量子计算的运用实用13篇

量子计算的运用
量子计算的运用篇1

计算机的发展将趋向超高速、超小型、并行处理和智能化。自从1944年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,传统计算机的性能受到挑战,开始从基本原理上寻找计算机发展的突破口,新型计算机的研发应运而生。未来量子、光子和分子计算机将具有感知、思考、判断、学习以及一定的自然语言能力,使计算机进人人工智能时代。这种新型计算机将推动新一轮计算技术革命,对人类社会的发展产生深远的影响。

二、智能化的超级计算机

超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研究与开发,为我们的日常生活带来各种各样的好处。最大的超级计算机接近于复制人类大脑的能力,具备更多的智能成份.方便人们的生活、学习和工作。世界上最受欢迎的动画片、很多耗巨资拍摄的电影中,使用的特技效果都是在超级计算机上完成的。日本、美国、以色列、中国和印度首先成为世界上拥有每秒运算1万亿次的超级计算机的国家,超级计算机已在科技界内引起开发与创新狂潮。

三、新型高性能计算机问世

硅芯片技术高速发展的同时,也意味看硅技术越来越接近其物理极限。为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机的体系结构与技术都将产生一次量与质的飞跃。新型的量子计算机、光子计算机、分子计算机、纳米计算机等,将会在二十一世纪走进我们的生活,遍布各个领域。

1.量子计算机

量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态.使信息沿着聚合物移动.从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。

无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。

2.光子计算机

光子计算机是利用光子取代电子进行数据运算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。

3.分子计算机

分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。

4.纳米计算机

纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子机械系统起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积只有数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。美国正在研制一种连接纳米管的方法,用这种方法连接的纳米管可用作芯片元件,发挥电子开关、放大和晶体管的功能。专家预测,10年后纳米技术将会走出实验室,成为科技应用的一部分。纳米计算机体积小、造价低、存量大、性能好,将逐渐取代芯片计算机,推动计算机行业的快速发展。

我们相信,新型计算机与相关技术的研发和应用,是二十一世纪科技领域的重大创新,必将推进全球经济社会高速发展,实现人类发展史上的重大突破。科学在发展,人类在进步,历史上的新生事物都要经过一个从无到有的艰难历程,随着一代又一代科学家们的不断努力,未来的计算机一定会是更加方便人们的工作、学习、生活的好伴侣。

参考文献:

[1]刘科伟,黄建国.量子计算与量子计算机.计算机工程与应用,2002,(38).

[2]王延汀.谈谈光子计算机.现代物理知识,2004,(16).

[3]陈连水,袁凤辉,邓放.分子计算机.分子信息学,2005,(3).

量子计算的运用篇2

1.计算机科学与技术的迅速发展的原因

1.1科学与技术持续进步,推动了计算机科学与技术的发展

由于第二次世界大战对信息的需求迫切,花费大量的人才与资源,创造出计算机。随着科研所、政府机关、学校、企业对信息处理和科学运算的需求强烈,使计算机被民用化,社会的不断进步,尖端的技术领域,如数学、工程测量、天文地理等对计算机运算的速度与存储量的要求越来越高。计算机技术人员对计算机进行反复的实验,在试验中不断的得到灵感,得出新的计算机设计理念,如:铝圭触面集成电路。这种不断循环的研究、创新、设计过程,让计算机科技与技术被迅速发展起来。

1.2共享信息的建立,使计算机科学与技术得以迅速发展

共享信息平台的建立成为计算机的发展的关键,信息的共享可以为计算机科学与技术在进行创新时提供最新资料,能减少计算机创新研究的周期,避免了不必要的浪费,同时还提高了研究的质量。

1.3迅速、稳定、明显的悬着机制

信息的共享推动了国际经济的发展,企业家们为了让自己能在激烈的竞争中获取最大的利益,需要在第一时间利用计算机,选择出正确的机制,选择的环境往往是非常稳定和敏锐的。因此,企业需不断加大对计算机科学与技术的科研的力度,这些原因让计算机科学和技术能发展快速。

2.计算机科学与技术的发展趋势

为了适应社会、经济的发展要求,计算机科学与技术不断地在进行创新,因此,计算机不但没有时代淘汰,反而被广泛应用,成为了人们生活的必须品,不仅使人们的生活品质得到提升还提高了生产的效率。

2.1智能化计算机

因为智能化的超级计算机采用了独有的设计结构与新型的平行处理技术,能够同时对多条指令和数据进行处理与执行,使得智能化的超级计算机能比普通计算机的运算速度高出许多。而且,超级计算机是利用大量的处理器并行完成对指令与数据的处理工作,因此可以轻易的完成普通计算机与服务器完成不了或是需要大量时间来完成的计算工作。

智能超级计算机可以被利用在高端精尖的领域中,推动其研究项目的时间与开发,因为,它不但能对数据进行分析,还能进行模型推演,能够通过计算机对实验进行模拟运行,能够节约大量的实验成本一时间。在日常生活中,智能超级计算机拥有接近人类大脑的复制性能,比人类大脑具备的只能成分更多,为人们的工作、生活、学习提供了方便。如:现在受到全世界欢迎的动画片,将静态的漫画,利用超级计算机与后期软件进行处理,使其放映出来的效果绚彩夺目,冲击人们的视觉感官。目前美国、日本、中国、以色列及印度成为了世界计算机每秒运行1万亿次的国家,超级计算机已经成为了科技行业创新和开发的重点对象。

2.2新型计算机

近年里,硅芯片的高速发展,使硅技术的开发潜力已快要到达极限,因此,世界各国的计算机技术人员,通过摩尔定律,不断地研究与开发,使计算机技术与结构有了质和量的变化,新型的量子计算机、光子计算机、分子计算机和纳米计算机被研发出来,相信这些新型计算机将会在不久的未来被广泛使用。

2.2.1量子计算机

量子计算机概念的提出,建立在可逆计算机研究的基础上,量子计算机利用量子力学的规律,让计算机能够实现高速数学、逻辑运算、处理大量的量子信息及存储的一种物理装置,它是开发源自于量子效益,这类计算机是透过激光脉冲使一种链状的分子聚合物发生变化后的特性,来表示量子计算机的开、关状态,开、关的状态不断进行转换,让信息能沿着聚合物移动来完成运算的整个过程。量子计算机的数据是利用量子位来储存的,一个量子位能够对2个数据进行储存,由于量子计算机的量子能够叠加,与同样有着相同数量储存位的创痛计算机相比,数量的储存量高出许多。量子计算机因为可以并行运算,所以运算速度比传统计算机Pentium DI晶片还要快上10亿倍。此外,量子计算机的保密体系和对安全性能也是传统计算机不能相比的。

量子计算机利用量子的相干性,世界各国的计算机技术人员还在对其进行各种实验,提出不同的方案,如超导量子干涉、量子点操纵、电子或核自旋共振、冷阱束缚离子等。对量子计算机的编码进行纠错、防错、预错的方法,让量子计算机的设计概念能够焕然一新。

2.2.2光子计算机

光子计算机是一种用光子代替电子对数据的进行运算、储存、传输的计算机,光子计算器将创痛计算机的导线相互连接变为了关的互联,把电子硬件替换成了光硬件,运算方式也由光运算替代了电运算。用不同的波长光来代表不同的数据,因此关子计算机能够对快速的完成计算量较大、较为复杂的并行处理,大大的提升了目前的运算速度的指数。

2.3纳米计算机

纳米计算机将纳米技术与计算机的研发相结合,因为耐你管元件的尺寸只有几至几十纳米的范围之内,所以元件小于现在的电子元件许多,而且质地坚固、还具备极强的导电性能,能够取代硅芯片制造的计算机。纳米是种计量单位,纳米技术是在80年代才被兴起的,当时主要是利用纳米自由的控制原子,现在,把纳米技术引入到微电子机械系统中,将电动机、传感器和处理器都放在同一个硅芯片上,构成一个系统。用纳米技术制造的计算机内存芯片的体积相当于人头发直径的千分之一,因此纳米计算机的耗能很小,小到能够忽略不计,并且纳米计算机的整体性能高于传统计算机很多。纳米计算机由于造价较低、储存量大、体积小、整体性能好,不久之后将会渐渐地取代芯片计算机,使计算机行业得到快速的发展。

3.结束语

计算机科学与技术的发展主要是朝着高、广、深三个方向发展。“高”,是使计算机的操作系统的性能变高、速度变快,让各个处理期间能够进行高速的通信工作,对成百上千的机算计的能协调运行,提高管理的有效性“广”,让计算机能够无处不在,存在在生活的各个领域,让计算机成为家中最平常的日常必需品;“深”,也就是让信息向智能化的方向发展,让计算机中的虚拟内容变为现实。

现今,智能化的超级计算机,处理速度快,让人们的学习、生活、工作变得更为方便;新型的高性能计算机,由于硅的使用快要到达极限,因此出现了量子、光子、纳米等新型的计算机,运行快、耗能少、储存量大、保密系统高。特别是纳米计算机造价较低,在不久的将来能够代替芯片计算机。大大的推动了计算机科技与技术的发展。 [科]

