高层建筑抗震结构设计实用13篇

高层建筑抗震结构设计
高层建筑抗震结构设计篇1

在古代人们就开始建造高层建筑,比如埃及的亚历山大港灯塔,高100多米,为石结构。中国山西应县的佛公寺释迦塔,高约为67米,为木结构。 现代高层建筑发展迅速,在大中城市随处可见。高层建筑是指超过10层的住宅建筑和超过24米高的其他民用建筑。高层建筑可以带来明显的社会经济效益:首先,使人口集中,可利用建筑内部的竖向和横向交通缩短部门之间的联系距离,从而提高效率;其次能使大面积建筑的用地大幅度缩小,有可能在城市中心地段选址;第三,可以减少市政建设投资和缩短建筑工期。

由于高层建筑的高度比较高,所以解决水平抗剪问题成为关键,而抗震是解决水平抗剪问题的一个重要因素。然而对于不同的结构形式,同一设防烈度下,抵抗地震能力有很大区别,因此选择合适的结构形式对于高层建筑尤为重要。

二、高层建筑抗震理论分析

2.1 高层建筑抗震的有关规范

建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,丙类建筑应属于除甲、乙、丁类以外的一般建筑,丁类建筑应属于抗震次要建筑。多层高层建筑结构的抗震措施是根据抗震等级确定的,抗震等级的确定与建筑物的类别相关,不同的建筑物类别在考虑抗震等级时取用的抗震烈度与建筑场地类别有关,也就是考虑抗震等级时取用烈度与抗震计算时的设防烈度不一定相同。全国大部分地区的房屋抗震设防烈度一般为8度。

2.2 建筑抗震设计的理论

2.2.1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2.2.2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

2.2.3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2.3 高层建筑抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

三、高层建筑的结构抗震设计

3.1高层建筑抗震设计的理念

按抗震设计要求进行结构分析与设计时,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而满足我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在许多的不确定因素,因此规定建筑结构当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此在有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求,使建筑具有足够的变形能力,使其弹塑性变形不超过规定的弹塑性变形限值。

对于“两阶段”设计,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.2高层建筑的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除规定1外的建筑结构,宜采用振型分解反应谱方法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

高层建筑抗震结构设计篇2

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。

一、建筑抗震的理论分析

1、建筑结构抗震规范建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2、抗震设计的理论拟静力理论。拟静力理论是20 世纪10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在20世纪40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20 世纪70-80 年广为应用的地震动力理论。它的发展除了基于60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑抗震设计结构设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

1、减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

2、运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒。

进入20 世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对阻尼器的利用,进行减震和能量的吸收,可以巧妙的避免或减弱地震对高层建筑的破坏作用。

3、注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150m 以上的建筑,采用的3 种主要结构体系(框.筒、筒中筒和框架- 支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子:迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56 层、321m高,就是运用拱结构抗震减灾的很好的例子。

4、重视建筑材料的选择

在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。

5、增多抗震防线的建设

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。

框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙,使其具有优良的多道抗震防线性能。

总之,在建筑结构抗震设计方法的研究与进展,尤其是各国历次大地震对人类造成的严重灾害的经验教训,使世界各国地震工程学者及抗震设计人员逐步取得了较为一致的认识,经济与安全的关系,是建筑结构抗震设计的重要技术政策。

参考文献:

高层建筑抗震结构设计篇3

Keywords: construction project, the structure, the seismic design

中图分类号:S611文献标识码:A 文章编号:

建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。因此,建筑结构抗震设计就显得尤为重要。

1.有关抗震设计的若干概念

为了保证结构的抗震安全,根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。高层建筑的结构单元宜采取加强连接的方法。尽可能设置多道抗震防线,强烈地震之后往往伴随多次余震,如只有一道防线,在首次破坏后在遭受余震,结构将会因损伤积累而导致倒塌。适当处理结构构件的强弱关系,使其在强震作用下形成多道防线,并考虑某一防线被突破后,引起内力重分布的影响,是提高结构抗震性能,避免大震倒塌的有效措施。合理布置抗侧力构件,减少地震作用下的扭转效应。结构刚度、承载力沿房屋高度宜均匀、连续分布、避免造成结构的软弱或薄弱部位。结构构件应具有必要的承载力、刚度、稳定性、延性及耗能等方面的性能。主要耗能构件应有较高的延性和适当的刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。合理控制结构的非弹性(塑性铰区),掌握结构的屈服过程,实现合理的屈服机制。框架抗震设计应遵守“强柱、弱梁、结点更强”的原则,当构件屈服、刚度退化时,结点应能保持承载力和刚度不变。采取有效措施,防止钢筋滑移、混凝土过早的剪切破坏和压碎等脆性破坏。考虑上部结构嵌固于基础结构或地下室结构之上时,基础结构或地下室机构应保持弹性工作。高层建筑的地基主要受力范围内存在较厚的软弱黏性土层时,不宜采用天然地基。采用天然地基的高层建筑应考虑地震作用下地基变形对上部结构的影响。为了充分发挥各构件的抗震能力,确保结构的整体性,在设计的过程中应遵循以下原则:①结构应具有连续性。结构的连续性是使结构在地震作用时能够保持整体的重要手段之一。②保证构件间的可靠连接。提高建筑物的抗震性能,保证各个构件充分发挥承载力,关键的是加强构件间的连接,使之能满足传递地震力时的强度要求和适应地震时大变形的延性要求。③增强房屋的竖向刚度。在设计时,应使结构沿纵、横2个方向具有足够的整体竖向刚度,并使房屋基础具有较强的整体性,以抵抗地震时可能发生的地基不均匀沉降及地面裂隙穿过房屋时所造成的危害。

2.抗震设计一般规定

2.1多层和高层现浇钢筋混凝土房屋的结构类型和适用的最大高度应符合要求。平面和竖向均不规则的结构或建造于Ⅳ类场地的结构,适用的最大高度应适当降低。合相应的计算和构造措施要求。

2.2钢筋混凝土房屋应根据烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算措施要求。

2.3钢筋混凝土房屋抗震等级的确定,尚应符合下列要求:框架一抗震墙结构,在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,最大适用高度可比框架结构适当增加:裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级;主楼结构在裙房顶层及相邻上下各一层应适当加强抗震构造措施。裙房与主楼分离时,应按裙房本身确定抗震等级;当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。地下室中无上部结构的部分,可根据具体情况采用三级或更低等级;抗震设防类别为甲、乙、丁类的建筑应结合有关抗震设防标准的规定和确定抗震等级;其中,8度乙类建筑高度超过规定的范围时应经专门研究采取比一级更有效的抗震措施。

2.4高层钢筋混凝土房屋宜避免采用规定的不规则建筑结构方案,不设防震缝。

3. 建筑防震设计方法

建筑抗震的概念设计指在进行建筑结构抗震设计时,应着眼于建筑物结构的总体地震的震动反应,按照建筑结构的破坏机制和破坏过程,灵活应用建筑抗震的设计准则,全面而合理地解决建筑结构设计中出现的基本问题。

钢结构建筑有许多优良的特性。有很好的抗震、抗风性能。钢结构整体刚性好、强度高、重量轻、变形能力强,建筑物自重仅为砖混结构的1/5,抗震性能却是砖混结构的2倍以上,并有很强的抗风性能,有效的保护人民生命和财产安全。建筑钢结构都是由多层水平的楼盖和竖向的柱、墙等组成。楼盖主要承受竖向荷载,而建筑竖向的柱、墙等构件因为建筑高度的变化,其组成方式和受力变形.特性结构体系也有明显的变化。框架、剪力墙及筒体是结构中抵抗竖向及水平荷载的基本单元,由它们及其变体组成了各种结构体系,如框架结构体系、框架一支撑结构体系、框架-剪力墙体系、框架一简体结构体系、交错析架结构体系等。

建筑设计应设置多道抗震设防体系。由于地震的震动往往会持续一定时间,而且震动是往复的。根据对地震的大量研究可以看出,建筑物的倒塌通常是由于地震的持续往复作用,使建筑物的结构造到破坏,从而丧失了对建筑物重力荷载的承载能力。所以,建筑抗震规范提出“强柱弱梁、强剪弱弯”的抗震设计思想。建筑柱桩是建筑主要承受重力荷载的构件,通过科学、合理处理柱与梁之间的强弱关系,使建筑框架梁在地震中先于柱子屈服,出现了塑性铰,从而耗散一定的地震能量,柱桩在建筑抗震中退居到第二道抗震设防体系。剪切破坏属于力学的脆性破坏,而弯曲破坏是材料力学中的延性破坏,破坏后出现塑性铰,建筑结构还能够继续承载。“强剪弱弯”的设计思想则使剪切破坏退居到第二道抗震设防体系。

