移动技术论文实用13篇

移动技术论文
移动技术论文篇1

(一)第一代——模拟移动通信系统

第一代(即1G,是thefirstgeneration的缩写)移动通信系统的主要特征是采用模拟技术和频分多址(FDMA)技术、有多种制式。我国主要采用TACS,其传输速率为2.4kbps,由于受到传输带宽的限制,不能进行移动通信的长途漫游,只是一种区域性的移动通信系统。第一代移动通信系统在商业上取得了巨大的成功,但是其弊端也日渐显露出来,如频谱利用率低、业务种类有限、无高速数据业务、制式太多且互不兼容、保密性差、易被盗听和盗号、设备成本高、体积大、重量大。所以,第一代移动通信技术作为2O世纪80年代到90年代初的产物已经完成了任务退出了历史舞台。

(二)第二代——数字移动通信系统

第二代(即2G,是thesecondgeneration的缩写)移动通信系统是从20世纪90年代初期到目前广泛使用的数字移动通信系统,采用的技术主要有时分多址(TDMA)和码分多址(CDMA)两种技术,它能够提供9.6-28.8kbps的传输速率。全球主要采用GSM和CDMA两种制式,我国采用主要是GSM这一标准,主要提供数字化的语音业务级低速数据化业务,克服了模拟系统的弱点。和第一代模拟移动蜂窝移动系统相比,第二代移动通信系统具有保密性强,频谱利用率高,能提供丰富的业务,标准化程度高等特点,可以进行省内外漫游。但因为采用的制式不同,移动标准还不统一,用户只能在同一制式覆盖的范围内进行漫游,还无法进行全球漫游,虽然第二代比第一代有更大的带宽,但带宽还是很有限,限制了数据的应用,还无法实现高速率的业务,如移动的多媒体业务。

(三)第三代——多媒体移动通信系统

随着通信业务的迅猛发展和通信量的激增,未来的移动通信系统不仅要有大的系统容量,还要能支持话音、数据、图像、多媒体等多种业务的有效传输。第二代移动通信技术根本不能满足这样的通信要求,在这种情况下出现了第三代

(即3c,是thethirdgeneration的缩写)多媒体移动通信系统。第三代移动通信系统在国际上统称为IMT一2000,是国际电信联盟(1TU)在1985年提出的工作在2000MHz频段的系统。与第一代模拟移动通信和第二代数字移动通信系统相比,第三代的最主要特征是可提供移动多媒体业务。

二、第四代移动通信系统的概念

4G也称为广带接入和分布网络.具有超过2Mb/s的非对称数据传输能力.对高速移动用户能提供150Mb/s的高质量的影像服务.并首次实现三维图像的高质量传输它包括广带无线固定接入、广带无线局域网.移动广带系统和互操作的广播网络(基于地面和卫星系统).是集多种无线技术和无线LAN系统为一体的综合系统.也是宽带lP接入系统.在这个系统上.移动用户可以实现全球无缝漫游.为了进一步提高其利用率.满足高速率、大容量的业务需求.同时克服高速数据在无线信道下的多径衰落和多径干扰等众多优势。

三、4G的关键技术

1.OFDM技术。它实际上是多载波调制MCM的一种.其主要原理是:将待传输的高速串行数据经串/并变换,变成在N个子信道上并行传输的低速数据流,再用N个相互正交的载波进行调制,然后叠加一起发送。接收端用相干载波进行相干接收,再经并/串变换恢复为原高速数据。