【参考文献】

量子计算的运用篇3

自1946年第一台电子计算机诞生至今,共经历了电子管、晶体管、中小规模集成电路和大规模集成电路四个时代。计算机科学日新月异,但其性能却始终满足不了人类日益增长的信息处理需求,且存在不可逾越的“两个极限”。

其一,随着传统硅芯片集成度的提高,芯片内部晶体管数与日俱增,相反其尺寸却越缩越小(如现在的英特尔双核处理器采用最新45纳米制造工艺,在143平方毫米内集成2.91亿晶体管)。根据摩尔定律估算,20年后制造工艺将达到几个原子级大小,甚至更小,从而导致芯片内部微观粒子性越来越弱,相反其波动性逐渐显著,传统宏观物理学定律因此不再适用,而遵循的是微观世界焕然一新的量子力学定理。也就是说,20年后传统计算机将达到它的“物理极限”。

其二,集成度的提高所带来耗能与散热的问题反过来制约着芯片集成度的规模,传统硅芯片集成度的停滞不前将导致计算机发展的“性能极限”。如何解决其发热问题?研究表明,芯片耗能产生于计算过程中的不可逆过程。如处理器对输入两串数据的异或操作而最终结果却只有一列数据的输出,这过程是不可逆的,根据能量守恒定律,消失的数据信号必然会产生热量。倘若输出时处理器能保留一串无用序列,即把不可逆转换为可逆过程,则能从根本上解决芯片耗能问题。利用量子力学里的玄正变换把不可逆转为可逆过程,从而引发了对量子计算的研究。

1 量子计算的基本原理

1.1 传统计算的存储方式

首先回顾传统计算机的工作原理。传统电子计算机采用比特作为信息存储单位。从物理学角度,比特是两态系统,它可保持其中一种可识别状态,即“1”或者“()”。对于“1”和“0”,可利用电流的通断或电平的高低两种方法表示,然后可通过与非门两种逻辑电路的组合实现加、减、乘、除和逻辑运算。如把0~0个数相加,先输入“00”,处理后输入“01”,两者相“与”再输入下个数“10”,以此类推直至处理完第n个数,即输入一次,运算一次,n次输入,n次运算。这种串行处理方式不可避免地制约着传统计算机的运算速率,数据越多影响越深,单次运算的时间累积足可达到惊人的数字。例如在1994年共1600个工作站历时8月才完成对129位(迄今最大长度)因式的分解。倘若分解位数多达1000位,据估算,即使目前最快的计算机也需耗费1025年。而遵循量子力学定理的新一代计算机利用超高速并行运算只需几秒即可得出结果。现在让我们打开量子计算的潘多拉魔盒,走进奇妙神秘的量子世界。

1.2 量子计算的存储方式

量子计算的信息存储单位是量子比特,其两态的表示常用以下两种方式:

(1)利用电子自旋方向。如向左自转状态代表“1”,向右自转状态代表“0”。电子的自转方向可通过电磁波照射加以控制。

(2)利用原子的不同能级。原子有基态和激发态两种能级,规定原子基态时为“0”,激发态时为“1”。其具体状态可通过辨别原子光谱或核磁共振技术辨别。

量子计算在处理0~n个数相加时,采用的是并行处理方式将“00”、“01”、“10”、“11”等n个数据同时输入处理器,并在最后做一次运算得出结果。无论有多少数据,量子计算都是同时输入,运算一次,从而避免了传统计算机输入一次运算一次的耗时过程。当对海量数据进行处理时,这种并行处理方式的速率足以让传统计算机望尘莫及。

1.3 量子叠加态

量子计算为何能实现并行运算呢?根本原因在于量子比特具有“叠加状态”的性质。传统计算机每个比特只能取一种可识别的状态“0”或“1”,而量子比特不仅可以取“0”或“1”,还可同时取“0”和“1”,即其叠加态。以此类推,n位传统比特仅能代表2n中的某一态,而n位量子比特却能同时表示2n个叠加态,这正是量子世界神奇之处。运算时量子计算只须对这2n个量子叠加态处理一次,这就意味着一次同时处理了2n个量子比特(同样的操作传统计算机需处理2n次,因此理论上量子计算工作速率可提高2n倍),从而实现了并行运算。

量子叠加态恐怕读者一时难以接受,即使当年聪明绝顶的爱因斯坦也颇有微词。但微观世界到底有别于我们所处的宏观世界,存在着既令人惊讶又不得不承认的事实,并取得了多方面验证。以下用量子力学描述量子叠加态。

现有两比特存储单元,经典计算机只能存储00,01,10,11四位二进制数,但同一时刻只能存储其中某一位。而量子比特除了能表示“0”或“1”两态,还可同时表示“0”和“1”的叠加态,量子力学记为:

lφ〉=al1〉+blO〉

其中ab分别表示原子处于两态的几率,a=0时只有“0”态,b=0时只有“1”态,ab都不为0时既可表示“0”,又可表示“1”。因此,两位量子比特可同时表示4种状态,即在同一时刻可存储4个数,量子力学记为:

1.4 量子相干性

量子计算除可并行运算外,还能快速高效地并行运算,这就用到了量子的另外一个特性――量子相干性。

量子相干性是指量子之间的特殊联系,利用它可从一个或多个量子状态推出其它量子态。譬如两电子发生正向碰撞,若观测到其中一电子是向左自转的,那么根据动量和能量守恒定律,另外一电子必是向右自转。这两电子间所存在的这种联系就是量子相干性。

可以把量子相干性应用于存储当中。若某串量子比特是彼此相干的,则可把此串量子比特视为协同运行的同一整体,对其中某一比特的处理就会影响到其它比特的运行状态,正所谓牵一发而动全身。量子计算之所以能快速高效地运算缘归于此。然而令人遗憾的是量子相干性很难保持,在外部环境影响下很容易丢失相干性从而导致运算错误。虽然采用量子纠错码技术可避免出错,但其也只是发现和纠正错误,却不能从根本上杜绝量子相干性的丢失。因此,到达高效量子计算时代还有一段漫长曲折之路。

2 对传统密码学的冲击

密码通信源远流长。早在2500年前,密码就已广泛应用于战争与外交之中,当今的文学作品也多有涉猎,如汉帝赐董承的衣带诏,文人墨客的藏头诗,金庸笔下的蜡丸信等。随着历史的发展,密码和秘密通讯备受关注,密码学也应运而生。防与攻是一个永恒的活题,当科学家们如火如荼地研究各种加密之策时,破译之道也得以迅速发展。

传统理论认为,大数的因式分解是数学界的一道难题,至今也无有效的解决方案和算法。这一点在密码学有重要应用,现在广泛应用于互联网,银行和金融系统的RSA加密系统就是基于因式难分解而开发出来的。然而,在理论上包括RSA在内的任何加密算法都不是天衣无缝的,利用穷举法可一一破解,只要衡量破解与所耗费的人力物力和时间相比是否合理。如上文提到传统计算机需耗费1025年才能对1000位整数进行因式分解,从时间意义上讲,RSA加密算法是安全的。但是,精通高速并行运算的量子计算一旦问世,萦绕人类很久的因式分解难题迎刃而解,传统密码学将受到前所未有的巨大冲击。但正所谓有矛必有盾,相信届时一套更为安全成熟的量子加密体系终会酝酿而出。

3 近期研究成果

目前量子计算的研究仍处于实验阶段,许多科学家都以极大热忱追寻量子计算的梦想,实现方案虽不少,但以现在的科技水平和实验条件要找到一种合适的载体存储量子比特,并操纵和观测其微观量子态实在是太困难了,各界科学家历时多年才略有所获。

(1)1994年物理学家尼尔和艾萨克子利用丙胺酸制出一台最为基本的量子计算机,虽然只能做一些像1+1=2这样简单的运算,但对量子计算的研究具有里程碑的意义。

(2)2000年8月IBM用5个原子作为处理和存储器制造出当时最为先进的量子计算机,并以传统计算机无法匹敌的速度完成对密码学中周期函数的计算。

(3)2000年日本日立公司成功开发出“单电子晶体管”量子元件,它可以控制单个电子的运动,且具有体积小,功耗低的特点(比目前功耗最小的晶体管约低1000倍)。

(4)2001年IBM公司阿曼顿实验室利用核磁共振技术建构出7位量子比特计算机,其实现思想是用离子两个自转状态作为一个量子比特,用微波脉冲作为地址。但此法还不能存储15位以上的量子单元。

(5)2003年5月《Nature》杂志发表了克服量子相关性的实验结果,对克服退相干,实现量子加密、纠错和传输在理论上起到指导作用,从此量子通信振奋人心。

量子计算的运用篇4

“杞人忧天”的物理学家们与量子计算机的诞生

量子计算机的诞生和著名的摩尔定律有关,还和“杞人忧天”的物理学家们有关。

众所周知,摩尔定律的技术基础是不断提高电子芯片的集成度(单位芯片的晶体管数)。集成度不断提高,速度就不断加快,我们的手机、电脑就能不断更新换代。

20世纪80年代,摩尔定律很贴切地反映了信息技术行业的发展,但“杞人忧天”的物理学家们却提出了一个“大煞风景”的问题: 摩尔定律有没有终结的时候?

