。

1.优化设计

电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

2. 故障诊断

电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。

3. 智能控制

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法,因而它的应用实例最多。

四、结束语

综上所述,本文主要介绍了智能化技术在电气工程自动化控制中的应用情况。只有加强电气工程的智能化程度,才是最终保证行业持续稳定发展的根本手段。

智能机器人论文篇6

1.人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是门边沿学科,属于自然科学和社会科学的交叉。涉及哲学和认知科学、数学、心理学、计算机科学、控制论、不定性论,其研究范畴为自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法等,应用于智能控制,机器人学,语言和图像理解,遗传编程。

当今社会,计算机技术已经渗透到生产和生活的方方面面,计算机编程技术的日新月异催生自动化生产、运输、传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈,所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2.人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素。例如:参数变化,非线性时,往往不知道。)

(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。论文格式,自动化控制。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。论文格式,自动化控制。。现在没有使用人工智能的控制算法对特定对象控制效果非常好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。

3.人工智能的应用现状

(1)优化设计电气设备的设计是一项复杂的工作,它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的。因此,很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。

用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计,因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

(2)智能控制的功能实现

①数据采集与处理:对所有开关量、模拟量的实时采集,并能按要求处理或存贮。

②画面显示:模拟画面真实显示一次设备和系统的运行状态,可实时显示电流、电压等所有模拟量、计算量、隔离开关、断路器等实际开关状态及挂牌检修功能,能生成历史趋势图。

③运行监视:具有对各主要设备的模拟量数值、开关量状态的实时智能监视,有事故报警越限和状态变化事件报警,事件顺序记录、声光、语音、电话图象报警。

④操作控制:通过键盘或鼠标实现对断路器及电动隔离开关的控制,励磁电流的调整。按顺控程序进行同期并网带负荷或停机操作。系统对运行人员的操作权限加以限制,以适应各级运行值班管理。

⑤故障录波:模拟量故障录波,波形捕捉,开关量变位,顺序记录等(包括主要辅机)。论文格式,自动化控制。。

⑥在线分析:不对称运行分析、负序量计算等。

⑦在线参数设定及修改:保护定值包括软压板的投退。

⑧运行管理:操作票专家系统,运行日志,报表的生成及存储或打印,运行曲线等。

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。

4.恒压供水案例简析

恒压供水在工业和民用供水系统中已普遍使用,由于系统的负荷变化的不确定性,采用传统的PID算法实现压力控制的动态特性指标很难收到理想的效果。在恒压供水自动化控制系统的设计初期曾采用多种进口的调节器,系统的动态特性指标总是不稳定,通过实际应用中的对比发现,应用模糊控制理论形成的控制方案在恒压系统中有较好的效果。在实施过程中选用了AI 一808人工智能调节器作为主控制器,结合FXIN PLC逻辑控制功能很好地实现了水厂的全自动化恒压供水。对于单独采用PLC实现压力和逻辑控制方案,由于PLC的运算能力不足编写一个完善的模糊控制算法比较困难,而且参数的调整也比较麻烦,所以所提出的方案具有较高的性价比。

本案例中只是一个人工智能在电气自动化中的一个小小的应用,也是电气元

件生产供给的一个方向,实现机械智能化是我们努力的追求,将人工智能的先进的最新成果应用于电气自动化控制的实践是一个诱人的课题。

人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作,电气自动化是研究与电气工程有关的系统运行。人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械的人类意识能力,强化控制自动化。因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

智能机器人论文篇7

人工智能是当今科技发展中最具潜力的热点问题之一,2016年初轰动世界的谷歌AlphaGo打败围棋世界冠军李世石的经典案例更是引起了全世界广泛的关注和热议。“人工智能”这个概念再次被推到了风口浪尖。那么,究竟什么是人工智能呢?它会对我们的生活有什么影响?在这个背景下,我们深入探究人工智能及其相关的技术领域,对于人工智能的普及和发展有着重要意义,也希望能给予人工智能相关领域的科学研究者们提供一些参考和方向。

1 什么是人工智能

人工智能(Artificial Intelligence,AI)是一门全新的信息技术科学,是计算机科学技术的一个重要分支,是指对于模拟、拓展和延伸人类的智能的应用系统及相关的理论和技术方法的开发研究。主要通过研究及了解人类智能的本质从而开发出能给出类似人类智能反馈的智能机器,计算机系统在理解目标方向之后所取得的最大化成果是计算机实现的最大智慧。人工智能不单单是一个特定的技术,它所研究的往往是能创造智能意识的高科技机器,包括了算法和其他应用程序,处理的任务也远远超出了简单计算,从学习感知规划到推理识别控制等等。人工智能的研究方向包含语言及图像识别技术、机器人设计、自然语言处理等,日益成熟的理论方法和技术实践也使得应用领域范围大规模扩张,人工智能是人类智慧的结晶,未来也可能展现出超过人类的智能。

2 人机智能的研究方向

人工智能的科学研究通常涉及到数学、逻辑学、认知科学、以及最重要的计算机科学等多学科领域,延伸出了以下几个主要的研究方向:

2.1 逻辑推理与证明

早期的人工智能更多的解决了大量数学问题,逻辑推理是基础也是研究时间最长最重点的领域之一。通过找到可靠的证明或者反证方法实现潜在的定理证明,根据数据库的实例进行推导并及时更新证明结论,演绎和直觉相结合,在推理和证明中实现部分智能。