建筑抗震设计要具备合理的刚度和承载力分布以及与之匹配的延性。结构构件必须具备足够大的承载能力和刚度(刚度包括抗侧刚度和抗扭刚度),结构构件的承载能力和刚度是相关的,一般来说,建筑刚度越大,其承载能力也越大。增大建筑结构构件的承载力,可以推迟地震时构件的屈服能力,减轻地震对构件的屈服程度,降低对构件延性的要求,但这提高了建筑工程造价。要实现经济合理的建筑抗震结构体系,使建筑物在遭受大地震侵袭时,仍具有很强的抗倒塌能力,最理想的是建筑物部分结构构件破坏,通过延性耗散地震能量,避免建筑物的倒塌。

建筑延性系数设计方法。该方法的实质是通过建立建筑构件的位移延性系数或建筑截面曲率延性系数与塑性铰区混凝土极限压应变的关系,由结构约束箍筋来保证核心混凝土能够满足所要求的极限压应变,从而使建筑构件具有所需要的延性系数。建筑延性包括建筑结构延性、构件延性和截面延性三个方面。结构延性可以用顶点位移延性和层间位移延性来表达;构件位移延性与塑性铰区长度和截面延性等有关;截面延性与建筑物的几何形状、混性土强度、轴压比、纵筋含钢率、含箍特征值等因素有关。

采用能力谱方法进行建筑抗震设计。该方法是通过地震反应谱曲线和建筑结构能力谱曲线的叠加来评估建筑结构在给定地震作用下的反应特性。反应谱是指单自由度体系在给定地震输入下的加速度谱;能力谱是指通过对建筑结构进行静力推的分析,转换得到等效单自由度体系的加速度和位移之间的关系曲线。能力谱方法由Freeman等提出,经过不断的完善和革新。《日本建筑标准法》和美国ATC-40都采用能力谱法作为基于性能,位移抗震设计方法。Chopra提出了将能力谱方法和结构损伤指数评定相结合的屈服位移能力谱的地震损伤分析方法,增加并强化了能力谱法的实用性。因此,能力谱法的实质是采用的基于承载力的设计方法加位移、变形的能力校核,并依据能量的设计方法。对抗震设计的研究表明地震动瞬时能量在大多数情况下对结构最大位移反应具有决定性作用。但要建立基于能量的有效建筑抗震设计框架还需更深入的研究。

4.结束语

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用用于结构设计。结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变

高层建筑抗震结构设计篇4

一、问题的提出

随着经济的发展,对房屋建筑使用功能的要求越来越高,立面体型变化多样化,竖向构件上部与下部不能贯通,例如酒店、公寓、高层住宅底部设有局部大空间门厅,甚至底部几层作为商业用途而全部采用较大柱网的大空间。上述要求与结构的合理、自然布置趋势正好相反,由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常布置时下部刚度大、墙多、柱网密,到上部墙少、柱网稀疏,结构的正常布置与建筑功能之间就产生了矛盾。为了解决这种矛盾,就必须在结构转换的楼层设置转换层。

二、高层建筑转换结构的形式

带转换层高层建筑结构主要归纳为两大类,一类是其主体结构由上部剪力墙结构与下部筒体框架结构或框架剪力墙结构通过转换层组成;另一类是其主体结构由上部小柱网框架、筒体、剪力墙结构与下部大柱网框架、筒体、剪力墙结构通过结构转换层组成。而结构转换层的类型又可分为两类:一类是梁式转换,包括梁、桁架、空腹桁架、箱型结构、斜撑等,另一类是板式转换,一般是由一块整体浇注的厚平板组成。除此之外,近年又出现许多新的转换结构形式,如搭接柱转换结构、宽扁梁转换结构、斜撑转换结构。

梁式转换层结构,由于其受力、传力比较直接,且还可提供一定的建筑设备利用的空间,因而是目前得到最广泛应用的转换结构形式;板式转换结构,受力、传力比较复杂、不够明确,板内应力分布复杂,而且经济性较差,所以此结构形式较少被采用。

三、震害实例[1]

A.美国橄榄景医院主楼(1971年2月9日美国加利福尼亚州圣费南多发生里氏6.4级地震),震害如下:

震害分析:1~2层为框架,2层有较多的砖填充墙,3层 以上为框架—抗震墙,上刚下柔,上下部的刚度相差悬殊,建筑上部3~6层的刚度比下部1~2层的大10倍以上,底部两层在地震后破坏严重,平均残余侧移达380mm,最大为710mm。

B.帝国县行政办公大楼(ICSB大楼)(1979年10月15日美国加利福利亚El Centro发生里氏6.4级地震),该建筑平面布置如下

ICSB大楼平面

(a)首层平面(b)2~5层平面

震害如下:一层G轴4根柱严重破坏,柱下端混凝土压碎,主筋呈灯笼状外鼓,外端两根柱的破坏比中间两根柱严重,剪力墙和楼板没有明显的剪切破坏。

震害分析:该建筑表面看似简单、规则,但第一层剪力墙的布置是不对称的,且2~6层东西两侧的剪力墙在第一层中断,设计者为了改善首层的刚度和承载能力,在第一层增设了4片剪力墙,通过这样,2~6层的绝大部分剪力和倾覆力矩由东、西两侧剪力墙承担,到了第一层需通过第二层楼板将剪力墙的剪力传递到中间4片短剪力墙;由于这4片剪力墙的布置不对称,东侧第一层的4根柱由于到刚度中心的距离最远,必将承受一定的剪力,所以东侧框支柱在地震中破坏严重,而西侧框支柱由于离刚度中心较近,承受的地震剪力较小而无明显破坏。

C.日本神户A公寓(1995年日本阪神大地震),震害如下:

震害分析:该建筑西楼框支层(1~3层)的层刚度与上部楼层(4~10层)相比,不但没有减弱,还大于上部楼层刚度,但框支层剪力墙布置严重偏心,西楼西部有相当多的落地剪力墙,但1~3层的东侧布置了5片框支墙,使框支层(1~3层)与上部刚度偏心率很大,地震中扭转效应大,加剧了原本薄弱的框支柱的破坏,框支柱的破坏严重,出现东侧第3层倒塌破坏的结果。

D.日本FY大楼(1995年日本阪神大地震),震害如下:

FY大楼A轴1层南侧边柱上端破坏FY大楼A轴1层北侧边柱脚破坏

震害分析:1)、该建筑沿东西向层数不同,东侧仅3层,西侧7层,地震作用下,使得西侧的扭转影响较大,加剧了西侧框支柱的漂亮;2)、地震作用下,上部剪力墙的倾覆力矩使1、2层的框支柱产生较大的轴向拉、压力,上部剪力墙的剪力不能全部传递到落地剪力墙上,使框支柱承受一部分剪力,7层部分的西侧框支柱轴力最大,破坏也最严重。

转换结构地震破坏的例子很多,这里只对以上几种典型的情况做了简要介绍,目的是为了使结构设计师加深对转换结构,尤其是高层转换结构设计的认识和理解,并在设计中引起足够的重视。

四、高层结构抗震概念设计的特点

(1)带转换层高层建筑结构由于上、下层竖向构件不连续,结构竖向刚度发生变化转换层上下楼层构件内力、位移发生突变,对抗震不利。研究表明,影响带转换层高层建筑结构抗震性能的主要因素为:1)转换层设置高度---转换层位置越高,转换层上下层间位移角包络及剪力分配和传力途径突变越明显,转换层下部的框支框架越易开裂和屈服;2)转换层上下楼层刚度---转换层上下楼层的剪切刚度宜尽量接近;对转换位置较低的结构,控制侧向刚度比可以控制转换层附近的层间位移角及内力突变;对转换位置较高的结构,还应控制转换层上下部结构的等效刚度比。

(2)转换构件除满足刚度、强度、延性的要求外,还要注意保证转换层楼盖的整体刚度。一般而言,转换层楼盖受力较大,除协助转换梁工作外,楼盖还要承受上部结构竖向构件传来的水平力传递到下部竖向构件上去。震害表明,转换构件的刚度较弱,楼盖的刚度和抗剪承载力较弱,使楼盖破坏严重、转换构件上部的剪力墙、柱破坏严重。