之所以提出这个问题,是因为摩尔定律的技术基础天然地受到两个主要物理限制。

一是巨大的能耗,芯片有被烧坏的危险。芯片发热主要是因为计算机门操作时,其中不可逆门操作会丢失比特。物理学家计算出每丢失一个比特所产生的热量,操作速度越快,单位时间内产生的热量就越多,算机温度必然迅速上升,这时必须消耗大量能量来散热,否则芯片将被烧坏。

二是为了提高集成度,晶体管越做越小,当小到只有一个电子时,量子效应就会出现。此时电子将不再受欧姆定律管辖,由于它有隧道效应,本来无法穿过的壁垒也穿过去了,所以量子效应会阻碍信息技术继续按照摩尔定律发展。

所谓隧道效应,即由微观粒子波动性所确定的量子效应,又称势垒贯穿。它在本质上是量子跃迁,粒子迅速穿越势垒。在势垒一边平动的粒子,当动能小于势垒高度时,按照经典力学的说法,粒子是不可能越过势垒的;而对于微观粒子,量子力学却证明它仍有一定的概率贯穿势垒,实际上也的确如此。

这两个限制就是物理学家们预言摩尔定律会终结的理由所在。

虽然这个预言在当时没有任何影响力,但“杞人忧天”的物理学家们并不“死心”,继续研究,提出了第二个问题:如果摩尔定律终结,在后摩尔时代,提高运算速度的途径是什么?

这就导致了量子计算概念的诞生。

量子计算所遵从的薛定谔方程是可逆的,不会出现非可逆操作,所以耗能很小;而量子效应正是提高量子计算并行运算能力的物理基础。

甲之砒霜,乙之蜜糖。它们对于电子计算机来说是障碍的量子效应,对于量子计算机来说,反而成了资源。

量子计算的概念最早是1982年由美国物理学家费曼提出的。1985年,英国物理学家又提出了“量子图灵机”的概念,之后许多物理学家将“量子图灵机”等效为量子的电子线路模型,并开始付诸实践。但当年这些概念的提出都没有动摇摩尔定律在信息技术领域的地位,因为在相当长的时间内,摩尔定律依然在支撑着电子计算机的运算速度的飞速提高。

直到今年,美国政府宣布,摩尔定律终结了。微电子未来的发展是低能耗、专用这两个方向,而不再是追求速度。

由此可见,基础研究可能在当时看不到有什么实际价值,但未来却会发挥出巨大作用。

量子计算机虽然好,研制起来却非常难

量子计算机和电子计算机一样,其功用在于计算具体数学问题。不同的是,电子计算机所用的电子存储器在某个时间只能存一个数据,它是确定的,操作一次就把一个比特(bit,存储器最小单元)变成另一个比特,实行串行运算模式;而量子计算机利用量子性质,一个量子比特可以同时存储两个数值,N个量子比特可以同时存储2的N次方数据,操作一次会将这个2的N次方数据变成另外一个2的N次方数据,以此类推,运行模式为一个CPU的并行运算模式,运行操作能力指数上升,这是量子计算机来自量子性的优点。量子计算本来就是并行运算,所以说量子计算机天然就是“超级计算机”。

要想研制量子计算机,除了要研制芯片、控制系统、测量装置等硬件外,还需要研制与之相关的软件,包括编程、算法、量子计算机的体系结构等。

一台量子计算机运行时,数据输入后,被编制成量子体系的初始状态,按照量子计算机欲计算的函数,运用相应的量子算法和编程,编制成用于操作量子芯片中量子比特幺正操作变换,将量子计算机的初态变成末态,最后对末态实施量子测量,读出运算的结果。

一台有N个量子比特的量子计算机,要保证能够实施一个量子比特的任意操作和任意两个量子比特的受控非操作,才能进行由这两个普适门操作的组合所构成的幺正操作,完成量子计算机的运算任务。这是量子芯片的基本要求。如果要超越现有电子计算水平,需要多于1000个量子比特构成的芯片。目前,这还无法实现。这种基于“量子图灵机”的标准量子计算是量子计算机研制的主流。

除此以外,还有其他量子计算模型,如单向量子计算、分布式量子计算,但其研制的困难程度并没有减小。另外,还有拓扑量子计算、绝热量子计算等。

由于对硬件和软件的全新要求,量子计算机的所有方面都需要重新进行研究,这就意味着量子计算是非常重要的交叉学科,是需要不同领域的人共同来做才能做成的复杂工程。

把量子计算机从“垃圾桶”捡回来的量子编码与容错编码

实现量子计算最困难的地方在于,这种宏观量子系统是非常脆弱的,周围的环境都会破坏量子相干性(消相干),一旦量子特性被破坏,将导致量子计算机并行运算能力基础消失,变成经典的串行运算。

所以,早期许多科学家认为量子计算机只是纸上谈兵,不可能被制造出来。直到后来,科学家发明了量子编码。

量子编码的发现等于把量子计算机从“垃圾桶”里又捡回来了。

采用起码5个量子比特编码成1个逻辑比特,可以纠正消相干引起的所有错误。

不仅如此,为了避免在操作中的错误,使其能够及时纠错,科学家又研究容错编码,在所有量子操作都可能出错的情况下,它仍然能够将整个系统纠回理想的状态。这是非常关键的。

什么条件下能容错呢?这里有个容错阈值定理。每次操作,出错率要低于某个阈值,如果大于这个阈值,则无法容错。

这个阈值具体是多大呢?

这与计算机结构有关,考虑到量子计算的实际构型问题,在一维或准一维的构型中,容错的阈值为10^-5,在二维情况(采用表面码来编码比特)中,阈值为10^-2。

目前,英国Lucas团队的离子阱模型、美国Martinis团队的超导模型在单、双比特下操作精度已达到这个阈值。

所以,我们的目标就是研制大规模具有容错能力的通用量子计算机。

量子计算机的“量子芯”

量子芯片的研究已经从早期对各种可能的物理系统的广泛研究,逐步聚焦到了少数物理系统。

20世纪90年代时,美国不知道什么样的物理体系可以做成量子芯片,摸索了多年之后,发现许多体系根本不可能最终做成量子计算机,所以他们转而重点支持固态系统。

固态系统的优点是易于集成(能够升级量子比特数目),但缺点是容错性不好,固态系统的消相干特别严重,相干时间很短,操控误差大。

2004年以来,世界上许多著名的研究机构,如美国哈佛大学、麻省理工学院、普林斯顿大学,日本东京大学,荷兰Delft大学等都做了很大的努力,在半导体量子点作为未来量子芯片的研究方面取得了一系列重大进展。最近几年,半导体量子芯片的相干时间已经提高到200微秒。

国际上,在自旋量子比特研究方面,于2012年做到两个比特之后,一直到2015年,还是停留在四个量子点编码的两个自旋量子比特研究上,实现了两个比特的CNOT(受控非)。

虽然国际同行关于电荷量子比特的研究比我们早,但是至今也只做到四个量子点编码的两个比特。我们研究组在电荷量子比特上的研究,2010年左右制备单个量子点,2011年实现双量子点,2012~2013年实现两个量子点编码的单量子比特, 2014~2015年实现四量子点编码的两个电荷量子比特。目前,已研制成六个量子点编码为三个量子比特,并实现了三个比特量子门操作,已经达到国际领先水平。

超导量子芯片要比半导体量子芯片发展得更快。

近几年,科学家使用各种方法把超导的相干时间尽可能拉长,到现在已达到了100多微秒。这花了13年的基础研究,相干时间比原来提高了5万倍。

超导量子计算在某些指标上有更好的表现,比如:

1.量子退相干时间超过0.1ms,高于逻辑门操作时间1000倍以上,接近可实用化的下限。

2.单比特和两比特门运算的保真度分别达到99.94%和99.4%,达到量子计算理论的容错率阈值要求。

3.已经实现9个量子比特的可控耦合。

4.在量子非破坏性测量中,达到单发测量的精度。

5.在量子存储方面,实现超高品质因子谐振腔。

美国从90年代到现在,在基础研究阶段超导领域的突破已经引起了企业的重视。美国所有重大的科技公司,包括微软、苹果、谷歌都在量子计算机研制领域投入了巨大的力量,尽最大的努力来争夺量子计算机这块“巨大的蛋糕”!

其中,最典型的就是谷歌在量子计算机领域的布局。它从加州大学圣芭芭拉分校高薪引进国际上超导芯片做得最好的J. Matinis团队(23人),从事量子人工智能方面的研究。

他们制定了一个目标―明年做到50个量子比特。定这个目标是因为,如果能做49个量子比特的话,在大数据处理等方面,就远远超过了电子计算机所有可能的能力。

整体来看,量子计算现在正处于“从晶体管向集成电路过渡阶段”。

尚未研制成功的量子计算机,我们仍有机会!

很多人都问,实际可用的量子计算机究竟什么时候能做出来?