2.2 问题求解

问题求解领域的一大重要应用则是下棋程序的功能实现,化繁为简、将困难的问题点拆分成为独立的子问题进行求解;而另一个实例则是数学方程的求解实现,分析各种公式符号的组合意义从而为科学研究者提供强有力的基础保障。问题求解中所运用的搜索和规约也是人工智能领域中的两大基本技术。

2.3 自然语言处理

自然语言处理也叫自然语言理解(Natural Language Processing,NLP),是指借助计算机来处理使用人类语言作为计算对象的算法程序,并研究相关的理论方法和技术。NLP是人工智能领域的主要研究方向之一,也是发展时间较长的研究方向之一。语音识别、搜索引擎、机器翻译等等都是NLP的重要研究内容,目前也都在人工智能领域获得了突出的应用成果。

2.4 专家系统

专家系统是指具有大量模拟人类相关领域专家知识和经验的智能计算机程序系统,依托于人工智能相关技术,根据专家系统所提供的数据方法进行判断推理进一步决策,从而代替人类专家解决一部分该领域的特定问题。从知识表示技术的角度上看,专家系统可分为基于网络语义、基于规则、基于逻辑、基于框架等几种类别;而从任务类型及专家系统主要解决的问题类型的角度来看,专家系统也可分成解释型(分析和阐述符号数据的意义)、调试型(根据故障制定排除方案)、预测型(根据现状预测指定对象未来可能的结果)、维修型(针对特定故障制定并实施规划方案)、设计型(按指定需求制作图样和方案)、规划型(根据指定目标制定行动方案)等。

专家系统的建立包含以下几个步骤:(1)初始专家知识库的设计:包括问题、知识、概念、形式、规则等多个概念的筹建;(2)开发和试验系y原型机;(3)改进与归纳专家知识库等。

专家系统的实现通常建立在大量的数据统计与人类专家提供的问题解决实例上,没有精确或统一的求解算法,因此也会造成一些局限性。在人工智能与计算机科学快速发展的今天,专家系统也逐渐更重视理论和基础研究,除了基于经验的理论,基于规则和模型的方法也将投入到实际运用中,未来的专家系统将更偏向协同式和分布式方向发展。

2.5 机器学习

机器学习是指计算机自动获取新的推理算法和新的科学事实的过程,是计算机具有智能的基础。计算机的学习能力是人工智能研究史上的突出成就与重要进展,也是人工智能初步实现的重要标志。机器学了在人工智能领域有着重要应用,对于探索人类智慧的奥秘以及学习方法和机理都有着重要意义,机器学习的时代才刚刚开始,各种理论方法也正在逐步完善中,未来精彩可期。

3 人工智能的应用

人工智能的首次提出至今已有60年的历史,在这个循序渐进的过程中,无论是功能场景还是机器模式,都逐渐从单一到通用、从简单到复杂,表达方法也更多种多样。目前主要通过赋予机器产品一定的人类智能从而有效地提升机器工作效率及能力,未来的人工智能将更多的模拟人类生活环境及思维方式来设计出真正具有人类智能的高效人机系统。

3.1 人工智能在各个行业的应用

人工智能已经运用到人类生产生活的各个方面,主要包括以下几点:(1)以智能汽车为代表的自动化交通方式。(2)种类繁多的家庭智能服务机器人。(3)用于临床支持和病人看护中的自动化智能设备及医疗器械。(4)智能教育辅导系统、线上学习和智能辅助学习设备的普及。(5)基于图像处理和自然语言处理的各类音乐社交软件及VR设备的兴起给互联网娱乐时代带来的巨大变革。(6)逻辑证明及智能分析在公共安全领域的预测及防范。(7)大量重复机械的劳动逐渐由智能机器取代,人类承担着更多的创新及实践工作。

3.2 人工智能生活应用实例

作为辅助人类生产生活的重要工具,日趋成熟的智能机器人已经快速走进了人们的日常生活中,下面我们介绍几种常见的使用场景:(1)智能房屋和家居生活的构建:目前的智能停留在自动控制I域,通过用户指令来便捷的操控比如电视、窗帘、灯具、空调等等;而未来,人工智能的发展将根据你的日常行为了解你的习惯喜好,利用传感器和自动装置搜集用户的行为数据,通过机器学习和深度学习算法改造你所居住的环境。最终实现真正意义上的智能家居生活。(2)无人驾驶的智能汽车:主要通过导航和定位实现规定路线的行驶、通过激光测距、雷达感应和照相等技术,配合复杂的计算公式从而辨别和避让各种障碍,最终脱离人类操控的环境下自动完成发动、驾驶、刹车等动作。行驶的安全性和准确性在智能机器的帮助下其实更可靠,我们完全有理由相信未来自动驾驶将成为人们出行的新方式。(3)基于神经网络的新型翻译方式:在线翻译相信大多数人都不陌生,使用范围广普及率极高,但其准确性一直都是人们关注的焦点之一。谷歌翻译负责人表示将在部分功能上尝试使用深度学习技术,如果能顺利实施必将使得翻译准确性的研究取得实质性突破,而基于神经网络的翻译方式则将帮助计算机更好地模拟和理解人类思维,使得翻译结果更流畅合乎规范,也方便人们更好地理解。

4 人工智能的发展历程

人工智能的发展历程不算很长,但发展速度却异常迅猛。跟所有新兴的前沿学科一样,人工智能的发展中也经历了高潮和低谷时期。根据不同时期代表性人物和事件的发生,我们大致可以将整个过程分为以下几个阶段:

(1)1950年,举世闻名的“图灵测试”(图灵,英国数学家,1912―1954)首次发表于《计算机与智能》一文,即通过房间外的人和两个房间内的人和机器分别对话中,是否能区分人和机器从而判断出机器是否具有了人的智能。这是人类对于人工智能最初的概念。

(2)1956年,由香农、麦卡锡、朗彻斯特和明斯基共同发起的DARTMOUTH学会于达特茅斯大学召开,会上首次提出“人工智能”一词,这是历史上第一次关于人工智能领域的研讨会,见证了人工智能学科研究的开端。

(3)1960年以来,生物进化领域逐渐建立起了遗传、策略和规划等算法。1992年计算智能由Bezdek提出,计算智能对于生物进化学的探究有着重大意义,涵盖了模式识别、人工生命、神经网络、进化计算等多学科集合与交叉。

(4)上世纪90年代开始,专家系统逐渐兴起,对于专家知识库的不断改进以及基于规则和模型的协同式分布式专家系统将是未来使用的主要趋势。

(5)从1960年神经网络首次应用于自动控制的实施,到1965年人工智能启发式推理规则的方法引入,再到1977年运筹学理论中概念智能控制模式的成功借鉴,人工智能的发展也顺利引导了自动控制模式逐渐切换到了智能控制模式。

(6)从1956年AI概念的正式提出以来,人工智能领域已经取得了众多突破性的成就和进展,很多天马行空的想象也随着科技的进步在一代代科学工作者的不断努力下逐渐设计落实,人工智能已经从科学研究逐渐走向了人们的日常生活中,成为了当下最具潜力的多学科交叉的前沿科学。

5 人工智能的未来与发展趋势

从人工智能的提出到逐渐走入人们生活,人工智能的概念一经问世则得到了人们的普遍关注,甚至带动了语音识别、自然处理处理、机器学习、数据挖掘等一系列相关学科的发展和兴盛。人工智能领域中的创新和蓬勃发展是趋势也是必然,通过了解人工智能学科的发展历程及应用领域,我们大致可以推测出关于未来人工智能的一些方向:(1)机器学习和深度学习算法指导下更聪明更多样性更具智能的机器系统。(2)自然语言处理应用中更自然的人机互动交流。(3)机器学习时代更快速的数据处理分析策略。(4)各研发企业和机构对于人工智能先进技术更激烈的竞争和角逐。(5)超人工智能(Artificial Super Intelligence,简称ASI)时代下AI是否会走向失控给人们带来的微恐惧。

6 结语

在短短60年的时间内,人工智能的快速发展已经从很大程度上改善和刷新了人们的生活方式。人工智能的深入研究和实现正在不断帮助我们探索这个世界、帮助我们搜寻信息应对各种各样的挑战。人工智能在逐渐强大的同时,有机遇也存在着巨大的挑战和技术瓶颈,距离人工智能时代的真正实现还有很长的路要走。而人工智能的不断更迭完善,是否能取得超越人类智力和认知的智能、是否会出现违背人类价值观的危险行为将是未来很长一段时间内需要研究的重要课题。

参考文献

智能机器人论文篇8

1智能机器人课程简介

在我校智能科学与技术专业的本科教学培养方案中,智能机器人是该专业高年级学生的一门重要专业课程,设置在第七学期。

智能机器人主要是指以生产、生活中的实际机械设备为载体,以计算机和嵌入式处理器/控制器为信息处理单元,能够体现一定自主性和智能特征的机器人系统。智能机器人涉及到刚体动力学、反馈控制、传感器与信号处理、执行器与电力电子、计算机接口技术以及智能信息处理和智能控制等多领域知识,是多学科的综合。机器人的种类众多,包括机械臂、移动机器人、类人机器人等不同形态的机器人。由于课程学时有限,面面俱到是不现实的,因此我专业的智能机器人课程以移动机器人作为重点讲授的对象。

课程以Siegwart和Nourbakhsh所著的《Introduction to Autonomous Mobile Robots》一书的中文版[2]为教材,以蔡自兴教授的《机器人学基础》[3]为主要参考书,讲授内容以自主移动机器人控制系统为框架,包括刚体运动学、传感器与测量、地图与定位、执行器与运动控制、路径规划与导航。其中,刚体运动学部分主要使学生掌握轮式机器人的具有非完整约束的运动学模型;传感器与测量、执行器与运动控制部分分别使学生了解移动机器人的各种传感器(里程计、超声波传感器、激光测距仪和视觉传感器)的测量原理和直流电机的PWM闭环调速机制;而地图与定位部分主要使学生掌握传感器融合的基本原理以及如何解决位姿估计问题;路径规划与导航部分主要使学生掌握局部路径规划(例如,人工势能场方法)以及全局路径规划(包括轨迹生成与跟踪控制)两种不同的导航方式。

课程的最终目的是让学生理解移动机器人的智能是如何体现的,并且让学生掌握移动机器人的系统集成技术,使其具备设计定位与导航算法并编程实现的能力。

2仿真实验教学的必要性

由于智能机器人作为一种复杂的机电系统,集成了测量、控制、计算和通信等技术,因而智能机器人课程具有多学科交叉的特征,这对学生的综合能力提出挑战,为学生真正理解智能机器人的工作原理带来困难。学生必须通过实验,亲自动手组建移动机器人并为其编程,才能将课堂教学传授的理论知识融会贯通,并做出一定程度上的创新性工作。即创新教育必须建立在动手实践的基础上。