2.多输入多输出(MIMO)技术。多输入多输出(MIMO)技术是无线移动通信领域智能天线技术的重大突破。该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是下一代移动通信系统的核心技术之一。MIMO系统采用空时处理技术进行信号处理,在丰富的散射环境下,空分复用MIMO系统(如BLAST结构)可以获得与天线数成正比的容量增长,从而极大地提高频谱效率,增加系统的数据传输速率。但是当散射程度欠佳时,会引起信道间的空间相关,尤其在室外环境下,由于基站的天线较高,从而角度扩展较小,其空间相关难以避免,在这种情况下MIMO不可能获得所期望的数据传输速率。3.切换技术。切换技术能够实现移动终端在不同小区之间跨越和在不同频率之间通信以及在信号质量降低时如何选择信道。它是未来移动终端在众多通信系统、移动小区之间建立可靠通信的基础。主要划分为硬切换、软切换和更软切换.硬切换发生在不同频率的基站或不同系统之间。第4代移动通信中的切换技术正朝着软切换和硬切换相结合的方向发展。

4.软件无线电技术。软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。通过下载不同的软件程序,在硬件平台上可实现不同功能,用以实现在不同系统中利用单一的终端进行漫游,它是解决移动终端在不同系统中工作的关键技术。软件无线电技术主要涉及数字信号处理硬(DigitalSignalProcessHardware,DSPH)、现场可编程器件(FieldProgrammableGateArray,FPGA)、数字信号处理(DigitalSignalProcessor,DSP)等。

5.IPv6协议技术。3G网络采用的主要是蜂窝组网,而4G系统将是一个基于全lP的移动通信网络,可以实现不同类型的接入系统和通信网络之间的无缝连。为了给用户提供更为广泛的业务,使运营商管理更加方便、灵活,4G中将取代现有的IPv4协议,采用全分组方式传送数据的IPv6协议。

四、发展趋势

目前,4G移动通信还只处于实验室研究开发阶段。具体的设备和技术还没有完全成型,后续的软件开发还没有启动。这都会给4G的发展带来很多难题,有待人们深入研究。但未来移动通信必将具有文中描述的这些基本特征:高速率、高质量的数据传输,完全集中的服务。无所不在的移动接入,高智能的多样化的用户设备。随着新问题、新要求的不断出现。第四代移动通信技术将会相应地调整、完善和进一步发展。我们相信,不远的将来,人们将会不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息,从而使人们的学习、工作、生活发生更深刻的变化。

参考文献:

移动技术论文篇2

随着物联网、智能软硬件的发展,移动技术正逐渐渗透到人们的日常生活中,改变着人们的学习、工作以及生活方式,加快了我国由制造型国家向创造型、创新型国家转变的步伐。然而我国的教育模式仍然以应试教育为主,以考试分数的高低来评价学生的能力。因此学生的创新、创造能力不能得到很好的培养,而构建创造型国家的关键在于培养创新、创造型人才,而创新型人才的培养关键在于创新教育模式。2016年教育部的《教育信息化“十三五”规划》中提出要“积极探索信息技术在‘众创空间’,跨学科学习(STEAM教育)、创客教育等新的教育模式的应用,着力提升学生的信息素养、创新意识、创新能力,促进学生的全面发展”。创客教育的出现到风起云涌,为教育的改革创新提供了新的契机,正逐渐改变传统的教育理念、模式以及方法。他能更好地培养学生的创新意识,综合实践能力,让学习变得更有意义。基于上述原因作为一线教师在教学中对高职媒体设计类课程进行了创客教育理念下的教学设计并进行了应用,对课堂教学进行改革。

2创客和创客教育

在以学科整合为核心的STEM教育出现之后,随着互联网和信息技术的高速发展,以创造为主要目的的创客运动悄然兴起,创客、创客空间等相关新名词在教育领域相继出现。创客起源于美国,源自英文单词Maker。创客是指不以赢利为目的,借助网络技术、智能软硬件设备努力把各种创意转为现实的人群。他们没有年龄、性别、种族之分,任何人都可以成为创客,创客们所从事的创造活动都是在创客空间亲自动手实践完成的,在此过程中由学生担任创造者的角色,教师仅仅是支持者。创客、创客空间的兴起使得创客教育应运而生。创客教育指通过制定制度鼓励学生开展创客活动,将理想变为现实,从而培养学生发现问题、解决问题以及独立创造能力的一种教育方式。随着创客教育的发展,创客不仅局限于在学校拥有创客空间,同时鼓励在家里构建家庭创客空间,在社区创建社区创客空间,从而培养学生创造意识,营造创新氛围,通过网络将学校、社区、家庭创客空间相互连接,形成创客网络共同体。在创客网络共同体中创客们可以分享自己的作品、产品,可以交流自己的创意。