中国和欧洲估计需要15年,美国可能会更快,美国目前的发展确实也更快。

量子计算是量子信息领域的主流研究方向,从90年代开始,美国就在这方面花大力气进行研究,在硬件、软件、材料各个方面投入巨大,并且它有完整的对量子计算研究的整体策划,不仅各个指标超越世界其他国家,各个大公司的积极性也被调动了起来。

美国的量子计算机研制之路分三个阶段:第一阶段,由政府主导,主要做基础研究;第二阶段,企业开始投入;第三阶段,加快产出速度。

量子计算的运用篇5

“在一个硬件研发团队的协助下,量子人工智能研究小组现在能够落实新的设计并测试新的产品。”谷歌在博客中写道。

在整理和分析海量数据方面,量子计算机将具有比传统计算机更快的解决速度。谷歌量子人工智能小组成员马苏德・莫森(Masoud Mohseni)曾经与人合作撰写过具有领先学术水平的量子技术论文。谷歌也一直被视为这一新技术革命的领导力量之一。

此外,谷歌的竞争对手微软也在进军这个新领域,并建立了一个名为“量子架构和计算(Quantum Architectures and Computation Group)”的研究小组。

探秘量子计算机

量子计算机,早先由理查德・费曼提出,一开始是从物理现象的模拟而来的。可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。理查德・费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。量子计算机的概念从此诞生。

从物理层面上来看,量子计算机不是基于普通的晶体管,而是使用自旋方向受控的粒子(比如质子核磁共振)或者偏振方向受控的光子(学校实验大多用这个)等等作为载体。当然从理论上来看任何一个多能级系统都可以作为量子比特的载体。

从计算原理上来看,量子计算机的输入态既可以是离散的本征态(如传统的计算机一样),也可以是叠加态(几种不同状态的几率叠加),对信息的操作从传统的“和”,“或”,“与”等逻辑运算扩展到任何幺正变换,输出也可以是叠加态或某个本征态。所以量子计算机会更加灵活,并能实现并行计算。

量子计算机或不再遥远

据外媒报道,美国普林斯顿大学研究人员近日设计出一种装置,可以让光子遵循实物粒子的运动规律。现存的计算机是基于经典力学研发而成的,在解释量子力学方面有很大局限性。量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。

研究人员制作出一种超导体,里面有1000亿个原子,在聚集起来之后,众多原子如同一个大的“人工原子”。科学家把“人工原子”放在载有光子的超导电线上,结果显示,光子在“人工原子”的影响下改变了原有的运动轨迹,开始呈现实物粒子的性质。例如,在正常情况下,光子之间是互不干涉的,但是在这一装置里,光子开始相互影响,呈现出液体和固体粒子的运动特性,光子的这种运动“前所未有”。

现存的计算机是基于经典力学研发而成的,在解释量子力学方面有很大局限性。量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。研究人员称,在改变光子的运动规律之后,量子计算机的发明也许不再遥远。

就我国量子计算机而言,相关研究也一直处于世界领先水平。早在2013年12月30日,美国物理学会《物理》杂志就公布了2013年度国际物理学领域的十一项重大进展,中国科学技术大学潘建伟教授及其同事张强、马雄峰和陈腾云等“利用测量器件无关量子密钥分发解决量子黑客隐患”的研究成果位列其中。

《物理》杂志以“量子胜利的一年――但还没有量子计算机”为题报道了中国科学家成功解决量子黑客隐患这一重要成果。

量子计算的运用篇6

1.3生物计算机生物计算机也叫做放生计算机,是以仿生学研究为基础而形成的新型计算机技术,它以生物工程技术生产的蛋白分子制成生物芯片作为基础元件。它具有并行处理的功能,运行速度比普通的电子计算机要快10万倍,存储空间占用更是少之又少。它具有的优点很多,首先,体积小、功效高,比集成电路小很多,可以隐藏在地板、墙壁等地方;其次,具有自我修复功能,它的内部芯片出现故障时,不需要人工修理,能自我修复,永久性、可靠新高;再者,能耗很低,能量消耗仅占普通电子计算机的10亿分之1,散热量很小;第四,不受电路间信号干扰。目前,这种计算机还在研制阶段,存在技术不成熟、信息提取难等问题,还需要继续优化。

1.4纳米计算机纳米计算机研制是计算机发展过程中的一场革命,它以纳米技术为基础研制出计算机内存芯片,其体积相当于发丝直径的千分之一,生产成本非常低,不需要建造超洁净生产车间,也不需要昂贵的实验设备和人数众多的生产团队,同时,纳米计算机也需要耗费能源可以忽略不计,但是对其强大其性能的发挥丝毫不产生影响。纳米计算机可以应用到微型机器人,以至于日用电子设备,甚至玩具中,都能获得强大的微处理功能,其应用范围也涉及到现代物理学、化学、电子学、建筑学、材料学等各个学科领域。这项新的课题技术也在不断的完善和发展,将为计算机发展带来新的内容。

2云技术和网络技术发展

2.1云技术云计算是分布式计算的一种形式,它通过将计算拆散计算再进行组合回传的方式进行,可以达到和超级计算机同样强大的网络服务,这是云技术的根本。云技术不仅仅作为资料搜集手段,它是集网络技术、信息技术、整合技术管理平台技术、应用技术为一体的综合资源池,灵活便捷。云技术作为一种商业模式的体现方式,其应用非常广泛,目前,已经在搜索引擎、网络信箱等领域投入使用,未来在手机、GPS等行动装置上也可实现。云技术正以它的可靠、实用、安全等性能逐渐被人们所接受,云物联、云存储、云呼叫、私有云、云游戏、云教育、云会议以及云社交等正逐步强化它的服务功能。

2.2网络技术网络技术发展有赖于光纤技术的快速发展。光导纤维技术在通信、电子和电力等领域日益扩展,成为大有前途的新型基础材料,与之相伴的光纤技术也以新奇、便捷赢得人们的青睐。它具有耐湿、耐辐射、易于安装和保养、24小时的连续工作等性能被广泛应用。尤其在塑料光纤产生后,海底光缆工程得以顺利实施,对世界范围网络通信起到良好的推动作用。

3移动计算机技术发展

目前最热门的是wifi无线技术,而最新的是4G通信技术,这两项技术对移动计算机的发展起到了关键的支撑作用。4G网络时代刚刚开启,目前开始应用于移动设备上,但是在微型便携计算机上的应用尚未起步。如何将移动计算机等终端产品通过芯片等形式与4G网络完没相连接,如发展移动电视、移动电脑、成为一项热门话题,有待进一步研究探索。

量子计算的运用篇7

如今计算机的发展已经进入了人工智能时代,新型计算机的时代又将是新一轮的计算机革命,这又将对社会的发展产生深远的影响。

1 新型计算机系统陆续出现

信息时代对信息的获得能力决定了一个国家或者地区在这个时代的发展能力。全球化已经越来越迅速的今天,世界各国都在加紧研发新型的计算机,计算机的各个方面都出现了质的飞跃。而新型的量子计算机、光子计算机、生物计算机、纳米计算机等也将在不久的将来进入我们生活的各个领域,甚至有些已经进入了我们的生活。

1.1 量子计算机:量子计算机的研发是基于量子效应理论开发的,它的运算工作原理是:利用链状分子聚合物的特性来表示信号的开和关,并用激光脉冲来改变分子的状态,使得信息沿着聚合物移动,进行运算。量子计算机的存储单位比以往的计算机都要小许多,是用量子位存储的。具体的表现就是一个量子位可以存储2个数据,这样量子计算机的优势就是比存储量就变的非常庞大,对于工作要求存储量大的电脑用户来说是一个极佳的选择。目前正在研发的量子计算机类型主要有3种,第一种是核磁共振量子计算机,第二种是硅半导体量子计算机,第三种是离子阱量子计算机。科学家们预测,量子计算机将在不久的2030年获得普及。

1.2 光子计算机:光子计算机也可以被称作是全数字计算机,它的工作原理是以光子代替电子,光互连的特性替代导线的互连,用光硬件代替电脑中的硬件设备,用光运算的方式代替电运算的方式进行运算。这种计算机的优势是信息传递的平行通道密度大,而光具有高速、并行的特性,这也就决定了光子计算机并行处理能力强大,运算速度远超人们的想象。

1.3 生物计算机:生物计算机亦称作DNA分子计算机,它的运算过程简单来说就是蛋白质分子与周围物理化学介质相互作用的过程。计算过程中需要的转换开关是用酶来担任的,程序的表示也将在酶合成系统与蛋白质结构中变得极其明显。生物计算机的运算速度比人脑的运算速度要快100万倍,也就是说生物计算机完成一项运算需要的时间仅仅是10微微秒。这种计算机的优势是惊人的存储量,根据计算,1立方米的DNA溶液可以存储1万亿亿的二进制数据。