(3)落地剪力墙与框支柱的布置宜均匀、对称,结构刚度偏心不宜过大,以免地震中由于扭转效应使框支柱严重破坏。框支柱的设计还要注意上部墙体地震倾覆力矩产生的框支柱轴向拉、压力的影响,尤其是单跨框支框架,轴向拉、压力往往会成为框支柱破坏的主要原因,抗震设计一般不宜采用单跨框支框架。

(4)抗震设计中需要加强的部位应包括底部及转换层以上1~2层的楼板、剪力墙和柱。结构的延性耗能机制宜呈现在加强部位以上的结构中

五、高层转换结构设计的原则

尽管高层结构本身有一些抗震不利的因素,但是只要能合理设计,把握好几个原则,还是能达到比较满意的抗震效果的,下面对转换结构设计的原则做如下总结。

尽量减少转换

在可能的情况下尽量减少主体结构的转换,核心筒、剪力墙、框架柱等竖向主体构件应尽量落地,以满足受力直接,刚度连续,既经济又合理。

使传力直接

在可能情况下注意主体结构上部和下部竖向构件的协调对应关系,使转换结构尽可能处于传力比较直接。上部剪力墙宜尽可能采用大开间剪力墙结构,既容易满足上下部刚度比的要求,又便于下部大开间框支柱、转换梁的布置;上部小柱网的结构,宜尽量使其柱网与下部大柱网的轴线有较好的对应插入关系,以使转换梁的布置比较合理明确。总之,应尽量避免多级转换梁转换,慎重采用传力复杂、抗震不利的板式转换。如上下柱网确实无法对齐时,尽量采用箱型转换。

强化下部、弱化上部

对于上部剪力墙下部筒体框架、剪力墙框架的结构,要注意适当增强下部筒体、剪力墙,适当减弱上部剪力墙,以使转换层上下部分主体结构间剪切刚度比尽量接近,且不大于2。对于框架结构上部小柱网,下部大柱网时,要注意上部框架梁截面适当减弱,下部框架梁截面适当加强,从而可以做到上下部的层间刚度比接近。

加强下部结构的措施:加大筒体及落地墙厚度、提高混凝土强度等级、必要时可在房屋周边增加部分剪力墙、壁式框架或楼梯间筒体,提高抗震能力。

弱化上部结构的措施:不落地剪力墙开洞、开口、减小墙体厚度等。

优化转换结构

抗震设计时,却因建筑功能需要采用高位转换时,转换结构宜优先选择地震作用下、不致引起框支柱柱顶弯矩过大、柱剪力过大的结构形式,如斜腹杆桁架、空腹桁架和扁梁等,同时要注意需满足重力荷载作用下承载力、刚度的要求。

计算细致全面

带转换层的高层结构,在转换层及其上下几层的主体结构筒、墙、框架中应力比较集中、复杂,除满足结构的整体分析外,还应辅以该部分结构的有限元分析,取转换以上至少两层结构进入局部计算模型,并注意模型边界条件符合实际情况。整体结构计算需采取两个以上不同力学模型的程序进行抗震计算,还应进行弹性时程分析计算并宜采用弹塑性时程分析进行校核.

六、结语

本文对高层建筑转换结构的形式做了简要介绍,并通过几个较典型的震害实例对高层结构抗震概念设计的特点进行分析,最后总结高层建筑结构设计时应注意的原则,希望本文对初次做转换结构设计的工程师们有一定的指导作用。

[1]徐培福,复杂高层建筑结构设计,北京:中国建筑工业出版社,2005(2)

高层建筑抗震结构设计篇5

一、高层民用建筑结构抗震理念设计的必要性

随着经济的发展,人们对高层民用建筑结构的抗震理念设计越来越重视,发展先进的抗震理念,加快新型高强度、环保的建材的开发,实现建筑结构设计的安全、可靠成为民用建筑行业发展的首要任务。近几年,伴随地震的随机、高强度、循环往复的发生,给建筑物,特别是高层民用建筑物带来了损害。同时,有关人员对高层民用建筑所遭遇地震的特性、参数等方面的计算和测量还不够精准,因此,为了保证人们居住环境的安全和人们生活的稳定,有必要注重高层民用建筑结构抗震理念设计。

二、高层民用建筑结构的特点

我国现阶段高层民用建筑常用的结构形式有:框架结构、框架-剪力墙结构、剪力墙结构、筒体结构;按所采用的材料又可分为混凝土结构、钢结构以及钢与混凝土混合结构。

高层建筑的竖向结构体系要求有较大的柱或墙截面,除了承重自上而下的重力荷载,还必须把风荷载或地震作用等侧向荷载传给基础。与竖向荷载相比,侧向荷载对建筑物的作用效应不是线性的,而是随着建筑物的增高而迅速增大,地震效应甚至更加显著。

三、高层民用建筑抗震设计所遵循的基本原则

所有高层建筑基本上都是支撑在地面上的竖向悬臂结构。当合理地使用下述原则时,由墙、核心筒、框架、筒式结构和其它竖向结构分体系,可以得到所希望的结构方案,既能达到良好的抗震性能,同时又不需要增加成本。

(一)设计结构分体系应使其构件以最有效的方式相互作用。例如:在墙的关键部位配置钢筋;使框架的刚度比达到最优;弦杆和斜杆的桁架体系。

(二)增加抗弯结构体系的有效宽度,这是非常有效的。因为增加宽度可以直接减小倾覆力,在其它条件不变时,侧移按宽度增加的三次方的比例减小。

(三)使大部分竖向荷载直接由主要抗弯构件承受。这将使主要的抗倾覆构件受到预压而有助于倾覆拉力作用下的房屋稳定。

(四)增大承受荷载最有效构件的截面。例如:加大较低楼层柱子的连接大梁的翼缘截面,就能够直接减小侧向位移和增加抵抗力矩,而不会增大上层楼面的质量。否则就更不利于抗震。

(五)在竖向结构分体系中,合理布置实心墙或斜撑构件,可以有效地抵抗每层楼的局部剪力。这样不仅起到抗震效果且可降低建造成本。

(六)将大型竖向和水平构件连接成巨形框架。

(七)每层楼盖都应起到水平隔板作用。这可以让各抵抗外力的构件共同工作,而不是单独工作。

四、高层民用建筑结构抗震理念设计的内容

(一)建设场地的选择。在高层民用建筑结构抗震设计的过程中,应该先对建筑物场地进行抗震能力的评估,要充分分析建筑物场地的地形、地貌、地质以及岩土等环境情况,从而确定较为科学的建筑场地。同时,要努力降低地震对建筑物上部结构底部基础的影响,建筑场地的选择上要尽量避免不好开发的地段,像采空区、软弱粘土区等,对于土层不均匀的地区要增强地基建筑结构的整体性和稳定性。

(二)结构设计要具有一定的稳定性、承载力以及刚度等性能。抗震结构的设计不仅要考虑验算、概念设计,还要考虑建筑高度、结构材料使用、结构类型等方面对抗震结构设计的影响。要在抗震和消震结合的基础上建立设计地震力以及结构延伸影响的指标,通过一些结构措施来减震,实现高层民用建筑抗震性能。

(三)要设置多道抗震防线。强烈的地震之后会伴随余震的发生,如果只设置一道防线,就不能保证高层建筑在余震的反复作用下安然无恙。因此,抗震结构体系要加强高层民用建筑主要耗能构件的延性和刚度,从而保证高层民用建筑结构能够吸收地震能量,避免地震时房屋建筑的倒塌。同时,抗震设计中一部分结构设计的超强会削弱其他结构设计,所以,抗震设计要慎重考虑建筑施工中以大结构带动小结构的做法。

(四)提高建筑薄弱部位的抗震能力,加强建筑局部的抗震性能。提高建筑薄弱部位的抗震能力,首先,应使楼层的实际承载地震的能力和设计计算的受力能力比值变化均匀,避免楼层比值的突变。其次,不能为了加强建筑局部的抗震性能而忽视整体结构的抗争性能,要保证高层民用建筑总体刚度、承载力的协调。最后,抗震设计要有意识的关注建筑的薄弱部位,保证薄弱部位的变形能力,提高建筑的总体抗震性能。

加强建筑局部的抗震性能,要在仔细分析地震的破坏性发现地震纵波要比横波到达地表的速度快的基础上,发现高层民用建筑的楼板以及后砌墙等部位较容易产生坍塌。之后,在保证建筑主体结构和各个构件质量的基础上,合理设计建筑的截面,在设计理念和设计结构方面高度重视抗震工作。

五、总结

现阶段,地震已然成为人们财产和生命安全的严重威胁者,伴随地震的频发以及地震对于建筑的毁灭性伤害,特别是对人们生活需要的高层民用建筑的伤害,加强建筑的防震性能被提上日程。为了保证人们的居住安全和稳定,有关部门和有关人员要加强高层民用建筑结构的抗震设计。抗震设计是通过对地震作用分析并采取抗震措施来实现的,结合多次的地震灾害后发现,对抗震结构的理念设计要比抗震结构的数值计算重要。高层民用建筑抗震性能的优劣受到抗震理念设计的影响,因此,抗震结构设计理念应该受到人们的重视,有关人员也要在建筑结构设计的同时,关注整体结构在地震中的反应,并按照一定的结构机制灵活地进行抗震设计理念的构思。

参考文献:

[1]王亚勇,戴国莹.《建筑抗震设计规范》的发展沿革和最新修订[J].建筑结构学报,2010,06:7-16.