2.1移动技术支持下创客课程设计

创客教育是一种将移动技术与教育相融合,以“做中学”为基本理念的一种培养创新人才教育模式。在“网页设计”课堂教学中培养学生的创新意识、艺术设计能力和创作思维,以实现每一位同学的创意能够实现。

2.1.1课程教学目标

“网页设计”是计算机专业学生必修的一门专业课程,该课程的教学目标是学生在掌握网页设计的理论基础和软件基本操作后,通过自主探究、小组合作完成每一个项目的制作,使学生通过将理论与实践相结合,根据自己的创意最终能独立设计并制作出一个完整的网站。

2.1.2课程教学内容

“网页设计”是一门综合性较强的课程,它涉及多种学科知识的融合。其内容主要划分为3个模块:界面设计、页面布局、网站制作实战,课程共72个学时。(1)“界面设计”这一部分的主要内容是学生通过阅读教材或上网查阅资料,了解网页设计的理论基础,网站建设的流程、发展趋势、色彩搭配以及网页设计的流行趋势。最后教师将学生收集到的资料进行归纳,对学生自己所吸收的知识观点进行积极地引导并提升。界面设计这部分内容涉及艺术欣赏,学生之前多欣赏优秀的网页,多了解网页设计的流行趋势这对学生的动手操作打下了基础。(2)“网页布局”,布局指网页文字、图片、表格等元素等内容如何设置才能吸引浏览者的注意力。对于这部分内容学生通过上网浏览或阅读书籍了解网页布局的常见类型以及优秀的网页布局的特点,教师对学生收集的内容进行总结,然后针对常用的页面布局类型用CSS语句进行实现。(3)“网站制作实战”这部分主要锻炼学生对网页设计知识的综合应用。由于网页设计是一门实践性很强的课程所以这一部分是不可缺少的。主要以真实情景中问题需要为项目来源,利用小组合作的方式来提升学生们的创新能力、实践动手能力和合作能力,最后学生们创作出一个体现自己创意的网站。

2.2课程教学资源的设计

“网页设计”是一门综合实践性较强的课程,所以在这门课的教学中尝试了创客教育模式,教室不是传统的固定座椅的教室而是创客空间,教师不再是主讲者而是支持者、引导者,学生不是参与者而是创造者。因此这门课程的教学资源教师会根据小组的实践情况,推荐或提供相应的资源,如微视频、创客空间等。2.3课程教学过程的设计“网页设计”这门课程需要在掌握基本的理论基础后,通过进行大量的动手实践才能制作出好的网站,所以在这门课程的教学过程中,将分配大量的时间在设计和制作这两部分。首先,好的创意和功能模块是网站的灵魂,有好的创意理念才能制作出好的网站。其次,制作部分涉及,的实践有PS界面制作、html+css页面布局以及后台数据库,这些都是要通过反复实践练习才能充分掌握的。在实践过程中,学生通过自己发现问题、解决问题从而完善巩固自己的知识,激发学生的创新思维。以学生小组合作制做主题网站为例,运用创客教育模式,开展教学,培养学生的创新思维以及创造能力。学生小组合作制作网站,不仅锻炼了学生网站设计与制作的能力,还能培养学生的创新思维,团队合作。在这部分的课程内容设计具体过程如下:(1)构建创客团队。由于这门课程的综合性比较强,所涉及的具体内容有PS设计、html+css页面布局和数据库这3个方面,因此首先通过调查了解学生对这几块内容的兴趣特长,然后对学生进行分组3~4人为1组,每一组中的学生都分别具备相关的特长。(2)确定创作的内容主题。教师结合真实问题情景确定主题,如某公司的企业网站、学校的网站或供大家学习交流的网站等,这些网站都是存在于学生周围,并且比较熟悉的内容。学生可以根据教师给予的主题自己构思、调查,相互讨论将自己的创意想象得以充分发挥。(3)开始创作。创客们通过阅读书籍,查阅网络资源,相互交流动手将自己的实践将创意进行创作,创客们在发现问题解决问题的过程中,学会思维,学会将知识融会贯通,从而一步将自己的创意转变成自己的作品。教师在此过程中给学生提供所需要的资源、创客空间。当然在此过程中教师要给学生一个具体完成作品的时间,否则学生容易拖拉。(4)评价。在开展创客教学评价时,以过程评价为主,教师将从学生的学习过程、作品、小组间的互评来进行展开。对于作品的评价首先由小组成员进行展示作品并陈述作品的创意,以及在创作的过程中遇到的问题以及解决的方式方法,然后教师从审美、功能、创新性、完成程度等给予点评。