1.4 纳米计算机:纳米作为一种计量单位,许多人对其并不陌生,但是对其的具体感觉却并不直观,它的长度大约是一个氢原子的直径的10倍,它的具体表述就是10-9米。现在纳米技术在计算机领域正在从微电子机械系统中被运用,这个系统是把传感器、电动机和计算机的个各种处理器放在了同一个芯片上。这种用纳米技术的计算机芯片非常微小,体积一般不过就是数百个原子的大小。它的优点就是几乎不需要消耗任何能源,性能更是比现在的计算机要强大的多。

2 计算机技术发展

2.1 现代微型处理器技术发展:计算机性能的提升关键技术就是微型处理器的发展,这种技术追求的就是把处理器里的晶体线宽和尺寸的减小。要实现减小的目的,一般是通过用较短的波长的曝光光源来掩膜曝光,使做出的联通晶体管的导线和刻蚀于硅片上的晶体管更细更小的方法来实现的,这种技术到现在一般是用紫外线作为曝光光源,不管有个限制难题就是线宽小于或等于0.10流明的情况下会受到阻碍,也因此现在的计算机技术已经不再追求利用紫外线做光源来提升计算机的性能发展方向了。

2.2 以纳米为主的电子科学技术:当今计算机技术的发展障碍是处理速度和集成度,尽管现在的电子计算机的电子元件得到了有效的改善,但是相对于现在要求电子计算机的高速化,智能化,和微型化的要求是远远不够的, 所以今后计算机的技术发展也不再是局限在单纯的缩小尺寸方面,还要用其他的创新手段来完善计算机技术。

2.3 分组交换技术的发展:分组交换技术是把需要传送的数据划分为一些等长的部分,每个部分叫做一个数据段的技术。在这些数据段的前面添加一个控制信息组成首部,就可以构成一个分组。分组通过首部指明了需要发往的地址,然后节点交互机根据分组的地址,将他们发往目的地。整个过程就是分组交换过程,这种技术很好的提升了通信的效率。

3 计算机技术发展方向

现在的计算机在人们的生活中已经扮演了一个非常重要的角色,但是它的角色只会变得越来越重要,因为以计算机技术为基础,人类将进入智能化、物联网的时代。

3.1 纳米技术需要大力发展:纳米技术不受到传统的计算机集成和处理速度的限制,纳米技术就成了今后计算机技术大力发展的一个方向了。今后出现的量子计算机和生物计算机的发展都有赖于纳米技术在计算机领域的应用和发展,为推动今后计算机的运算速度和存储能力远远超越现在的计算机,大力发展纳米技术也成了一个必要的选择。

3.2 着力改善计算机的体系结构:计算机是一个具有不同功能的体系结构,也是一个组合体。当代几乎所有的大型电脑和微型电脑都有可以同时处理不同问题的能力,这种功能就是是当前计算机的主流结构:并行计算。另外大型电脑有一个群集的发展趋势,使用户对相融性和可靠性的需求获得提高。

量子计算的运用篇8

0引言

随着科学技术的发展,阵列信号处理的重点已由窄带转向宽带,与窄带信号相比,宽带信号能携带更丰富的信息量,所以已被广泛的应用在雷达、通信、无源定位以及现代电子对抗中,对宽带信号进行快速准确测向已成为阵列信号处理的一个研究热点[1]现有的宽带波达方向(Direction Of Arrival, DOA)估计方法主要分为两大类:

一类是以最大似然估计(Maximum Likelihood,ML)为代表的方法[2-3],该方法估计性能优良,适合相干源,在低信噪比、小快拍数据情况下性能比较突出,但该类方法的代价函数一般具有多峰特性、全局收敛性差、运算量巨大;

另一类算法是基于信号子空间与噪声子空间正交的子空间类方法,该类算法具有较低运算复杂度,比较适合工程实际应用,故受到了国内外学者和工程技术人员的广泛关注

目前已发展出许多子空间类算法,主要有非相干信号子空间法(Incoherent Signal Subspace Method, ISSM)[4]和相干信号子空间法(Coherent Signal Subspace Method, CSSM)[5-6]ISSM方法是早期的宽带方法,它把宽带划分为若干个窄带,在每个窄子带应用子空间算法,对每一个窄带估计的空间谱进行统计平均即可得到宽带信号的空间谱,ISSM方法简单,不需要角度预估,但受噪声的影响较大,也不适合相干源

与ISSM相比,CSSM算法具有更好的估计精度,更小的分辨门限,适合相干信号,不过该算法需要方位预估及聚焦运算,预估角度的偏差及聚焦矩阵的选择会影响算法性能,且聚焦会增加额外运算量

文献[7]提出了一种鲁棒的自聚焦宽带DOA估计方法,通过多次迭代来获得信源DOA,不需要角度预估,但运算量也较大

近年来,利用信源的空域稀疏性,将信源的DOA估计可转化为一个稀疏信号重构的问题,基于此,提出了许多算法[8-9],该类算法估计精度高,谱峰尖锐,受噪声影响小,但是由于算法的复杂性和巨大运算量,短时间内很难将其应用到实际中去

利用KhatriRao(KR)积,文献[10-12]提出了基于KR子空间的聚焦类宽带DOA估计算法,算法通过直积运算和矢量重排扩展了矩阵维数,虚拟增加了阵元数,能够估计更多的信源数,但是该算法的运算量也很大,工程应用比较困难

文献[13-14]提出了正交投影子空间测试算法(Test of Orthogonality of Projected Subspaces,TOPS),该算法无需信源角度的先验信息,通过矩阵转换把参考频点的信号子空间变换到了其他频点处,总体性能较好,不过信噪比较低时会出现伪峰,不适合相干源

基于TOPS算法,文献[15]提出了频域子空间正交性测试方法(Test of Orthogonality of Frequency Subspaces, TOFS)算法,该算法对TOPS方法进行了改进,充分利用了带宽范围内各个频点的信号子空间和噪声子空间,避免了伪峰,估计性能较高,不过该方法也不适合相干信号,运算量也较大

以上介绍的宽带算法运算量都比较大,为了将算法应用到工程实际中,必须降低算法的运算量为此,本文提出了一种宽带快速方位估计算法宽带方位估计的运算量主要集中在特征分解和谱峰搜索,所以降低这两块的运算量是关键本文算法首先利用Toeplitz化矩阵重构,无需对阵列进行子阵分割,实现了宽带解相干处理;然后通过转换矩阵将复数据矩阵映射为实数据矩阵,对实矩阵进行特征分解,降低了特征分解的运算量;为进一步降低运算量,根据阵列方向矢量构成,利用信号源存在镜像的思想[16],在TOFS算法基础上重新构造空间谱,新空间谱只需在半谱角度范围内搜索,故将传统谱峰搜索的运算量降低了一半由于同时降低了特征分解和谱峰搜索的运算量,本文算法的运算量大大降低,同时该算法在整个过程无需角度预估及聚焦运算,避免了聚焦矩阵选择不当给算法带来的误差,且适合相干源

1宽带信号模型

2Toeplitz解相干及酉变换

子空间算法大都是对采样协方差矩阵进行特征分解而获得对应的信号及噪声子空间,由于协方差矩阵是复矩阵,所以特征分解的运算量较大,经过分析,l′是中心复共轭对称矩阵,即中心Hermitian矩阵,根据矩阵理论,任何一个中心Hermitian矩阵都可以通过双射映射,变成一个实矩阵,为此,引入酉矩阵:

3投影子空间正交技术

TOPS是一种宽带非相干方法该方法通过将宽带信号带宽内某一参考频点f0的信号子空间变换到其他频点fl处,利用变换后的信号子空间与fl频点对应的噪声子空间来共同构成一个检验矩阵,通过检测检验矩阵的缺秩程度来进行方位估计文献[13]中指出,当频率和角度满足:

通过D′(φ)可获得信号的DOA,由于Ui,φ′在信号真实位置及其镜像都会出现零点,只需在半谱即θ∈[0°,90°]内搜索,即可得到信号的真实角度,然后利用镜像角度不会和噪声子空间正交排除镜像干扰由于基于对称谱的修正TOFS只需要在半谱角度范围内搜索,与TOFS相比,修正TOFS算法的运算量降低了一半

5仿真结果及性能分析

首先对TOPS算法、TOFS算法进行仿真分析

本文运算量分析:子空间DOA估计算法,其运算量主要包括两部分:特征分解与谱峰搜索,复矩阵特征分解的运算量为O(M3),而同样维数的实矩阵特征分解的运算量为O(M3/4),因此经过实值变换,特征分解这一块的运算量降低了75%峰值搜索的运算量为O(PM2K),其中P为空间谱点数,利用噪声子空间及共轭噪声子空间,修正TOFS算法将谱峰搜索这一部分的运算量降低了一半所以综合起来,整个算法的运算量大大降低了

6结语

针对线列阵,基于酉变换及谱对称性,本文提出了一种低复杂度的宽带相干信号DOA估计算法算法首先利用Toeplitz化技术,实现了不降低阵列孔径的信号解相干;再利用映射技术,将特征分解的运算量降低了3/4;然后根据谱对称性特点,通过构造新谱,在半谱角度范围内搜索,降低了谱峰搜索的运算量,从而使整个算法的运算效率大大提高本文算法运算量小、特别适合需要快速进行DOA估计的场合本文算法是在线阵基础上提出的,今后有待对算法扩展到面阵中进行进一步深入研究

参考文献:

[1]KRIM H, VIBERG M. Two decades of array signal processing research [J]. IEEE Transactions on Signal Processing,1996,13(4): 67-94.