[2]李昆麟.美高层建筑结构基于性能抗震设计规范之对比[J].福建建设科技,2012(09).

[3]蔡静敏.某超限高层建筑结构抗震超限设计与分析[D].华南理工大学,2013(11):40-41.

高层建筑抗震结构设计篇6

随着建筑行业的快速发展,我国建筑逐渐向高层建筑和超高层建筑结构发展。高层建筑的结构复杂,层数比较高,建筑地基承受的荷载比较大。地震发生时,震源对高层建筑结构会产生冲击力,容易造成建筑梁、柱断裂,建筑倒塌等现象,严重威胁到人民群众的安全。我国是地震灾害比较频繁的国家,高层建筑抗震设计一直是社会关注的重点,抗震设计的好坏直接关系到高层建筑的质量。因此高层建筑抗震设计的时候要根据高层建筑的实际情况,提高建筑结构抗震性能。

1超限高层建筑结构基于性能抗震设计与常规抗震设计的比较

1.1基于性能的抗震设计的概念

概念设计是目前一种比较先进的设计理念,与传统建筑设计相比,概念设计不需要精准的计算或参考建筑设计规范相关的目录,而是设计者根据实践经验,按照建筑结构体系的力学关系、结构破坏机理,从建筑结构整体进行把握设计。传统的建筑设计思想无法满足人们对建筑结构抗震功能的要求,为了提高建筑结构抗震安全性能要求,抗震设计已经发生了较大变化。比如建筑结构以力分析为主并兼顾力与变形,考虑到建筑结构变形、耗能和损失,以及非线性分析和可靠性分析。基于性能的抗震设计是20世纪90年代美国建筑设计师提出来的一个全新的设计理念。它的主要核心是将抗震设计从保护居民生命财产安全为基本目标转移到不同风险水平地震作用力下满足人们对建筑的性能要求,通过多层次、多目标的抗震安全设计,保障建筑安全,最终实现经济效益和投资效益的平衡,满足人们对建筑的个性需求。

1.2我国常规抗震设计方法

当前大部分国家的抗震设计规范为“小震不坏、中震可修、大震不倒”的原则,我国采用二阶段抗震设计方法满足工业建筑和民用建筑实现以上三个原则的抗震要求,并在这个基础上根据建筑物抗震重要性分成甲、乙、丙、丁四类建筑物,根据建筑物的类别设置相应的抗震防烈要求。二阶段抗震设计方法如下:第一阶段是对建筑结构强度进行验算,也就是小震的地震洞参数,通过弹性模量计算建筑结构的弹性地震作用力,并与建筑物风荷载、雪荷载、水平荷载等进行组合,计算建筑结构截面的抗震承载力,确保建筑结构的强度,并通过合理的平面结构布置,确保建筑结构的抗拉力。第二阶段则是验算建筑结构的弹塑性,也就是对地震作用下很容易倒塌的建筑结构按照大震标准进行设计,处理好建筑结构的薄弱环节,以免地震发生时首先冲击建筑结构的薄弱环节,影响到整个建筑结构的安全性和稳定性。

1.3常规抗震设计方法与基于性能抗震设计方法的比较

基于常规抗震设计方法与基于性能抗震设计方法在设防目标、设计实施方法和检验方法、实现性能和工程应用方面都有所不同,具体见表1。通过比较发现,基于性能抗震设计方法是未来建筑抗震设计的发展方向,它适应了社会新技术和新工艺发展需求,能够满足建筑业务单位和使用单位对建筑结构安全性、经济性等相关要求。

2超限高层建筑结构的抗震性能目标

某酒店塔楼的高度是168.9m,结构计算高度为176m,建筑结构为B类钢筋混凝土高层建筑。建筑场地类别为III类,建筑抗震等级为二级。

2.1结构的抗震性能水准

按照相关规定,酒店的塔楼高度、平面扭转不规则等不能超限,所以在第一、二阶段抗震设计过程中,必须采取有效的方法满足建筑工程国家以及地方相关的标准,并将基于性能抗震设计目标概念进行设计。按照《建筑抗震设计规范》给出的抗震性能设计方法以及《高层建筑混凝土结构技术规范》中的相关规范进行设计,确定该酒店的性能水准为C类,具体控制目标如下:

2.2建筑结构的性能目标

超限高层建筑结构规则性、高度等方面超出了建筑工程规范中的适用限值,使得抗震设计缺乏相应的参考依据。基于性能目标设计方法在设计的时候,需要综合考虑到建筑场地实际设防裂度、超高限值以及建筑结构不规则等经济因素,对超高建筑的薄弱环节、主抗侧力构件等结构变形能力和抗震承载能力有具体的性能目标。按照建筑工程设计中相关内容,建筑结构关键构件由建筑结构工程师根据工程实际情况分析。比如水平转换构件和支撑竖向构件、大悬挑结构的主要悬挑构件、长短柱在同一楼层的数量相当于在该层各个长短柱等要求。这其实是将过去常规抗震设计中的“小震不坏、中震可修、大震不倒”的抗震设计原则进行量化和细化。比如将A级性能目标设计要求建筑结构小震不坏、中震和大震不坏,就是要求建筑结构在中震和大震中依然保持一定的弹性。

3结语

随着建筑行业的快速发展,常规的建筑工程抗震设计方法已经无法满足当下建筑设计的要求,基于建筑结构性能抗震设计理念对抗震结构的目标进行量化,明确抗震目标性能,能够提高建筑结构抗震性能,必将成为建筑行业的发展趋势。

高层建筑抗震结构设计篇7

建筑抗震的实践表明,高层建筑物如果缺乏良好的抗震设计,没有良好的总体布置方案,仅仅依靠结构抗震计算,采取抗震构造措施是远远不够的,不能达到良好的抗震效果。当较强地震发生的时候,高层建筑物无法发挥很好的抗震效果,不能起到降低震害的效果。因此,在高程建筑设计的实际工作中,为了提高设计水平,保证高层建筑的强度和质量,提高高层建筑的抗震能力,必须重视取相应的策略,从多个方面入手,优化高层建筑结构的抗震设计,提高建筑结构的抗震能力,为人们的生产生活创造良好的条件。文章结合高层建筑的设计情况,主要探讨分析了抗震优化设计的相关问题,并提出了具体的提高高层建筑结构抗震能力的策略,以供实际工作进行参考和借鉴。

二、高层建筑结构抗震设计准则

抗震设计要刚柔相济,选择合适的结构形式,在增加结构刚度的同时也要增强地震作用,需要确定合理的抗震措施。保证结构的抗震性能主要是确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。在地震力作用下,要求结构保持在弹性范围内正常使用。建筑物的变形破坏性态后不能发生很大的变化,经简单的修复后可正常使用。随着建筑物高度的增加,允许结构进入弹塑性状态,但必须保证结构整体的安全。因此,六级以上必须进行抗震设计。每次强震之后都会伴随多次余震,在建筑抗震设计过程中如果若一味的提高结构抗力,就会增加结构刚度。所以,建筑物在地震过程中既能满足变形要求,又能减小地震力的双重目标。因此,只有这样才能使建筑物抗震设计过程中防止造成建筑物局部受损。建筑物的抗震结构体系如果刚度太柔,首次被破坏后而余震来临时其结构将因损伤,结构构件协同工作来抵挡地震作用容易导致建筑物过大形变而不能使用。延性较好的分体系组成,地震发生时不会发生整体倾覆。因此,由若干个在地震发生时由具有较好延性。