3结语

在传统教学中,老师以讲授为主,学生只是参与者被动地接受知识,在创客教学中教师仅仅是支持者,学生是主角创造者。由于受传统教学的影响,在本次开展创客教学改革的过程中,有收获同时也遇到了挑战。学生的学习积极性有所提高,学生思考问题的能力、解决问题的能力显著提升,自主学习的能力有所加强,当然也遇到了一些挑战。开展创客教学的初衷是以学生学习、思考、实践为主。对于成绩好的学生而言,他们很乐意接受;而对于学习能力较弱,学习积极性不高的学生,他们感觉茫然,不知从何处入手。再者由于高职学生学习的主动性不强,所以只有2~3组的同学能主动开展创作,而其他的组采取被动、敷衍了事,甚至抱怨老师的态度。通过引导和转变观念,学生的学习情况虽然有好转,但从最终作品来看仍然不够理想。

作者:王英彦 单位:义乌工商职业技术学院

移动技术论文篇3

移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。

回顾移动通信的发展历程,移动通信的发展大致经历了几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信,使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。现在用的大多是第二代技术,第三代技术还不太成功,但已有了第四代技术的设想。第四代移动通信系统(4G)标准比第三代具有更多的功能。

二、4G移动通信简介

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:

(一)通信速度更快

由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

(二)网络频谱更宽

要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

(三)多种业务的完整融合

个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

(四)智能性能更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。

(五)兼容性能更平滑

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。

(六)实现更高质量的多媒体通信

4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。

(七)通信费用更加便宜

由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。

三、4G移动通信的接入系统

4G移动通信接入系统的显着特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。

不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。

分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。

蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。

热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。

个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。

固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。

网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。

四、4G移动通信系统中的关键技术

(一)定位技术

定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。

(二)切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

(三)软件无线电技术

在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。

(四)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。

(五)交互干扰抑制和多用户识别

待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。

(六)新的调制和信号传输技术

在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。

五、OFDM技术在4G中的应用

若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。

在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。

六、结束语

对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。

首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。

其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。

因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。

参考文献:

移动技术论文篇4

这里将沿着马克·波斯特思考媒介与文化论题的思路,讨论3G技术应用在人际传播方面所带来的信息存储方式、信息传播方式和信息交换构型的改变。对此,一个可行的方式是从过程的角度考察人际传播,并将其拆分为两个部分:认知过程和行动过程。对认知过程的考察有助于理解交流双方如何用3G手机来传输信息,传输了什么样的信息,又对彼此的关系造成了怎样的影响;对认知过程和行动过程的综合考察则有助于理解依靠3G手机所建立的交流构型。第三代移动通信系统是一种能提供多种类型!高质量的多媒体业务,能实现全球无缝覆盖,具有全球漫游能力,与固定网络相容,并以小型便携式终端而闻名于世。在任何时候、任何地点进行任何种类通信的通信系统“由于其诸多优点,第三代移动通信系统对全世界电信行业工作者及信息社会越来越具吸引力”作为第三代移动通信的主导技术,近来发展迅速,在第三代移动通信系统个技术标准中,最具竞争力而迅速的发展。相比于2G、2.5G等通信技术,3G通信的优势主要表现在:

(1)智能化、多媒体化趋势明显

由于3G网络能够提供内容丰富的多媒体业务和下载业务等,因此,对3G终端而言,需要对其配备更大、更清晰和3D显示效果更逼真的显示屏,以便用户更好地欣赏移动多媒体业务要配备像素更高的摄像头以拍摄更清晰的图像,以增强图片的感观效果;要提供更大的存储空间,来储蓄下载而来的更多图片和音视频文件等。总之,以数据业务功能强大为特征的3G业务对其终端的要求将日益苛刻,3G要真正实现所预期的业务发展效果,加强3G终端的研发将一直成为3G发展阶段的重要主题之一。

(2)单模、双模和多模终端共存

多种3G技术体制并存以及第三代移动通信发展初期,第二代移动通信不会在短期内退出市场的现实情况,决定了未来的移动终端必将是单模、双模和多模终端共存的局面。目前市场上已有GSM/WCDMA、GSM/cdma2000、cdma20001X/1XEV-D0双模终端;随着TD——SCDMA标准的正式商用,未来支持TD-SCDMA网络和其他网络的双模手机或多模手机也可能会出现。对3G终端的功能要求不断提高3G的技术特性,决定了3G网络能够提供更为智能化、多样化、个性化的移动业务,这就要求3G移动终端的功能日益增强。不仅要支持现有话音业务、短信业务、窄带数据业务等,同时应支持以多媒体业务和高速数据业务为代表的宽带通信业务等。大致可以分为四类:(1)互式业务,包括网络电话、移动银行、可视电话和可视会议等;(2)点对点业务,包括多媒体短信、电子邮件、WEB、远程医院等;(3)单向信息业务,包括数字报纸、出版、远程教育、视频购物、移动音频播放器、移动视频播放器、视频点播和卡拉OK等;(4)多点广播业务,包括信息递送、GPS汽车导航、移动收音机和手机电视等。从中可以看出,3G不仅给手机带来新的人际传播方式如可视电话、多媒体短信和电子邮件等,还同时使手机拥有了手机电视、数字报纸、出版和信息递送等大众传播媒介的功能。

移动技术论文篇5

2实际应用

分析在实际应用过程中,压缩感知技术有以下几方面特性:

(1)观测信号没有稀疏性,比如OFDM系统频域信道响应等等。

(2)变换观测信号的基坐标,信号在另外的组基下变稀疏,比如频域信号响应经过DFT进行转换,使之在时域上具有稀疏性。

(3)稀疏性是变化的,并且稀疏性是不可知的,这也是使用压缩感知技术的首要条件。有资料显示,经过外场测试多数无线信道在时域上均具有多径稀疏的特点,通过压缩感知技术的应用,将大大减少用户的导频开销。另一方面,目前基站侧天线数目不断增多,无线信道在空域上也具有稀疏性,这也为压缩感知技术未来在移动通信系统中的应用奠定了基础。

移动技术论文篇6

第三代移动通信系统是能够满足国际电联提出的IMT-2000PFPLMTS系统标准的新一代移动通信系统,要求具有很好的网络兼容性,能够实现全球范围内多个不同系统间的漫游,不仅要为移动用户提供话音及低速率数据业务,而且要提供广泛的多媒体业务。根据ITU的标准,世界各大电信公司联盟均己提出了自己的第三代移动通信系统方案,主要有W-CDMA、CDMA2000、TD-CDMA以及我国提出的拥有自主知识产权的TD-SCDMA。但3G也存在以下几方面的局限性:

不能支持较高的通信速率。3G虽然标称能达到2Mbit/s的速率,但平均速率只能达到384kbit/s。尽管目前3G增强型技术不断发展,但其传输速率还有差距。

不能提供动态范围多速率业务。由于3G空中接口主流的三种体制WCDMA、cdma2000、TD-SCDMA所支持的核心网不具有统一的标准,难以提供具有多种QoS及性能的多速率业务。

不能真正实现不同频段的不同业务环境间的无缝漫游。由于采用不同频段的不同业务环境,需要移动终端配置有相应不同的软、硬件模块,而3G移动终端目前尚不能实现多业务环境的不同配置。由于3G系统以上的局限性,目前,很多公司已经开始着手4G概念通信系统的研究。本文主要介绍4G概念通信的技术特点以及可能采用的关键技术。

24G概念通信技术特点

目前,业界专业人士对4G概念移动通信系统的共识主要有以下几点:

a)用户可以在任何地点、任何时间以任何方式不受限地接入网络中来;

b)移动终端可以是任何类型的;

c)用户可以自由地选择业务、应用和网络;

d)可以实现非常先进的移动电子商务;

e)新的技术可以非常容易地被引入到系统和业务中来。

根据以上描述,未来的4G系统应具备以下的基本条件。

(1)具有很高的数据传输速率。对于大范围高速移动用户(250km/h),数据速率为2Mbit/s;对于中速移动用户(60km/h),数据速率为20Mbbit/s;对于低速移动用户(室内或步行者),数据速率为100Mbit/s。

(2)实现真正的无缝漫游。4G移动通信系统实现全球统一的标准,能使各类媒体、通信主机及网络之间进行“无缝连接”,真正实现一部手机在全球的任何地点都能进行通信。

(3)高度智能化的网络。采用智能技术的4G通信系统将是一个高度自治、自适应的网络。采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收,有很强的智能性、适应性和灵活性。

(4)良好的覆盖性能。4G通信系统应具有良好的覆盖并能提供高速可变速率传输。对于室内环境,由于要提供高速传输,小区的半径会更小。

(5)基于IP的网络。4G通信系统将会采用IPv6,IPv6将能在IP网络上实现话音和多媒体业务。

(6)实现不同QoS的业务。4G通信系统通过动态带宽分配和调节发射功率来提供不同质量的业务。

34G概念通信关键技术探讨

(1)正交频分复用(OFDM)技术

第四代移动通信系统主要是以OFDM为核心技术。OFDM技术实际上是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。

OFDM技术之所以越来越受关注,是因为OFDM有很多独特的优点:

a)频谱利用率高,频谱效率比串行系统高近一倍。OFDM

信号的相邻子载波相互重叠,其频谱利用率可以接近Nyquist

极限。

b)抗衰落能力强。OFDM把用户信息通过多个子载波传输,这样在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,从而使OFDM对脉冲噪声和信道快衰落的抵抗力更强。

c)适合高速数据传输。OFDM自适应调制机制使不同的子载波可以按照信道情况和噪声背景的不同使用不同的调制方式。当信道条件好的时候,应采用效率高的调制方式;而当信道条件差的时候,则应采用抗干扰能力强的调制方式。再有,OFDM加载算法的采用,使得系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,OFDM技术非常适合高速数据传输。

d)抗码间干扰(ISI)能力强。码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性干扰。造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。OFDM由于采用了循环前缀,故对抗码间干扰的能力很强。

(2)智能天线技术

智能天线采用了空时多址(SDMA)的技术,利用信号在传输方向上的差别,将同频率或同时隙、同码道的信号进行区分,动态改变信号的覆盖区域,将主波束对准用户方向,旁瓣或零陷对准干扰信号方向,并能够自动跟踪用户和监测环境变化,为每个用户提供优质的上行链路和下行链路信号从而达到抑制干扰、准确提取有效信号的目的。这种技术具有抑制信号干扰、自动跟踪及数字波束等功能,被认为是未来移动通信的关键技术。