[2]PESAVENTO M, GERSHMAN A B. Maximumlikelihood direction of arrival estimation in the presence of unknown nonuniform noise [J]. IEEE Transactions on Signal Processing, 2001, 49(7):1310-1324.

[3]CHEN J C, HUDSON R E, YAO K. Maximumlikelihood source location and unknown sensor location estimation for wideband signals in the nearfield [J]. IEEE Transactions on Signal Processing, 2002, 50(8):1843-1854.

[4]HUNG H, KAVEH M. Focusing matrices for coherent signalsubspace processing[J].IEEE Transactions on Acoustics, Speech, Signal Processing, 1988, 36(8):1272-1281.

[5]VALAEE S, KABAL P. Wideband array processing using a twosided correlation transformation [J]. IEEE Transactions on Signal Processing, 1995, 43(1):160-172.

[6]VALAEE S, CHAMPAGNE B, KABAL P. Localization of wideband signals using leastsquares and total leastsquares approaches [J]. IEEE Transactions on Signal Processing, 1999, 47(5):1213-1222.

[7]SELLONE F. Robust autofocusing wideband DOA estimation [J]. Signal Processing, 2006, 86(1):17-37.

[8] GURBUZ A C, CEVHER V, MCCELLAN J H. Bearing estimation via spatial sparsity using compressive sensing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1358-1369.

[9]LIU Z M, HUANG Z T, ZHOU Y Y. Directionofarrival estimation of wideband signals via covariance matrix sparse representation [J]. IEEE Transactions on Signal Processing, 2011, 59(9):4256-4270.

[10] MA W K, HSIEH T H, CHI C Y. DOA estimation of quasistationary signals with less sensors than sources and unknown spatial noise covariance: a KhatriRao subspace approach [J]. IEEE Transactions on Signal Processing, 2010, 58(4):2168-2179.

[11]FENG D H,BAO M,YE Z F, et al. A novel wideband DOA estimator based on KhatriRao subspace approach [J].Signal Processing, 2011, 91(10):2415-2419.

[12]潘捷,周建江.基于凸优化的KhatriRao 子空间宽带DOA估计[J].电子与信息学报,2013, 35(1):80-84.

[13]YOON Y S, KAPLAN L M, MCCLELLAN J H. TOPS: New DOA estimator for wideband signals [J]. IEEE Transactions on Signal Processing, 2006, 54(6):1977-1989.

量子计算的运用篇9

计算机是当前社会发展中必不可少的设备,尤其是进入21世纪以来,计算机技术的极大发展,在很大程度上推动了社会进步。本文将简要分析当前计算机技术的发展态势。

1.计算机技术发展趋势

1.1智能化

计算机智能化发展是自1956年提出该理念至今一直努力的方向,它要求计算机能够像人类的大脑一样进行思考,具有基本的逻辑判断能力、推理考证能力、决策分析能力以及实践运用能力。这项功能的实现有赖于模糊控制理论、灰色理论、混沌和分岔理论等只能技术的快速发展。

1.2网络化

网络化发展是当前计算机技术发展的大潮流,单体计算机、局域计算机时代已经完全不适合当前的发展形势。利用网络通信技术以及远程控制、协助等技术通过数字化的方式进行沟通和协作,使得人们在不同的地点就能够享受到计算机技术发展带来的各类便捷服务。

1.3微型化

计算机发展微型化是大势所趋,计算机普及率逐年上升,人们对计算机的使用提出了更高的要求。方便、便捷、轻便、小巧的笔记本、掌上电脑等微型计算机的普遍使用都是目前发展要求的缩影,这些设备以其多样的性能、较低的价格越来越受到人们的喜爱,特别是商务人士的青睐。

1.4绿色化

绿色发展是可持续发展的要求,也是计算机发展的趋势之一。耗能低、耗材少、低辐射、使用舒适以及设计、生产、使用、销毁过程都要符合环保要求,尽可能做到可再生利用。对于能源要求,趋向于自身实现能源供给和储备,如光能收集电池等,解决能源供给问题。

2.新计算机技术革新

2.1量子计算机

量子计算机可简单理解为遵循量子力学能够进行高速运算、存储和处理信息的计算机,它是在社会对高速度、保密好、容量大的通讯及计算提出较高要求的情况下产生的。物理主体主要包括:液态核磁共振量子计算机、(固态)硅晶体核磁共振量子计算机、离子陷阱、量子光学、腔室量子电动力学、超导体方案等。

量子计算机的功能在于进行大数的因式分解,和Grover搜索破译密码,但是同时也提供了另一种保密通讯的方式,此外还可以用来做量子系统的模拟。但是在昨晚高难度运算后,能耗高、寿命短,散热量大等缺点则暴露出来,真正有价值的量子计算机还有待继续研究。

2.2光子计算机

光子计算机进行数字运算、逻辑操作、信息存贮等内容利用的是光信号,以光运算代替电运算,主要由激光器、光学反射镜、透镜、滤波器等光学元件设备组成。它具有运算、处理能力极强的优点,同时,兼具容错性,能够进行模糊处理,但并不影响运算结果,智能化更高端。它主要具有以下好处:光子不带电荷,不产生磁场,也不受磁场作用影响;光子也不具有静止质量,可以在真空和介质两种状态下传播;信息存储容量大,通道宽,通信能力强;能量耗用低,散热量小,节能环保性较强,也避免了计算机运行时内部过热的情况。

目前虽然光子计算机在功能和运算速度方面和电子计算机有一定差距,但光子计算机的进一步研制、完善,在对图像处理、目标识别和人工智能等方面发挥重大作用。

2.3生物计算机

生物计算机也叫做放生计算机,是以仿生学研究为基础而形成的新型计算机技术,它以生物工程技术生产的蛋白分子制成生物芯片作为基础元件。它具有并行处理的功能,运行速度比普通的电子计算机要快10万倍,存储空间占用更是少之又少。它具有的优点很多,首先,体积小、功效高,比集成电路小很多,可以隐藏在地板、墙壁等地方;其次,具有自我修复功能,它的内部芯片出现故障时,不需要人工修理,能自我修复,永久性、可靠新高;再者,能耗很低,能量消耗仅占普通电子计算机的10亿分之1,散热量很小;第四,不受电路间信号干扰。目前,这种计算机还在研制阶段,存在技术不成熟、信息提取难等问题,还需要继续优化。

2.4纳米计算机

纳米计算机研制是计算机发展过程中的一场革命,它以纳米技术为基础研制出计算机内存芯片,其体积相当于发丝直径的千分之一,生产成本非常低,不需要建造超洁净生产车间,也不需要昂贵的实验设备和人数众多的生产团队,同时,纳米计算机也需要耗费能源可以忽略不计,但是对其强大其性能的发挥丝毫不产生影响。

纳米计算机可以应用到微型机器人,以至于日用电子设备,甚至玩具中,都能获得强大的微处理功能,其应用范围也涉及到现代物理学、化学、电子学、建筑学、材料学等各个学科领域。这项新的课题技术也在不断的完善和发展,将为计算机发展带来新的内容。

3.云技术和网络技术发展

3.1云技术

云计算是分布式计算的一种形式,它通过将计算拆散计算再进行组合回传的方式进行,可以达到和超级计算机同样强大的网络服务,这是云技术的根本。云技术不仅仅作为资料搜集手段,它是集网络技术、信息技术、整合技术管理平台技术、应用技术为一体的综合资源池,灵活便捷。

云技术作为一种商业模式的体现方式,其应用非常广泛,目前,已经在搜索引擎、网络信箱等领域投入使用,未来在手机、GPS等行动装置上也可实现。云技术正以它的可靠、实用、安全等性能逐渐被人们所接受,云物联、云存储、云呼叫、私有云、云游戏、云教育、云会议以及云社交等正逐步强化它的服务功能。

3.2网络技术

网络技术发展有赖于光纤技术的快速发展。光导纤维技术在通信、电子和电力等领域日益扩展,成为大有前途的新型基础材料,与之相伴的光纤技术也以新奇、便捷赢得人们的青睐。它具有耐湿、耐辐射、易于安装和保养、24小时的连续工作等性能被广泛应用。尤其在塑料光纤产生后,海底光缆工程得以顺利实施,对世界范围网络通信起到良好的推动作用。

4.移动计算机技术发展

无线移动通信技术逐渐成熟,计算机处理能力不断提高,移动计算机的发展也逐渐成为主导方向。

目前最热门的是wifi无线技术,而最新的是4G通信技术,这两项技术对移动计算机的发展起到了关键的支撑作用。4G网络时代刚刚开启,目前开始应用于移动设备上,但是在微型便携计算机上的应用尚未起步。如何将移动计算机等终端产品通过芯片等形式与4G网络完没相连接,如发展移动电视、移动电脑、成为一项热门话题,有待进一步研究探索。