工欲善其事,必先利其器。仿真实验教学在智能机器人课程实验教学中是关键的一环。虽然无法替代在真实机器人上的实验,但却是必要的。这是因为:智能机器人控制系统的复杂性,决定了直接在真实机器人上设计、实现一个可靠的控制系统软件不是简单易行的工作,而仿真实验能够为学生学习机器人的控制算法设计节省时间。

运行一次实验所需成本较高,而且要担负硬件随时可能损坏的风险。仿真实验能够减小设计算法初期的软件不成熟所带来的硬件损坏的几率。

移动机器人具有活动空间大的特点,改变实验场地较困难,而这在实际操作中是比较困难而且耗费精力的事情。通过仿真实验能够灵活改变智能机器人的工作空间。

总之,教师可通过仿真实验教学,形象地向学生展示移动机器人的运动机制、测量与控制原理;学生可通过仿真实验教学,加深对理论知识的理解。

3智能机器人仿真实验的工具选择

好的仿真工具不仅能够降低实验成本,而且能大大提高实验效率,灵活的配置能够自定义不同的移动机器人和工作场景,既能够使学生熟悉多种不同的移动机器人的运动学,又能够将学生的精力主要集中在控制策略的学习和算法实现上。这对于本科阶段初次接触机器人的学生而言,更利于其快速掌握智能机器人的相关知识。

目前,存在多种移动机器人仿真工具,常用的例如:Webots[4]、Microsoft Robotics Studio[5]和Player/ Stage/Gazebo(P/S/G)[6]。前两者主要运行在Windows这一商业化的操作系统中,而P/S/G运行于开源的Linux操作系统上。在高校中,仿真实验教学所用的移动机器人仿真工具应具有源码开放、灵活易用的特征,因此选择Player/Stage/Gazebo软件。

Player/Stage/Gazebo软件由美国南加州理工大学交互实验室发起,后作为开源项目转至Sourceforge上。其中,Stage是一个2D的多机器人仿真器,提供了超声、激光等多种传感器模型;Gazebo是一个3D的多机器人仿真器,能够仿真大量机器人、传感器和物体;Player是机器人设备接口,是连接控制器与被控设备(传感器、执行器)的通信中间件。用户编写的控制程序可在本地或异地通过Player获得传感器数据以及发送驱动机器人运动的控制量。Player既能够与仿真机器人连接,也能够与真实机器人连接,具有极大的灵活性。

该软件不仅在国外很多高校的机器人课程中作为教学用的仿真工具,也是国际上移动机器人研究领域中使用非常广泛的工具之一。选用该工具,除了可方便学生在个人电脑上完成实验,更使学生在本科学习阶段或以后从事移动机器人研究工作时与国际接轨。

4开展智能机器人仿真实验教学的方式与内容

4.1仿真实验教学的方式

1) 课堂演示提高学生兴趣。

智能机器人所涉及的运动学、滤波与控制方法较为抽象,对于工科院校的学生而言略有难度。如果只是机械的推导公式,很容易打击学生的自信心。在课堂上,通过仿真实验的演示,现场向学生展示如何将理论化的公式转化为程序代码的形式,进而控制模拟机器人的运动,完成设定的任务。让单调的数学语言形象化,从而让学生体会到理论的真实含义,提高学习兴趣。

2) 仿真实验即为作业。

智能机器人课程被定位是一门实用性工程技术类课程,每一项关键知识点都要通过以课后作业的方式让学生练习。我们突破传统的计算题式作业的方式,通过安排课后仿真实验作业,让学生亲自动手在个人电脑上完成移动机器人的组建、定位与导航算法的设计与编程。留给学生更大的自由度去完成一个类似于项目的作业,从而激发学生的主观能动性。

3) 以学生竞赛的方式开展实践课。

在课堂教学结束后,开展综合性的实践课,借助仿真工具,设定一个有规则、有目标的机器人竞赛场景。由学生组成团队,全面利用已学过的机器人组成原理、测量与控制算法,设计移动机器人的控制系统,分组竞赛。以竞赛的机制,鼓励学生提出创新的想法和思路,并锻炼其将新想法与新思路付诸实践的能力,从而提高学生分析问题与解决问题的综合素质。

4.2仿真实验教学的内容设计

Player/Stage/Gazebo仿真软件具有很高的灵活性。在机器人仿真器中不仅能够仿真各种形态的机器人,而且能够自由建立机器人的工作环境(二维的或三维的),也能够仿真各种传感器,例如在Stage中能够仿真超声波传感器与激光测距仪,在Gazebo中能够仿真视觉传感器。学生借助player中的接口函数,在Linux系统中使用C/C++语言编程,便能够定制自己的移动机器人控制系统,学习、验证各种智能方法。目前,智能机器人课程的仿真实验主要包括Player/ Stage/Gazebo的安装与使用方法、移动机器人的虚拟构建及工作空间设计、智能机器人控制系统基本结构的学习、基于里程计的移动机器人定位、基于超声波传感器的环境测量、VFH导航方法设计、基于人工势能场的导航方法设计、智能车的走迷宫竞赛(开放式的竞赛题目)。

5结语

智能机器人课程是一门理论与实践并重的课程,涉及到多个学科知识的交叉。仿真实验教学是真实机器人实验的有益补充,特别适合于本科生在初学机器人基本理论时进行原理性的控制系统设计与算法验证。它通过多种形式的仿真实验教学,启迪学生思想,激发主动的创新性思维,培养学生具有独立思考、乐于创新的真素质。智能机器人课程仿真实验教学的探索,丰富了这一课程的教学手段。在未来,通过对仿真工具的改造,可实现仿真实验与真实物理实验的无缝对接。

参考文献:

[1] 卢桂章. 无处不在的智能技术[J]. 计算机教育,2009(11):68-72.