三、 高层建筑结构抗震设计的关键问题

对于高层建筑来说,提高其抗震能力无疑是其十分重要的工作。而要提高抗震能力,首先就得做好设计工作,优化抗震设计,把握好其中的关键问题。具体来说,这些关键问题包括以下几个方面。

1. 场地选择。场地的选择对高层建筑结构的抗震能力会产生直接的影响。如果场地选择不好,不仅影响高层建筑的抗震性能,还会给人们的生产生活带来极大的不便。具体来说,在进行场地选择的时候,应该选择有利于抗震的场地,避开危险地段,避开对高层建筑结构抗震不利的地段。选择地段安全、地基稳定的地段。如果确实不能避开不良地段的话,为了提高高层建筑的抗震性能,就必须采取相应的促使对地段进行处理和加工,以满足施工的要求,提高高层建设结构的抗震能力。

2. 结构体系选择。第一,结构体系需要避免对高层建筑整体抗震产生不利影响。在进行设计的时候,需要考虑不能因为部分结构的破坏而导致整个高层建筑结构抗震能力下降或者丧失。即使某一构件停止工作,但是其他的构件却不能失去效能,以免影响整个高层建筑物的抗震能力。第二,结构体系需要有明确的计算简图和合理的地震作用传播途径。第三,结构体系必须具备良好承载能力、变形能力、消耗地震能量的能力。由于钢筋混凝土结构具有上述良好的能力,所以在高层建筑结构设计中,需要使用钢筋混凝土结构。第四,结构体系需要具

有合理的刚度和强度。这是应对地震,降低地震给高层建筑物带来损害的必备条件。

3. 结构的规则性。在高层建筑结构抗震设计中,还需要重视建筑平面布置的规则性。在平面布置上需要注意符合抗震的设计原则,采用规则的设计方案,不能采用不规则的方案。结构的规则性主要表现在高层建筑主体抗侧力结构上,尤其需要注意以下四个问题。第一,高层建筑主体抗侧力结构需要注意两个主轴方向的刚度需要比较接近,其变形特性还需要比较的相似。第二,高层建筑主体抗侧力结构构成变化比较均匀,不应当有突变的情况发生。第三,从高层建筑主体抗侧力结构的平面布置来看,需要注意的是,应该注意同一主轴方向的各片抗侧力结构刚度尽量均匀,这样有利于高层建筑整体的抗震性能的发挥。第四,高层建筑主体抗侧力结构的平面布置需要注意,中央核心和周边结构的刚度协调均匀,以避免产生过大的扭曲变形。

四、高层建筑结构抗震的设计探讨

高层建筑结构抗震的设计,指在注意总体布置上的大原则,进行结构设计时,顾及到关键部位的细节构造,全面合理地解决结构设计中的基本问题。需着眼于结构的总体地震反应,从根本上提高结构的抗震能力,按照结构的破坏过程。

1. 建筑场地的选择

选择有利的建筑场地,最好选择有利地段,为减轻高层建筑物的震害。当无法避开时,避开对建筑抗震不利的地段,在选址时,不应在危险地段建造甲、乙、丙类建筑。应加强地基勘察,应采取有效措施。对于不利地段,这就考虑了地震因场地条件间接引起结构破坏的原因。尽量避开不利地质环境,结构工程师应提出避开要求,如活动断层、溶洞、局部突出的山包等。

2. 建筑的平、立面布置

根据新的《建筑抗震设计规范(GB50011―2001),持力层的选择对建筑物的安全至关重要。要求建筑的形状及抗侧力构件的平面布置宜规则的整体性,不宜用轴压比很大的钢筋混凝土框架柱作为第一道防线。在相同的地震力作用下,又要考虑抗震的要求。多道抗震防线,避免采用严重不规则的设计方案。增大建筑物的固有周期,选择基础方案时,以减少输入主体结构的地震能量。受力性能比较明确,必要的强度的刚度和强度分布,既要考虑经济合理,达到减轻主体结构破坏的目的。

3. 抗震结构体系

抗震结构体系体型是抗震设计中应考虑的最关键问题,结合设计、经济条件综合考虑与确定,结构体系应具有多道抗震防线,应优先选用不承受重力荷载的构件如框架填充墙构件。应根据建筑类因素,抗震结构体系必须具有合理的地震作用传递途径,可避免因部分构件破坏而导致整个体系丧失抗震能力。抗震概念设计在选择建筑结构的方案和采取抗震措施时,首先要考虑地震动的性质及其对建筑影响,将橡胶垫层放置于上部建筑物与基础之间,应注意地震的不确定性及其一定的规律性,用以吸收震能量。

五、结语

文章结合高层建筑的设计,介绍了其结构抗震优化设计的关键问题,并分析了提高高层建筑结构抗震设计的具体措施,以期能够为高层建筑抗震设计的实际工作提供借鉴和指导。然而,高层建筑结构抗震优化设计是一个不断发展和进步的过程,随着新技术的运用和实际经验的总结,高层建筑结构抗震设计必将得到进一步的发展。今后在实际工作中,我们需要重视经验的积累和总结,并注重创新,以更好的推动高层建筑结构抗震优化设计的发展,为人们的生产生活创造良好的条件。

参考文献

高层建筑抗震结构设计篇8

0引言;近年来,由于人类对于自然环境的不断破坏,各类自然灾害发生的较为频繁。高层建筑结构设计中抗震概念设计是对建筑抗震设计的宏观控制,合理的运用抗震概念和原则是建筑结构抗震设计的必要前提,在高层建筑工程一开始从建筑的场地选择、平立面形式、结构布置以及延性等方面进行考虑,从根本上消除高层建筑中抗震的薄弱环节,再通过计算与结构措施,能够保证设计出的高层建筑具有良好的抗震能力,显著的提高高层建筑的抗震可靠度。

一.高层建筑结构设计中抗震概念设计的意义

高层建筑结构设计中应该非常重视抗震概念设计,因为高层建筑结构非常复杂,当发生地震时具有动力不确定性特点,人们对地震时对结构认识的局限性,再加上材料性能和施工安装的变易性、模拟地震波的模糊性等因素,导致计算结果和实际之间具有很大的差异。简单的依赖数值计算获得结构并不能有效的解决高层建筑的实际抗震问题,尤其是地质特征的差异性原因,导致许多国家甚至是地区指定的抗震规范都有明显的差异。高层建筑结构抗震概念设计在依据数值计算的基础上,还增加了实践经验元素,并且结构概念设计甚至比分析计算更重要,使得这一抗震设计理念能够满足区域差别下从事高层建筑结构设计的实际需求。强调高层建筑结构设计中抗震概念设计的重要性,其目的是为了引起高层建筑结构工程是在进行建筑结构设计时,特别重视相应的结构规程以及抗震概念设计中的相关规定,从而摆脱传统的结构设计中只重视计算结果的误区,要求结构工程师严格的按照结构设计计算原则,再结合地区的抗震规范,以此保证高层建筑结构的抗震性能。

二.影响建筑物抗震效果的因素

2.1 建筑结构建造过程中所使用的材料和施工过程在实际抗震设计时,抗震 效果与建筑结构的材料具有十分密切的关系。但在许多时候工作人员往往意识不到这一点。建筑材料的质量的好坏与建筑物所受到的地震作用力有直接的关系,质量好的材料所受到的地震作用力就小,则质量差的则所受到的力就大。因此一些轻型材料的应用,对于提高建筑物的抗震性能具有非常好的效果,不仅施工材料对于抗震性能有所影响,施工过程中的每一个具体环节都会对抗震效果有所影响,所以在高层建筑施工中,要控制好施工的质量,做好相应的监管工作,从而保证高层建筑的施工质量,使建筑的抗震效果有所保证。

2.2 建筑物自身的结构设计

结构设计的好坏直接关乎建筑物的质量,同时也是对抗震效果具有关键性的影响因素,所以在实际建筑物结构设计中,保证抗震效果是非常必要的。目前在建筑物抗震结构设计时通常以在震不坏、大震不倒为目标,因此在建筑设计时,无论是点式还是板式建筑,其合理的结构设计都是十分重要的,这对提高建筑物的抗震效果将起到积极的作用。另外建筑物在平面结构布置时,其尽量做到质心和刚心的重合,因为在建筑物平面布置时一般都较为复杂,一旦发生地震如果质心和刚心不一致时则会导致地震的作用力加剧,从而形成较大的破坏性,所以为了有效的提高地城的抗震能力,则需要做到质心与刚心的重合。