5.结束语

计算机技术的大发展,使得计算机深入人们的生产、生活当中,带给人们诸多方便,也成为了人们生产、生活的一部分,因此,其发展态势更加受到人们关注,所以趋于社会需求的发展方向就是计算机技术的主要发展方向。

参考文献:

量子计算的运用篇10

抽象地说, 所谓计算, 就是从一个符号串f 变换成另一个符号串g 。比如说, 从符号串1 2 + 3 变换成1 5 就是一个加法计算。如果符号串f 是x2,而符号串g 是2x,从f 到g 的计算就是微分。定理证明也是如此, 令f 表示一组公理和推导规则, 令g 是一个定理, 那么从f 到g 的一系列变换就是定理g的证明。从这个角度看, 文字翻译也是计算, 如f 代表一个 英文 句子, 而g 为含意相同的中文句子, 那么从f 到g 就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号( 串) 开始, 一步一步地改变符号( 串) , 经过有限步骤, 最后得到一个满足预先规定的符号( 串) 的变换过程。

从类型上讲, 计算主要有两大类: 数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明, 几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的, 即二者是密切关联的, 可以相互转化, 具有共同的计算本质。随着数学的不断发展, 还可能出现新的计算类型。

2 远古的计算工具

人们从开始产生计算之日, 便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5 世纪, 中国 人已开始用算筹作为计算工具, 并在公元前3 世纪得到普遍的采用, 一直沿用了二千年。后来, 人们发明了算盘, 并在15 世纪得到普遍采用, 取代了算筹。它是在算筹基础上发明的, 比算筹更加方便实用, 同时还把算法口诀化,从而加快了计算速度。

3 近代计算系统

近代的科学发展促进了计算工具的发展: 在1 6 1 4 年, 对数被发明以后, 乘除运算可以化为加减运算, 对数计算尺便是依据这一特点来设计。1 6 2 0 年, 冈特最先利用对数计算尺来计算乘除。1 8 5 0 年, 曼南在计算尺上装上光标, 因此而受到当时科学工作者, 特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的, 是计算工具上的一大发明。帕斯卡于1642 年发明了帕斯卡加法器。在1671 年,莱布尼茨发明了一种能作四则运算的手摇计算器, 是长1 米的大盒子。自此以后, 经过人们在这方面多年的研究, 特别是经过托马斯、奥德内尔等人的改良后, 出现了多种多样的手摇计算器, 并风行全世界。

4 电动计算机

英国的巴贝奇于1 8 3 4 年, 设计了一部完全程序控制的分析机, 可惜碍于当时的机械技术限制而没有制成, 但已包含了 现代 计算的基本思想和主要的组成部分了。此后, 由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1 9 4 1 年, 德国的楚泽采用了继电器, 制成了第一部过程控制计算器, 实现了1 0 0 多年前巴贝奇的理想。

5 电子 计算机

2 0 世纪初, 电子管的出现, 使计算器的改革有了新的发展, 美国宾夕法尼亚大学和有关单位在1 9 4 6 年制成了第一台电子计算机。电子计算机的出现和发展, 使人类进入了一个全新的时代。它是2 0 世纪最伟大的发明之一, 也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中, 因特尔公司的创始人之一戈登·摩尔(godonmoore)对电子计算机产业所依赖的半导体技术的发展作出预言: 半导体芯片的集成度将每两年翻一番。事实证明,自2 0 世纪6 0 年代以后的数十年内, 芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番, 而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。

6 “摩尔定律”与“ 计算 的极限”

人类是否可以将 电子 计算机的运算速度永无止境地提升? 传统计算机计算能力的提高有没有极限? 对此问题, 学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高, 最终地球上所有的能量将转换为计算的结果——造成熵的降低, 这种向低熵方向无限 发展 的运动被 哲学 界认为是禁止的, 因此, 传统电子计算机的计算能力必有上限。

而以ibm 研究中心朗道(r.landauer)为代表的理论 科学 家认为到2 1 世纪3 0 年代, 芯片内导线的宽度将窄到纳米尺度( 1纳米= 1 0 - 9 米) , 此时, 导线内运动的电子将不再遵循经典物理 规律 ——牛顿力学沿导线运行, 而是按照量子力学的规律表现出奇特的“电子乱窜”的现象, 从而导致芯片无法正常工作; 同样, 芯片中晶体管的体积小到一定临界尺寸( 约5 纳米) 后, 晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致: 摩尔定律不久将不再适用。也就是说, 电子计算机计算能力飞速发展的可喜景象很可能在2 1 世纪前3 0 年内终止。著名科学家, 哈佛大学终身教授威尔逊(edwardo.wilson)指出: “科学代表着一个时代最为大胆的猜想( 形而上学) 。它纯粹是人为的。但我们相信, 通过追寻“梦想—发现—解释—梦想”的不断循环, 我们可以开拓一个个新领域, 世界最终会变得越来越清晰, 我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的

7 量子计算系统

量子计算最初思想的提出可以追溯到20 世纪80 年代。物 理学 家费曼richardp.feynman 曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中, 相互作用的光子每增加一个, 有可能发生的情况就会多出一倍, 也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了, 不过, 在费曼眼里, 这却恰恰提供一个契机。因为另一方面, 量子力学系统的行为也具有良好的可预测性: 在干涉实验中, 只要给定初始条件, 就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算, 那么搭建这样一个实验, 测量其结果, 就恰好相当于完成了一个复杂的计算。因此, 只要在计算机运行的过程中, 允许它在真实的量子力学对象上完成实验, 并把实验结果整合到计算中去, 就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下, 1 9 8 5 年英国牛津大学教授多伊奇daviddeutsch 提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的, 即把计算看作由“神谕”来实现的: 这类计算在量子计算中被称为“神谕”(oracle)。种种迹象表明: 量子计算在一些特定的计算领域内确实比传统计算更强, 例如, 现代 信息安全技术的安全性在很大程度上依赖于把一个大整数( 如1 0 2 4 位的十进制数) 分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”, 困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前, 就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1 0 2 4 位整数的质因子分解问题, 大约需要2 8 万年, 这已经远远超过了人类所能够等待的时间。而且, 分解的难度随着整数位数的增多指数级增大, 也就是说如果要分解2 0 4 6 位的整数, 所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机, 我们只需要大约4 0 分钟的时间就可以分解1024 位的整数了。

8 量子计算中的神谕

人类的计算工具, 从木棍、石头到算盘, 经过电子管计算机, 晶体管计算机, 到现在的电子计算机, 再到量子计算。笔者发现这其中的过程让人思考: 首先是人们发现用石头或者棍棒可以帮助人们进行计算, 随后, 人们发明了算盘, 来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”, 机器也可以用来搬动“算珠”, 而且效率更高, 速度更快。随后, 人们用继电器替代了纯机械, 最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子 计算 的出现, 则彻底打破了这种认识与创新 规律 。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前, 所有计算均是模拟一个快速的“算盘”, 即使是最先进的 电子 计算机的cpu 内部,64 位的寄存器(register),也是等价于一个有着6 4 根轴的二进制算盘。量子计算则完全不同, 对于量子计算的核心部件, 类似于古代希腊中的“ 神谕”, 没有人弄清楚神谕内部的机理, 却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子, 人们通过输入, 可以得到输出, 但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9 “神谕”的挑战与人类自身的回应人类的思考能力, 随着计算工具的不断进化而不断加强。电子计算机和互联网的出现, 大大加强了人类整体的科研能力,那么, 量子计算系统的产生, 会给人类整体带来更加强大的科研能力和思考能力, 并最终解决困扰当今时代的量子“神谕”。不仅如此, 量子计算系统会更加深刻的揭示计算的本质, 把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察 历史 , 会发现人类文明不断增多的“发现”已经构成了我们理解世界的“ 公理”, 人们的公理系统在不断的增大, 随着该系统的不断增大, 人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“ 计算工具不断 发展 — 整体思维能力的不断增强—公理系统的不断扩大—旧的神谕被解决—新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现, 也不会妨碍量子计算时代的到来。量子计算是计算 科学 本身的一次新的革命, 也许许多困扰人类的问题, 将会随着量子计算机工具的发展而得到解决, 它将“计算科学”从牛顿时代引向量子时代, 并会给人类文明带来更加深刻的影响。

参考 文献

量子计算的运用篇11

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

2远古的计算工具

人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。

3近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

4电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。

5电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。

6“摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。中国

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。著名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的7量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。

8量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9“神谕”的挑战与人类自身的回应人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“计算工具不断发展—整体思维能力的不断增强—公理系统的不断扩大—旧的神谕被解决—新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。

参考文献

量子计算的运用篇12

抽象地说, 所谓计算, 就是从一个符号串f 变换成另一个符号串g 。比如说, 从符号串1 2 + 3 变换成1 5 就是一个加法计算。如果符号串f 是x2,而符号串g 是2x,从f 到g 的计算就是微分。定理证明也是如此, 令f 表示一组公理和推导规则, 令g 是一个定理, 那么从f 到g 的一系列变换就是定理g的证明。从这个角度看, 文字翻译也是计算, 如f 代表一个英文句子, 而g 为含意相同的中文句子, 那么从f 到g 就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号( 串) 开始, 一步一步地改变符号( 串) , 经过有限步骤, 最后得到一个满足预先规定的符号( 串) 的变换过程。