[2] R. Siegwart,I. R. Nourbakhsh. 自主移动机器人导论[M]. 李人厚,译. 西安:西安交通大学出版社,2006.

[3] 蔡自兴. 机器人学基础[M]. 北京:机械工业出版社,2009.

[4] Webots[EB/OL]. [2011-07-01]. /products/webots.

[5] Microsoft Robotics Studio SDK[EB/OL]. [2011-07-01]. /robotics.

[6] Brian Gerkey,Richard T.Vaughan,Andrew Howard. The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems[C]//Proceedings of the 11th International Conference on Advanced Robotics,2003:317-323.

Simulated-experimental Teaching in Intelligent Robots

XING Guansheng, GAO Zhi, CHEN Haiyong, LIU Zuojun, ZHANG Lei

智能机器人论文篇9

人工智能是对人的意识、思维的信息过程的模拟。但不是人的智能,能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。从诞生以来,人工智能理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。正因为如此,人工智能的应用方向才十分之广。

随着计算机和人工智能技术的迅猛发展,1994年世界上第一个机器人正式用于图书馆的处理系统,也开创了图书馆自动化的新纪元。迄今,发达国家的一些图书馆已经在不同程度上使用了工业机器人,工业机器人以很快的速度帮助图书馆工作人员对图书进行接收、登记和分类等,大大地减轻了图书馆人员日常体力劳动和雇佣成本。伴随着社会的方方面面都刻意追求现代化、自动化,我国许多数字图书馆和虚拟图书馆等都在建设之中,数据化、网络化、智能化、机器人等技术也融入了图书的采编、典藏、接收、登记、分类等工作中,机器人在图书馆的应用也是表现不凡。下面列举一些例子加以说明。

1 机器视觉

机器视觉包括指纹识别,人脸识别。

其中,人脸识别,特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。人脸识别是一项热门的计算机技术研究领域,人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度;它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流.首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

在人工智能与人脸识别技术结合上,百度可能已经领先众人一步,有人在秘密上爆料,说是百度人脸识别技术有了新成果,估计是与支付相关。如果百度这次推出的确实是人脸识别支付,则在移动支付上就可以甩开阿里、企鹅很大一步。

而作为图书馆,虽然进馆有卡验门机,但当下课高峰时,成千上万次的人流是无法顺利通过的,有的校方开辟了其他过道以便通过。这确实为高校图书馆的安保带来隐患。如果采用人脸识别技术,学生老师无需刷卡便可自由进入。仅仅要做的就是采集人脸。而不在采集范围内的则通过后台人工智能分析仪的辨别,一目了然。给值班的人员带来轻松的同时也为学校安保带来了又一道安全带。

2 智能信息检索技术

数据库系统是储存某个学科大量事实的计算机系统,随着应用的进一步发展,存储的信息量越来越大,因此解决智能检索的问题便具有实际意义。

智能信息检索系统应具有如下的功能:

1)能理解自然语言,允许用自然语言提出各种询问;

2)具有推理能力,能根据存储的事实,演绎出所需的答案;

3)系统具有一定常识性知识,以补充学科范围的专业知识。系统根据这些常识,将能演绎出更一般的一些答案来。信息检索是数字图书馆中重要技术之一,采用java多线程技术和网络蜘蛛程序,以广度优先搜索方式搜索网络中的超链接,可处理html、txt等纯文本文件和word、pdf等具有特殊格式的文件,设计实现检索器及用户界面多功能快速精确检索,进而提高了检索速度和准确性。

3 自动翻页技术

在图书馆经常需要大量扫描书本等印刷物,现在已经有了自动翻页扫描机器人,它能根据设定的扫描参数,自动完成翻页、通过数码相机拍摄文字图片、页码识别,然后进行简单地图像处理,并按指定的数据格式存贮,可实现图书电子化过程的自动化,代替扫描中繁杂的手动操作。

4 咨询机器人实现图书馆智能化

对现有的图书馆信息咨询服务功能和技术进行升级改造,开发构建图书馆智能化机器人服务平台,实现全天候机器人实时咨询服务。同时也使读者能以最快的速度和最优的方式获取优质图书资源。数字参考咨询系统一般包括常问问题自动回答子系统、人工处理问题辅助子系统和资料检索子系统三个部分。这三个子系统的有机结合,可以缓解重复性、简单性问题回答的繁重劳动,自动发掘用户常问问题,辅助咨询图书馆人员回答用户问题。结合人工智能技术,对读者以自然语言提出的问题进行分析后,通过对关键词所表达的概念语义,从语义上理解、处理和检索读者提出的问题,为准确解答读者问题提供了保障。

总的来说,目前我国图书馆的自动化、智能化的普及程度还处于初级阶段。但随着人工智能和计算机技术及机器人的快速发展,特别是随着社会进步和人们追求高效舒适愿望不断提高,高校图书馆的智能化和自动化及机器人的应用将会越来越得到重视和普及。期望人类智慧的结晶能够进一步改变人类的生活方式。