2.3 建筑物所处地质环境情况

建筑物所处位置的地质情况对建筑抵抗各种自然灾害发生时的破坏性具有非常重要的意义。通常在地震发生时,如果建筑物位于岩石地带、山体附近、容易产生滑坡的地质情况下时,则一旦发生地震所造成的破坏是十分巨大的。所以为了有效的增强建筑的抗震性能,可以在进行建筑位置选择时即做好详细的勘测工作,尽量避开容易在地震中由于导致地表发生变化的不利地段,选择有利的地点进行建筑物建造。

三.抗震概念设计在高层建筑结构设计中的应用

3.1抗震概念设计应该重视高层建筑的结构规律。在高层建筑的抗震概念设 计应用中,应该对高层建筑的体型设计进行科学的修正,保证在质量、刚度、对称、规则上分布均匀,保证设计的整体性,避免局部出现刚度过大的问题。高层建筑的结构布局对抗震概念设计具有十分重要的作用,简单、对称的建筑在地震中的应力分析和实际反映很容易做到,并且能够达到相一致,但是在凹凸的立面与错层设计的高层建筑中,当地震发生时将会产生复杂的地震效应,很难做到对高层建筑抗震效果的最佳分析。因此,高层建筑的抗震概念设计应该重视结构的规律性。

3.2抗震概念设计在结构体系上的应用。高层建筑抗震结构体系是抗震概念设计的关键,抗震概念设计在结构体系上的应用依据高层建筑物的高度以及抗震等级选择合适的抗侧力体系,通过概念近似手算确定结构设计方案的可行性以及主要构件的基本尺寸。抗震结构方案选择的合理性,直接影响建筑抗震概念设计的经济性与安全性。合理的选择建筑结构体系,应该注意以下三个方面: 其一,选择建筑结构体系时,应该对因为部分结构或者部分构件的破坏而导致整体建筑结构体系丧失对抗震能力或者重力荷载的承载能力,应该坚持抗震设计原则中的赘余度功能和内力重分配功能,这一原则的重要性在许多建筑物地震后的实际状况中都得到了很好的印证; 其二,选择建筑结构体系时,不仅仅应该要求建筑体系的受力明确、传力合理以及传力路线,还应该有合理的地震作用传递途径和明确的计算简图,这些都应该和不间断的抗震分析相符合; 其三,其中延性是建筑结构中的重要特性之一,结构体系的变形能力取决于组成结构的构件和连接的延性水平,提高结构构件的延性水平,是提高高层建筑抗震设计概念在建筑结构设计应用中的重点问题,通过采用竖向和水平向混凝土构件,能够增强对砌体结构的约束,当配筋砌体在地震中即使产生裂缝也不会倒塌或者散落,保证高层建筑早地震中不至于丧失对重力荷载的承载能力。

3.3抗震概念设计在结构构件上的应用。高层建筑抗震的实现需要各个构件的支撑,因此,抗震结构体系中的各个构件都必须具有一定的刚度与强度,并且还应该具有可靠的连接性。高层建筑的结构体系是一个多层次超静定结构,因此其抗震结构也应该设置多道抗震防线,这样在地震作用下,即使一部分构件先被破坏,剩余的构件依然具备支撑的作用,形成独立的抗震结构,承受地震力与竖向荷载。因此,合理的预见高层建筑结构先屈服或者破坏的位置,适当的调整构件的强弱关系,形成多道抗震防线,实现对高层建筑结构体系的合理控制,这是结构抗震耗能的一种有效措施,是建筑抗震结构概念设计的重要内容。

四.结束语

总而言之;随着高层建筑的不断兴起,其抗震结构设计成为人们关注的焦点,目前技术的进步,使高层建筑结构的抗震设计技术和方法越来越先进,越来越完善。但社会需求的不断提升,也需要设计人员不断强化自身的专业技能,同时还要做好对建筑环境及地质的分析和研究工作,从而根据实际情况来选择适合的抗震结构,从而增强高层建筑结构的抗震能力,避免在地震发生时造成严重的伤亡和损失。

高层建筑抗震结构设计篇9

随着经济社会的不断发展,高层建筑也不断涌现出来,但是由于近些年频繁发生的地质灾害,也给高层建筑的结构设计敲响了警钟。高层建筑也越来越多,在这种情况下必须做好抗震设计,设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不倒、中震可修、大震不倒”的目的,但是在实际设计中,却不能达到这种效果。本文将从抗震结构设计的基本原则,我国高层建筑抗震设计常见的问题以及提高抗震性能措施三个方面对高层建筑的抗震结构进行阐述。

1.高层建筑抗震结构设计的基本原则

(1)结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则;②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力;③承受竖向荷载的主要构件不宜作为主要耗能构件。

(2)尽可能设置多道抗震防线。由于每次强震之后都会伴随多次余震,因此在建筑物的抗震设计过程中若只有一道设防,则其在首次被破坏后而余震来临时其结构将因损伤积累而倒塌。因此,建筑物的抗震结构体系应由若干个延性较好的分体系组成,在地震发生时由具有较好延性的结构构件协同工作来抵挡地震作用。当遭遇第二设防烈度地震即低于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏,但经一般修理或不需修理仍可继续使用。

2.我国高层建筑抗震设计常见的问题

2.1工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

2.2建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

2.3建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,则会加剧了地震的破坏作用,海城地震和唐山地震中有不少这样的震害实例。台湾9.21地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

2.4平面布局的刚度不均

抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。平面形状采用L、π形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。这些都对抗震极为不利。

2.5防震缝设置不规范

对于高层建筑存在下列三种情况时,宜设防震缝:①平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3- 91)中表2.2.3 的限值而无加强措施;②房屋有较大错层;③各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。

2.6结构抗震等级掌握不准

有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。

上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。

3.提高抗震性能措施

3.1选择合理结构类型

在高层建筑中,其竖向荷载主要使结构产生轴向力,而水平荷载主要使结构产生弯矩,随着高度的增加,在竖向荷载不变的情况下,水平荷载作用力增加,此时竖向荷载所引起的建筑物侧移很小,但是水平荷载参数的侧移就非常大,与高度层四次方变化,因此在高层建筑中,主要对水平荷载进行控制,在设计过程中,应该在满足建筑功能及抗震性的前提下,选择切实可行的结构类型,使其具有良好的结构性能。目前大多数的高层建筑都采用了钢混结构,这种结构具有较大的刚度,空间整体性好,材料资源丰富,可组成多种结构体系。但是其变形能力差,造价相对较高,当场地特征周期较长时,容易发生共振现象。

3.2减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比, 然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

3.3减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加, 因此, 为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

3.4尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

4.结语

总之,面对中国的高层建筑抗震结构存在的诸多问题,限于我国作为一个发展中国家的财力、物力,探讨、研究有效的建筑抗震措施的任务仍然十分艰巨。于此同时,我国政府相关部门也应该加强规范力度,发挥好对高层建筑防震措施的检查、检验效力。

参考文献

[1]罗联训. 浅论高层混凝土建筑抗震结构设计[J]. 中华民居(下旬刊),2014,06:25.