从类型上讲, 计算主要有两大类: 数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明, 几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的, 即二者是密切关联的, 可以相互转化, 具有共同的计算本质。随着数学的不断发展, 还可能出现新的计算类型。

2 远古的计算工具

人们从开始产生计算之日, 便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5 世纪, 中国人已开始用算筹作为计算工具, 并在公元前3 世纪得到普遍的采用, 一直沿用了二千年。后来, 人们发明了算盘, 并在15 世纪得到普遍采用, 取代了算筹。它是在算筹基础上发明的, 比算筹更加方便实用, 同时还把算法口诀化,从而加快了计算速度。

3 近代计算系统

近代的科学发展促进了计算工具的发展: 在1 6 1 4 年, 对数被发明以后, 乘除运算可以化为加减运算, 对数计算尺便是依据这一特点来设计。1 6 2 0 年, 冈特最先利用对数计算尺来计算乘除。1 8 5 0 年, 曼南在计算尺上装上光标, 因此而受到当时科学工作者, 特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的, 是计算工具上的一大发明。帕斯卡于1642 年发明了帕斯卡加法器。在1671 年,莱布尼茨发明了一种能作四则运算的手摇计算器, 是长1 米的大盒子。自此以后, 经过人们在这方面多年的研究, 特别是经过托马斯、奥德内尔等人的改良后, 出现了多种多样的手摇计算器, 并风行全世界。

4 电动计算机

英国的巴贝奇于1 8 3 4 年, 设计了一部完全程序控制的分析机, 可惜碍于当时的机械技术限制而没有制成, 但已包含了现代计算的基本思想和主要的组成部分了。此后, 由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1 9 4 1 年, 德国的楚泽采用了继电器, 制成了第一部过程控制计算器, 实现了1 0 0 多年前巴贝奇的理想。

5 电子计算机

2 0 世纪初, 电子管的出现, 使计算器的改革有了新的发展, 美国宾夕法尼亚大学和有关单位在1 9 4 6 年制成了第一台电子计算机。电子计算机的出现和发展, 使人类进入了一个全新的时代。它是2 0 世纪最伟大的发明之一, 也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中, 因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言: 半导体芯片的集成度将每两年翻一番。事实证明,自2 0 世纪6 0 年代以后的数十年内, 芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番, 而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。

6 “摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升? 传统计算机计算能力的提高有没有极限? 对此问题, 学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高, 最终地球上所有的能量将转换为计算的结果——造成熵的降低, 这种向低熵方向无限发展的运动被哲学界认为是禁止的, 因此, 传统电子计算机的计算能力必有上限。

而以IBM 研究中心朗道(R.Landauer)为代表的理论科学家认为到2 1 世纪3 0 年代, 芯片内导线的宽度将窄到纳米尺度( 1纳米= 1 0 - 9 米) , 此时, 导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行, 而是按照量子力学的规律表现出奇特的“电子乱窜”的现象, 从而导致芯片无法正常工作; 同样, 芯片中晶体管的体积小到一定临界尺寸( 约5 纳米) 后, 晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致: 摩尔定律不久将不再适用。也就是说, 电子计算机计算能力飞速发展的可喜景象很可能在2 1 世纪前3 0 年内终止。著名科学家, 哈佛大学终身教授威尔逊(EdwardO.Wilson)指出: “科学代表着一个时代最为大胆的猜想( 形而上学) 。它纯粹是人为的。但我们相信, 通过追寻“梦想—发现—解释—梦想”的不断循环, 我们可以开拓一个个新领域, 世界最终会变得越来越清晰, 我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的

量子计算的运用篇13

第一台计算机于1942年出现在宾夕法尼亚大学,这台计算机的出现标志着计算机时代的到来。第一台计算机的制作初衷是为了计算火炮弹道,主要用于军事用途。这一代的计算机采用的是电子线路执行逻辑运算、算术运算与信息存储的计算机,其计算速度相较于继电器计算机快一千倍。但是,这台计算机的程序设备仍然是外加式,并且存储容量也相对较小,尚不具备现代计算机的特征。

1945年数学家冯诺依曼提出了更为先进的逻辑结构并且应用于计算机制造,计算机自动化程度提高,开始进入了发展时期。该时期的计算机开始应用到工业与生活中。到20实际中期以后,计算机技术便进入了高速发展时期,计算机的组成也更加复杂,由单纯的硬件变为了硬件、固件与软件三部分组成。同时,计算机的系统与性能不断提高,计算机的种类也呈多样化,出现了大型计算机、通用计算机、小型计算机、微型计算机等类型。此外,还出现了一些专用计算机,如模拟数字混合计算机、特殊类型的控制计算机等。进入到20世纪70年代后计算机的研究与生产能力大增,计算机的性能得到了很大提升。尤其是微型计算机开始进入大规模生产时期,进入到了生产生活的各个领域。微型计算机在很短的时间内便进入到了家庭、企业、机关与研发单位中,发展到现在,微型计算机已经成为了社会生活与工作中不可或缺的部分。

2 计算机的发展趋势

未来计算机主要呈现两个方向:微型计算机与超极计算机。超极计算机应用于较重要的科研与工业技术,注重强大的计算能力。超极计算机采用平行处理技术,可以使计算机系统在同一时间处理多个数据或者执行多条指令。在未来,超极计算机的计算能力仍将被进一步提升,并且应用领域也将进一步扩大。在未来,军事技术、科研技术空间技术、经济分析技术等都将用到超极计算机。可以说,未来计算机技术的发展主要方向之一是计算能力与速度的提升。

此外,分子计算机技术也在研究中,在未来可能成为现实。这些都是未来计算机的发展趋势,而对其核心技术的发展我们在接下来的文章中将进行细解。

3 计算机核心技术的发展

⑴量子计算机。量子计算机是在量子效应基础上研究出来的,它利用某种链状分子聚合物的特性来表达开与关的状态,并利用激光脉冲来改变分子状态,促使信息沿着聚合物移动从而实现运算活动。量子计算机介于构架与器件之间,其中的数据用量子位进行储存。量子具有叠加效应,故而,一个量子位既可以是1也可以是0,既可以存储1又可以存储0,也就是说一个量子位可以存储两个数据。同样数量的存储,量子计算机的存储量相较于其他计算机要大很多。量子计算机还可实行量子并行计算,运算速度非常快。

⑵光子计算机。光子计算机也就是全光数字计算机,该计算机的核心理念是以光子代替电子、光硬件代替电子硬件、光互联代替导线互联、光运算代替电运算。相较于电子计算机,光计算机的信息传递平行通道密度更大,通道的通过能力是电话电缆的几倍。同时,光具有高速、并行的特性,这也决定了光子计算机的处理能力更强、运算速度更快。在当前,超高速计算机只能在低温状态下工作,而具有同样运行速度的光子计算机在室温下即可工作。光子计算机还具有容错性,某一原件损坏或出错不会影响到最终的计算结果。现在,光子计算机已经研究成功,可以预计的是,在不久的将来,光子计算机将成为计算机的主要研究发展方向,会像当前计算机一样普及,并且在社会生活工作中发挥更大的作用。

⑶纳米计算机。目前硅芯片发展到现阶段已经到达其物理极限,它的体积无法再缩小,通电与断电的频率也无法再提高,其功耗的提升空间也已经很小。解决这些问题,很重要的途径是研制纳米晶体管,并采用纳米晶体管制作纳米计算机。应用纳米技术进行计算机的研究制造不仅能够减小计算机的体积更能提升其工作效率、降低其功耗、现阶段纳米计算机的研究已经取得了很大成绩,在未来必然可以实现推广应用。

⑷生物计算机。生物技术是未来的主要发展技术之一,生物计算机的工作过程是蛋白质分子与周围介质的相互作用过程。在生物计算机中,酶充当计算机的转换开关,而酶合成系统的本身与蛋白质的结构将进行系统的体现。蛋白质分子比硅片上的电子元件小很多,并且彼此距离更近,生物计算机完成一项运算所需时间甚至比人的思维速度快百万倍,是现代计算机无法比拟的。同时,DNA分子计算机具有惊人的存储容量,与极低的能量消耗,是电子计算机的十亿分之一。

总之,未来计算机的发展将建立在现有技术的发展之上,其发展程度甚至会超过人类的预期又或许会极大程度代替人力成为社会发展新动力。但,不管怎样的发展都要以人类的需求为根本,以为人类提供便利为原则,我们要谨记这一点,把握计算机的发展方向,不使其发生偏差。

[参考文献]

[1]康会敏.计算机技术的发展和应用探析[J].硅谷.2011(06).

[2]张瑞.计算机科学与技术的发展趋势探析[J].制造业自动化. 2010(08).

[3]赵艳玲.计算机的发展趋势与应用前景浅析[J].硅谷.2009(10).

在线咨询