【参考文献】

智能机器人论文篇10

会议主论坛上,谭铁牛院士在“人工智能的发展现状与展望”主题报告中详细介绍了人工智能的基本概念、发展历程与现状、趋势、机遇与挑战,并对人工智能创新发展进行了探索式思考和发问。同时,他表示:“目前,国家政策层面利好不断,将加快推进我国人工智能的发展进程。”

会上,徐扬生院士带来了“机器人:从动作到智能”的精彩报告,他详细介绍了爬树机器人、书法机器人、救援机器人、服务机器人以及全方位转向车等机器人的研究成果与设计思路。他强调,在考虑智能问题时要注重感知与认知,并就智能来源、智能可扩展性等问题进行了探讨。就国内机器人创新模式、市场影响、机器人模块化定制等问题,与会听众与徐院士进行了互动。

主论坛的另一大亮点是苏士带来的“从WATSON到认知计算”主题报告。他重点介绍了IBM在人工智能领域的研究成果。苏士认为,认知计算需要左右脑的结合,左脑偏逻辑、计算较多,右脑偏认知。报告还描述了WATSON的几个发展方向,如类脑的计算机体系架构、结合大数据的理解、新一代的人机交互技术及未来的场景应用等。

围绕“脑认知的形式化”议题,李德毅带来精彩报告。他现场讲述了脑认知的神经学方法与物理学方法,并指出了人脑成长的认知性和社会性,提出了脑认知如何度量的问题;在脑认知的形态上,他认为记忆认知、计算认知、交互认知是关键,脑认知的核心是记忆认知。李德毅在报告中着重介绍了机器驾驶脑的形式化及其实现思路,可划分为感知、认知、行为三个阶段。此外,报告还阐述了机器驾驶脑形式化的普适性,并提出了脑科学和人工智能交叉研究载体的建议。

在微软全球执行副总裁沈向洋博士的主题报告――“Computer Vision――The Past,Present,and Future”中,他总结了计算机视觉研究的发展并分享了研究过程中的观点,指出研究中要重视数据集、基准集等。

沈向洋博士在报告中强调了深度学习的重要作用。在问答环节,沈博士提出对微软未来发展方向的认识,主要涵盖人工智能、大规模计算、安全以及新兴交叉科学四大板块。

此外,合肥工业大学吴信东教授和科大讯飞董事长刘庆峰也带来了精彩演讲。前者具体阐释了“大数据知识挖掘”,后者分享了科大讯飞人工智能的最新研究成果。

吴信东认为,大数据处理框架可分为三大层:数据库、专家系统、数据挖掘,并对大数据和流数据特征进行了具体介绍。刘庆峰具体介绍了国内尤其是科大讯飞基于人工智能技术创造出来了成果,包括应用现状、前景及在国际上的地位。同时,刘庆峰谈到了对创新的理解应该为“大波浪+小波浪,核心源头技术突破+用户体验微创新”。

智能应用分享百家争鸣

此外,大会设置了机器学习与模式识别、大数据的机遇与挑战、人工智能与认知科学、人工智能与机器人的未来四场主题论坛。

在机器学习与模式识别专场论坛,由中科院自动化所研究员宗成庆担任主持人,中科院自动化所模式识别国家重点实验室主任刘成林、华为诺亚方舟实验室主任李航、北京交通大学计算机科学系主任于剑、北京大学信息科学技术学院智能科学系教授查红彬、微软研究院首席研究员周明、京东智能通讯部总监刘丹等专家与大家齐聚一堂,就人工智能的概念、深度学习、关于自然语言理解、关于图像视频分析、关于智能系统、关于跟踪与坚守等七个话题各抒己见、舌战群雄。

在人工智能与认知科学专场论坛,由国防科学技术大学教授胡德文担任主持人,中科院自动化所脑网络组研究中心主任蒋田仔、重庆邮电大学教授王国胤、华南理工大学教授李远清、清华大学计算机系教授孙富春、北京师范大学" 认知神经科学与学习" 国家重点实验室主要成员姚力、苏州思必驰联合创始人俞凯、京东数据与机器智能部负责人杨洋几位嘉宾,对于类脑智能、混合智能及应用场景等话题,和与会者共同做了深度交流。

在大数据的机遇与挑战专场论坛,由中国科学院大学教授石勇担任主持人,清华大学计算机系副主任朱文武、复旦大学教授朱杨勇、中科院计算所研究员何清、春雨移动健康CEO张锐、考拉征信首席技术官葛伟平围绕大数据与人工智能、大数据的科学原理与数据科学、非结构与半结构大数据的结构化问题、大数据的复杂性表达与数据社会、大数据的开放产权与隐私问题、大数据与人类健康、大数据与信用评分及社会管理七个话题同台论道,百家争鸣。

在人工智能与机器人的未来专场论坛,新松机器人中央研究院院长徐方、哈尔滨工业大学教授赵杰、科技部高技术研究发展中心研究员刘进长、中国科学院自动化研究所研究员乔红、科大讯飞高级副总裁胡郁及小i机器人联合创始人朱频频,共同就“什么是人工智能、机器人?两者之间的关系是什么?五年来两者在理论及技术方面有哪些主要进展?两者在下一个五年或十年内是否会成为另一个科技创新的风口?”等问题,从不同角度做出了深度解析。