高层建筑抗震结构设计篇10

地震作用影响因素极为复杂,它是一种随机的、尚不能准确预见和准确计算的外部作用,目前规范给出的计算方法还是一种半经验半理论的方法,要进行精确的抗震计算还有一定的困难,但是近年来,地震等自然灾害多发,影响到人们的基本生活和生命财产安全,因此,建筑(尤其是高层建筑)抗震安全问题必须引起建筑师们的高度重视。

1 建筑结构抗震等级的规定和标准

震级是根据地震的强度而进行的划分,在我国,地震划分为六个级别:3级为小地震,3~4.5级为有感地震,4.5"--6级为中强地震,6~7为级强烈地震,7~8级为大地震,8级以上的为巨大地震,是国家根据相关的历史、地理和地质方面的经验资料,经过勘查和验证,对进行地震分组的一个经验数值,它是地域概念。抗震设防有甲、乙、丁类建筑,在我国大部分的房屋抗震等级是8度,可以抵抗6级地震的作用。国家设计部门依据有关规定,按照建筑物的分类和设防标准,根据房屋高度、结构等方面,采用不同的抗震等级。比如,在钢筋混凝土结构中,抗震等级可以分一般、较为严重、严重和很严重这4个级别。

在高层建筑的抗震设计中,混凝土结构应高根据建筑的高度、建筑的结构和设防的烈度运用不同的抗震等级,而且应该符合相应的计算和措施要求。

2 影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确建筑物抗震效果的主要影响因素。下面,将从建筑结构本身的设计效果、施工材料施工过程以及建筑场地情况3个方面进行分析。

2.1 建筑结构建造过程中所使用的材料和施工过程

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。建筑结构施工过程同施工材料共同影响整个建筑工程的质量,在施工过程中,每一个环节都可以影响建筑结构抗震效果。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2.2 建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合适的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与

刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

在建筑结构的设计中,出屋面建筑部分不宜太高,以降低地震过程中的鞭梢影响;平面布置不规则的房屋注意偏离建筑结构刚心远端的抗震墙等等。

2.3 建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

3 高层建筑抗震设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

3.1 减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

3.2 运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的空着建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒一。

3.3 注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150 m以上的建筑,采用的3种主要结构体系(框.筒、筒中筒和框架.支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56层、321 m高,就是运用拱结构抗震减灾的很好的例子。

4 高层建筑结构抗震设计前景展望

今后若干年,中国仍将是世界上修建高层建筑最多的国家,这将会给高层建筑抗震设防带来新的难题。21世纪,高层建筑结构抗震将有如下变化:

4.1 高层建筑的抗震结构体系将从以硬性为主向柔性为主的结构抗震转变,通过“以柔克刚”方式,调整建筑结构构件的隔震、减震和消震来实现抗震目的。

4.2 建筑材料对结构抗震的影响越来越得到重视。建筑材料的各个抗震指标的提升可以提高高层建筑的抗震能力,研制新的建筑材料可推动高层建筑结构抗震技术的发展。通过优化的抗震方法设计,来实现高层建筑的抗震要求。

4.3 计算机模拟抗震试验得到广泛应用。将制作好的模型或结构构件放在模拟地震振动台上,台面输入某一确定性的地震记录,能够较好地反映该次确定性地震作用的效果。计算机模拟环境可以拟真抗震效果,帮助科学改进各因素,有效抗震。

另外,高层建筑结构的抗震设计的计算方法也有了新的转变:从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变 。

5 结语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

高层建筑抗震结构设计篇11

抗震设计要刚柔相济,选择合适的结构形式,在增加结构刚度的同时也要增强地震作用,需要确定合理的抗震措施。保证结构的抗震性能主要是确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。在地震力作用下,要求结构保持在弹性范围内正常使用。建筑物的变形破坏性态后不能发生很大的变化,经简单的修复后可正常使用。随着建筑物高度的增加,允许结构进入弹塑性状态,但必须保证结构整体的安全。因此,六级以上必须进行抗震设计。每次强震之后都会伴随多次余震,在建筑抗震设计过程中如果若一味的提高结构抗力,就会增加结构刚度。若只有一道设防,则会导致结构刚度大。所以,建筑物在地震过程中既能满足变形要求,又能减小地震力的双重目标。因此,只有这样才能使建筑物抗震设计过程中防止造成建筑物局部受损。建筑物的抗震结构体系如果刚度太柔,首次被破坏后而余震来临时其结构将因损伤,结构构件协同工作来抵挡地震作用容易导致建筑物过大形变而不能使用。延性较好的分体系组成,地震发生时不会发生整体倾覆。因此,由若干个在地震发生时由具有较好延性。

2.住宅高层建筑结构抗震设计要点

2.1结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,要求建筑物平面对称均匀。因为该种结构建筑容易估计出其地震反映,对建筑进行合理的布置,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。并应尽量满足建筑物在竖向上重力荷载受力均匀,体型简单,结构刚度。大量地震灾害表明,需要对易于采取相应的抗震构造措施并且进行细部处理。地震时,质量沿建筑物竖向变化均匀,需要建筑结构的规则性。平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,可以提高承载力分布等多方面因素要求。

2.2层间位移限制

高层建筑都具有较大的高宽比,而位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,因此,在进行高层建筑结构设计时应根据建筑物的实际情况。其中钢筋混凝土结构的位移限值要求严格,以及所处的地理位置进行设计,稳定性以及正常使用功能等。其在风力和地震作用下往往能够产生较大的层间位移,满足其具有足够的刚度又要避免结构,超过结构的位移限值风荷载作用下的限值比地震作用下的要求严格,在水平荷载的作用下产生过大的位移而影响结构的承载力。

2.3控制地震扭转效应

当建筑结构的平面布置等不规则建筑结构刚度中心不重合,当周期比不满足要求时可采用加大抗侧力构件截面,并应将抗侧力构件尽可能的均匀布置在建筑四周,增加抗侧力构件数量的方法,在地震发生时建筑结构会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。当结构位移比不满足要求时甚至会产生较大差距,一般采取增加最大位移处构件刚度减小最小处减小刚度中心与质量中心的相对偏心。位移构件刚度划分为相对规则平面,建筑物在扭转作用下各片抗侧力结构的层间变形不同,在设计过程中应对各层的扭转修正系数分别计算,若调整构件刚度不能满足效果时则应调整抗侧力构件布置。不能满足要求时则必须对其进行调整。其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大,以增大结构抗扭刚度。同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,当结构刚度富余量较小可采取均衡加强结构刚度,以上情况都会使各层结构的偏心距和扭矩发生改变。

3.住宅高层建筑结构抗震的优化设计探讨

住宅高层建筑结构抗震的优化设计,指在注意总体布置上的大原则,进行结构设计时,顾及到关键部位的细节构造,全面合理地解决结构设计中的基本问题。需着眼于结构的总体地震反应,从根本上提高结构的抗震能力,按照结构的破坏过程。

3.1建筑场地的选择

选择有利的建筑场地,最好选择有利地段,为减轻高层建筑物的震害。当无法避开时,避开对建筑抗震不利的地段,在选址时,不应在危险地段建造甲、乙、丙类建筑。应加强地基勘察,应采取有效措施。对于不利地段,这就考虑了地震因场地条件间接引起结构破坏的原因。尽量避开不利地质环境,结构工程师应提出避开要求,如活动断层、溶洞、局部突出的山包等。

3.2建筑的平、立面布置

根据新的《建筑抗震设计规范(GB50011-2001),持力层的选择对建筑物的安全至关重要。要求建筑的形状及抗侧力构件的平面布置宜规则的整体性,不宜用轴压比很大的钢筋混凝土框架柱作为第一道防线。在相同的地震力作用下,又要考虑抗震的要求。多道抗震防线,避免采用严重不规则的设计方案。增大建筑物的固有周期,选择基础方案时,以减少输入主体结构的地震能量。受力性能比较明确,必要的强度的刚度和强度分布,既要考虑经济合理,达到减轻主体结构破坏的目的。设计时容易分析结构在地震时的实际反应和结构的内力分布,容易采取抗震构造措施和进行结构的细部处理。

3.3 抗震结构体系

抗震结构体系体型是抗震设计中应考虑的最关键问题,结合设计、经济条件综合考虑与确定,结构体系应具有多道抗震防线,应优先选用不承受重力荷载的构件如框架填充墙构件。应根据建筑类因素,抗震结构体系必须具有合理的地震作用传递途径,可避免因部分构件破坏而导致整个体系丧失抗震能力。抗震概念设计在选择建筑结构的方案和采取抗震措施时,首先要考虑地震动的性质及其对建筑影响,将橡胶垫层放置于上部建筑物与基础之间,应注意地震的不确定性及其一定的规律性,用以吸收震能量。

4.结语

随着新型结构、高性能材料的出现人类建筑也势必再上新台阶,理顺结构与建筑,使得新型结构建筑要求同时能满足建筑物的使用功能和外观要求。提高结构与设备的关系,需要从目前抗震设计现状出发,设计者应根据工程抗震概念各方面的知识和经验,作出正确的工程判断,找出结构安全与经济合理的最佳结合点,探求处一种实用可行的二步或三步设防的合理有效的抗震设计方法,以更好地适应社会经济和科学技术的发展。 [科]