为响应国家 “互联网+”行动计划,开启创新2.0下互联网发展新形态、新业态,2015中国人工智能大会作为一次专业领域内的盛会,将为人工智能技术基于互联网和移动互联网等领域的创新应用提供一次全领域的动员和准备。

写在最后

智能机器人论文篇11

1、人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

2、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

3、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

4、人工智能不只是研发机器人,它的主要研究目的在于方便我们的生活,下面小编就来告诉大家人工智能在生活中有哪些作用。想要了解更多相关内容,请关注优就业IT常见问题栏目。

(来源:文章屋网 )

智能机器人论文篇12

机器人的原则

幸好这只是科幻。机器人这个词从第一次发明出来到现在,还差六年才到一百年。但是机器人已经出现在生活的各个方面,从打扫卫生的Roomba到宠物小恐龙Pleo和宠物狗AIBO,再到在生产线上组装生产其他机器的机械手们,人们正在和越来越多的机器人生活在同一个世界。当然,它们并没有智能,最多只是看起来似乎有智能的样子。

日本信息业巨头软银公司现在也进入了家用机器人市场,并将在明年二月一款叫作“Pepper”的人形机器人,能够运行一些应用程序,还能识别人的情绪并做出回应。这款机器人的身高和6岁孩子相仿,有光滑的珠白色外壳,靠一组轮子行走,胸前还有一块平板电脑。它有多种传感器,能通过对面部表情和语音的分析来判断人们的情绪,还能学习应对这些情绪的最好办法。最终,这种小机器人会成为帮助我们改善情绪的朋友―而它的售价将不到2000美元。然而,它依然没有智能。今天的机器人,只是由计算机控制和驱动的一些运动部件。无论外观多么像人,决定它们行为的依然是计算机的逻辑运算。诸多与机器人有关的科幻电影将机器人描述为智慧与人类相仿甚至更高的新造物,但却对一个关键问题语焉不详:智能是如何开始的?

人工智能之梦

不幸的是我们现在也没有确切的答案。从20世纪50年代开始,在教会机器思考这一领域,人们尝试了多种方法,包括让机器学量人类知识、让它们从经验中学会总结,把它们设计成类似生物大脑的结构,以及将能够自我学习的程序放到浩大的知识海洋之中;但是直到现在,我们依然没有办法制造出真正可以思考的机器。我们无法理解自己的智能,自然也无法把它赋予机器。

于是我们发现,近期的人工智能电影,无论是《超验骇客》还是《超体》,都用了另一种方式来创造更强大的智能体:以人为基础,再加上计算机的输入输出和存储计算能力。这样,人们最少还能和这些智能体沟通;而当机器人学会自行进化时,就像《机器纪元》中的台词那样:到了第九天,我们已经无法理解它了。

伟大的科幻作家艾萨克・阿西莫夫早就为机器人拟定了三定律:第一,机器人不可伤害人或看到人被伤害而无动于衷;第二,除非违背第一定律,机器人必须服从人类的命令;第三,除非违背之前两条定律,机器人必须保护自己。后来又加上了第零定律:机器人不得伤害人类,或者因不作为而使得人类族群受到伤害。

这几条定律成了20世纪诸多机器人主题科幻作品的核心,也经过多次修正。人们恐惧地意识到,如果没有这些定律的约束,在高效而强壮的机器面前,人类脆弱得不堪一击。指望智慧比我们强得多的造物与我们相安无事,就像是蚯蚓祈祷靴子不要踩下来一样。

在《机器纪元》中,机器人的原则写进了仿生内核中,成了机器人智能的基础;因为这两条原则是由一部量子大脑拟定的,它的智力远超过人类可以理解的程度,因此人们完全无法改造它;但即使如此,也敌不过自然突变。

可能的未来

20世纪最重要的未来学家和发明家雷・库兹韦尔曾经提出过著名的“技术奇点”理论,认为人类文明的发展速度正在迅速加快,在2040年-2050年,将迎来一次智慧的大爆炸。也许到那时,世界上将会出现真正有智力的机器人,这很可能意味着历史上从未有过的繁荣时代,或者前所未见的巨大危险。

如果没有任何限制,人工智能的演化速度将会比人类进化得快得多。而无论是《机器纪元》中的两原则还是阿西莫夫的机器人三定律都无法控制它;这些定律本身的定义太过模糊,而可行性堪忧。我们只能指望人工智能们离开人类,去创造自己的新世界。

智能机器人论文篇13

在科技发展的推动下,机器人在我们的生活中已经不足为奇,在一线城市的部分家庭中已经配备了家用智能机器人,常见的有智能轮椅机器人、智能清扫机器人、智能语音聊天机器人、智能玩具机器人等等,智能技术催生了更多的机器人种类,我国机器人研究起步较晚,这就意味着我国在今后应加大对智能机器人技术的研究。

一、智能机器人的科学性界定

什么是智能机器人,所谓的智能机器人是传统机器人技术发展到一定阶段的产物,以知识为核心基础,具有较强的思维决策能力,能有效的理解某些问题,根据当前的环境采取合理行动的机器人。在思维方式与行动能力上,智能机器人接近成人,能根据现有的任务目的与任务要求自行思维判断,做出正确的行为规划,实现人类既定的需求。智能机器人在今后的发展中将更加凸显智能性与服务性。