【参考文献】

高层建筑抗震结构设计篇12

近年来,高层建筑遭受地震后受到巨大破坏的例子屡见不鲜,这提醒我们,高层建筑结构急需提高抗震性能,以提高高层建筑使用的安全性,保护我国居民的人身财产安全。

二、建筑结构抗震等级的划分

地震的等级是要按照地震的强弱程度来进行划定的。在中国,地震等级的划定有6个大类:三级是小地震,三级到四点五级是有感地震,四点五级到六级是中强地震,六级到七级是强烈地震,七级到八级则是大地震。设计单位依照有关规范,根据建筑物的类别划分和设防标准,根据房屋的高度、结构设计等等方面,采用不一样的抗震等级。比如,在钢筋混凝土建筑结构中,抗震等级有四个级别,分别为一般、较为严重、严重及很严重。

在进行高层建筑结构抗震设计时,混凝土结构应该按照建筑的高度、结构形式及设防烈度选用不同的抗震等级,而且应当满足相关的计算及抗震措施。

三、影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确影响建筑物抗震效果的主要因素。下面,将从施工材料、建筑结构本身的设计以及建筑场地情况三个方面进行分析。

1、建筑在建造过程中所使用的材料

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2、建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合理的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

3、建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

四、高层建筑结构抗震设计原则

1、结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

(一)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。

(二)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

(三)承受竖向荷载的主要构件不宜作为主要耗能构件。

2、尽可能设置多道抗震防线

(一)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。

(二)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(三)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

(四)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

3、对可能出现的薄弱部位,应采取措施提高其抗震能力

(一)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

(二)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

(三)在抗震设计中有意识、有目的地控制薄弱层,使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

五、高层建筑结构抗震设计的方法分析

高层建筑结构的抗震设计要讲求一定的方法,要进行全方面的分析研究,之后才能够进行结构抗震设计。下面本文就从以下几个方面进行分析。

1、高度重视抗震结构设计工作

近几年地震频发,人们对于建筑抗震性能越来越重视,这就需要在高层建筑结构抗震性能设计方面入手,提高建筑的抗震功效。一般来说,我国150米以上的高层建筑,经常采用的三种主要的结构体系为框―筒、框架―支撑以及筒中筒的结构体系,在设计的过程中经常采用钢结构或者是钢管混凝土结构,这样能够很好的减小柱断面的尺寸,有效的提升高层建筑结构的抗震性能。除此之外,在实际的设计过程中,还需要逐步转变设计理念,转向以柔性为主的抗震模式,以有效的减弱地震释放的能量对建筑物的冲击。

2、采用高延性设计方式,提升抗震性能

我国的很多高层建筑在进行抗震设计的过程中,较多的采用延性结构,即适当的控制建筑结构的刚度,允许在地震发生时建筑结构的构件能够进入到具有较大延性的塑性状态中,这样能够有效的消减地震发生时产生的能量,减小地震对建筑物的破坏程度。

3、采用恰当的结构抗震设计方法,有效的进行设计的定量分析

在高层建筑结构抗震设计过程中,要积极的采用基于位移的结构抗震方法,要对实际的情况进行具体分析,这样才能够确保建筑结构的变形弹性能够在地震作用下破坏力降低到最低。在对建筑构件的承载能力进行验收的过程中,需要控制好结构在地震作用下层间位移的限值,并且以此来确定建筑结构构件的变形值。在这个过程中还需要注意,要根据建筑界面的应变分布和大小情况确定构件的构造要求,以此来进行恰当的设计。

4、高层建筑结构抗震设计中要尽可能的减轻结构的自重

在同样的施工条件下减轻建筑结构的自重,能够在适当的情况下增加建筑物的层数,尤其是在软土地基上进行建筑结构的抗震设计,这种现象更为明显。由于高层建筑的重心较高,当发生地震时建筑物的倾覆力矩也会相应的增加,所以说为了减小其对建筑物的影响需要尽量的使用轻质材料,并且改善施工工艺,最大限度的降低建筑结构的自重。

六、结束语

综上所述,高层建筑结构要想提高抗震性能,就必须要从抗震结构设计着手,优化设计的每一个环节。其次,要保证施工机械设备和材料的质量,做好施工的质量监管工作,保证高层建筑结构抗震目标得以实现。

参考文献

高层建筑抗震结构设计篇13

Key words: high-rise buildings aseismic design criterion optimization design

中图分类号: TU973+.31 文献标识码: A 文章编号:

前言;随着高层建筑的增多,结构抗震分析和设计已越来越重要。特别是我国处于地震多发区,高层建筑抗震设防更是工程设计面临的迫切任务.高层建筑结构的抗震是建筑物安全考虑的重要问题。建筑结构设计人员为防止、减少地震给建筑造成的危害,就需要分析研究建筑抗震问题,不断总结经验、联系实际, 妥善处理这一工程当中不可避免的问题。

一、高层建筑结构抗震设计准则

抗震设计要刚柔相济,选择合适的结构形式,在增加结构刚度的同时也要增强抗震作用,需要确定合理的抗震措施。保证结构的抗震性能主要是确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。在地震力作用下,要求结构保持在弹性范围内正常使用。建筑物的变形破坏时,震后不能发生很大的变化,经简单的修复后可正常使用。随着建筑物高度的增加,允许结构进入弹塑性状态,但必须保证结构整体的安全,因此,必须进行抗震设计。

强震之后都会伴随多次余震,在建筑抗震设计过程中如果一味的提高结构抗力,就会增加结构刚度;若只有一道设防,则会导致结构刚度过大,建筑物缺少必要的延性,导致建筑物破坏过程不明显,造成安全隐患。如果建筑物的抗震结构体系刚度太柔,经过首次破坏后而余震来临时,因结构已损伤,结构构件将需要协同工作来抵挡地震作用,这样将容易导致建筑物过大形变而不能使用。所以,既要保证满足建筑物的变形要求,又能减小地震力,这是建筑物抗震设计中的双重目标。只有这样才能使建筑物在抗震过程中,既防止造成建筑物的局部受损,又具有一定的抗变形能力。延性较好的分体系组成,地震发生时不会发生整体倾覆。

二、建筑结构性能抗震设计

采用合理的抗震性能目标和合理的结构措施进行抗震设计。除了抗震设计方法,基于性能的抗震设计理论还包括目标性能的确定,它是整个设计的基础和关键,主要包括以下三个方面:

1.地震设防水准

在设计基准期内,定义一组参照的地震风险和相应的设计水平,是基于性能设计理论的一个重要目标。基于性能的设计理论应追求能控制结构可能发生的所有地震波谱的破坏水准,为此,需要根据不同重现期选择所有可能发生的对应于不同等级的地震动参数的波谱,这些具体的地震动参数称为地震设防水准,分为常遇、偶遇、罕遇和稀遇地震,并给出了其重现期和超越概率。

2.结构的性能水平及其量化指标

结构的抗震性能水平表示结构在特定的某一地震水准下一种有限程度的破坏,包括结构和非结构构件破坏以及因它们破坏引起的后果主要用结构易损性、结构功能性和人员安全性来表达。按照不同的地震动水平,结构的性能水准可分为四级,即功能完好、功能连续、控制破坏与损失、保证安全。其中,简化的三级性能水准,即可继续使用、修复后可再使用保证安全。

3,抗震设计的目标性能

结构的抗震设计的目标性能是针对某一地震设防水准而期望达的抗震性能等级,抗震设计目标性能的建立需要综合考虑场地特征、结构功能与重要性、投资与效益、震后损失与恢复重建、潜在的历史或文化价值、社会效益及业主的承受能力等诸多因素。我国抗震规范的目标性能实际是:小震不坏,中震可修,大震不倒。

三、高层建筑结构抗震设计要点

3.1结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,要求建筑物平面对称均匀。因为该种结构建筑容易估计出其地震反映,对建筑进行合理的布置,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。并应尽量满足建筑物在竖向上重力荷载受力均匀,体型简单,结构刚度协调。大量地震灾害表明,采取相应的抗震构造措施并且进行细部处理,这样的建构筑物在地震中的受损情况往往小于那些没有采取构造措施的建构筑物。地震时,质量沿建筑物竖向变化均匀,平立面简单且对称的结构类型,建筑物在地震时具有较好的抗震性能。

3.2层间位移限制

高层建筑都具有较大的高宽比,而位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,因此,在进行高层建筑结构设计时应根据建筑物的实际情况。其中钢筋混凝土结构的位移限值要求严格,以及所处的地理位置进行设计稳定性以及正常使用功能等。其在风力和地震作用下往往能够产生较大的层间位移,应避免在水平荷载的作用下产生过大的位移而影响结构的承载力。

3.3控制地震扭转效应

在线咨询