二、智能机器人技术在日常生活中的应用分析

(一) 通过语音识别技术获取重要家庭信息

智能机器人本身具有强大的语音识别功能,能够根据自身的文字识别技术,实现文字的语音报读,可以与孤寡老人进行复杂的人机交流,排遣老人心中的孤寂智能机器人可以通过整体联网技术,识别家庭中自来水、天然气与家庭用电的使用情况,进行缴费的提醒,为人们的生活增添便利。

(二)智能机器人具有强大的自由行走能力,进行安全巡视

智能机器人具有自身自动行走的功能,实现对家庭每个角落的安全性巡视,智能机器人本身配有摄像头,可以对家庭中发生的一切情况进行及时有效的记录,帮助用户了解家庭中的最新动态。而智能机器人具有独特的音响设备,可以有效替换家庭房间中的音响,提高资源的利用率,节约家庭家居成本花费。自由行走的机器人可以与用户进行交流,即使用户在外,也可以借助智能机器人了解加重的动态,与家中老人进行互动交流。

(三)智能机器人可以作为玩具,丰富儿童生活

中国是著名的玩具大国,玩具出口工业在外贸中占据很大的市场份额,而要想实现中国玩具产业的长盛不衰,就必须大力发展智能机器人,充分发挥智能机器人的玩具功能。计划生育政策的实施,更多的家庭中只有一个孩子,而父母长期在外工作,就需要用玩具填补孩子的童年,智能机器人的出现,父母更乐意为孩子购买智能机器人,一方面与孩子交流,另一方面智能机器人可以充当孩子的玩具。多样功能的智能机器人还容易引起孩子的关注,科技含量更高,功能更强大,智能机器人很有可能占据中国的玩具市场,具有玩具功能的智能机器人也能填补中国玩具创新不足的缺憾。

(四)智能机器人的家庭灯光控制技术

智能机器人一定程度上可以实现对整个住宅灯具的开关操控,即使忘记关灯智能机器人帮你关灯,即使忘记其他房间的等也不需要自己亲自跑来跑去。具有此项功能的智能机器人可以减少线路的安装,实现自身电源的一键控制,这主要得益于智能机器人所具有的智能遥控感光技术,能够通过无线遥控进行房屋灯光的实施与控制。

(五)智能机器人的空调替代功能,实现温度的自由调节

智能机器人具有自动温度调节系统,可以针对室内与室外的温度差进行室内温度与湿度的自由调节,不需要进行空调按钮的操作,只需要在机器人的温度与湿度设计上调整成期望的温度值就可以保持家中良好的温度环境。智能机器人采用的是无线红外伴侣作为主机控制的实现方式,可以有效的控制所有的空调,对每个房间的空调进行智能网络布网,为人们营造一个温馨舒适的活动与休息空间。

(六)智能机器人替代家庭影院,增强视觉效果

现在的智能机器人都配有家庭影院设计,为人们提供多样的逼真的视觉效果。即使在家里也能享受到电影院里逼真的画面效果与震撼人心的语音效果。智能机器人充分整合了投影机功能与幕布升降控制技术,不需要遥控的单一繁杂操作,一键控制,画面切换更加便捷。

(七)智能机器人的自动遮阳系统设计

智能机器人为人类营造休闲舒适的家庭环境,充分集成了电动窗帘、电动遮阳伞自动控制功能,用户可以根据阳光照射情况自动切换电动窗帘,整个过程完全采用远程控制。当室外阳光比较充足时可以通过触摸屏幕关闭窗帘,保证室内的清凉;当室内光线比较暗淡时,可以通过智能机器人的触摸屏进行电动窗帘的打开操作,阳光进入室内,提高光亮程度。整个光控调节完全由一键实现,减少了手动关闭与开启窗帘的繁杂。

(八)智能机器人的远程网络遥控技术

智能机器人内部设立了远程网络控制技术,即使出差在外也可以通过远程控制系统掌握家中的一举一动。很多人在出门后忘记了某个房间的灯,通过智能机器人的远程控制系统,智能机器人代你完成。当熟悉的好友登门造访,而你不能马上赶回去时,可以通过智能机器人的远程控制系统允许客人进门在家休息。当你参加某项会议,发现有个文件忘在了家里的台式电脑上,你只需要通过智能机器人的远程控制系统,就可以轻松获取该文件,不影响正常会议使用。通过智能机器人的远程控制系统,你可以与家人进行可视对话,进行交流,增进与家人的感情。

三、我国智能机器人的发展趋势分析

随着社会的发展,人口老龄化问题越来越严重,大量的孤寡老人将如何安度晚年就成为人们思考的问题,进行统一的社会赡养在当前还不具备实现的可能。老人在获得子女资金物质支持的同时,更需要与他人的倾心交流,智能机器人将必然朝着解决老龄化一系列问题方向发展,充分满足老龄化人口的社会需要。此外,智能机器人还将朝着娱乐性强的方向发展,在方便人们日常生活的同时,给人们带去更多的生活欢乐。

结束语:智能机器人是一项综合性的高科技研发技术,具有多学科与宽领域的发展特点。在今后,我国要在思想意识上认识到发展智能机器人技术的重要性,完善智能机器人的发展理论,总结并归纳研发经验,积极发现人们的生活需求,结合社会发展的大背景,推动我国智能机器人技术的研究与推广。智能机器人是利国利民的大型科技工程项目,今后的发展将更加光明。

参考文献

在线咨询