目前,智能天线的工作方式主要有全自适应方式和基于预多波束的波束切换方式。全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大、信道模型简单、收敛速度较慢,在某些情况下甚至出现错误收敛等缺点,实际信道条件下,当干扰较多、多径严重,特别是信道快速时变时,很难对某一用户进行实际跟踪。在基于预多波束的切换波束工作方式下,全空域被一些预先计算好的波束分割覆盖,各组

权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠,接收时的主要任务是挑选一个作为工作模式,与自适应方式相比它显然更容易实现,是未来智能天线技术发展的方向。

(3)无线链路增强技术

可以提高容量和覆盖的无线链路增强技术有:分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法来获得最好的分集性能;多天线技术,如采用2或4天线来实现发射分集,或采用多输入多输出(MIMO)技术来实现发射和接收分集。MIMO技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量。信息论已经证明,当不同的接收天线和不同的发射天线之间互不相关时,MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

(4)软件无线电(SDR)技术

在4G系统中,若要实现“任何人在任何地点以任何形式接入网络”的理想通信方式,则至少需要保证移动终端能够适合各种类型的空中接口,能够在各类网络环境间无缝漫游,并可以在不同类型的业务之间进行转换。这就意味着在4G系统中,软件将会变得非常复杂。为此,专家们提议引入软件无线电技术,软件无线电是近几年随着微电子技术的进步而迅速发展起来的新技术,它以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支持。软件无线电概念一经提出,就受到各方的极大关注,这不仅是因为软件无线电概念新技术先进、发展潜力大,更为重要的是它潜在的市场价值也是极具吸引力的。软件无线电强调以开放性最简硬件为通用平台,尽可能地用可升级、可重配置的不同应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将工作频段、调制解调类型、数据格式、加密模式、通信协议等各种功能用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。在4G众多关键技术中,软件无线电技术是通向未来4G的桥梁。由于各种技术的交迭有利于减少开发风险,所以未来4G技术需要适应不同种类的产品要求,而软件无线电技术则是适应产品多样性的基础,它不仅能减少开发风险,还更易于开发系列型产品。此外,它还减少了硅芯片的容量,从而降低了运算器件的价格,其开放的结构也会允许多方运营的介入。

(5)多用户检测技术

4G系统的终端和基站将用到多用户检测技术以提高系统的容量。多用户检测技术的基本思想是:把同时占用某个信道的所有用户或部分用户的信号都当作有用信号,而不是作为噪声处理,利用多个用户的码元、时间、信号幅度以及相位等信息联合检测单个用户的信号,即综合利用各种信息及信号处理手段,对接收信号进行处理,从而达到对多用户信号的最佳联合检测。它在传统的检测技术的基础上,充分利用造成多址干扰的所有用户的信号进行检测,从而具有良好的抗干扰和抗远近效应性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用链路频谱资源,显著提高系统容量。

现有的多用户检测算法在计算复杂度与处理时延问题上存在不足,且算法中一些参数(频率、幅度、定时、相位等)估计有误时,会使得相关矩阵产生较大偏差,导致整个系统性能急剧下降。另一方面,当前的MUD算法只考虑了同小区内的干扰,而没有考虑相邻小区间的同频率用户干扰。一般的多用户检测研究都假设用户数据是独立等概率的,没有考虑信道编码的影响,现在组合信道编码和多用户检测的研究受到越来越多的重视。另外,目前的研究方向还包括多速率多用户检测和多用户检测与空时二维信号处理、多载波调制、功率控制等技术的结合。

(6)IPv6技术

4G通信系统选择了采用基于IP的全分组方式传送数据流,因此IPv6技术将成为下一代网络的核心协议。选择IPv6协议主要基于以下几点考虑:

a)巨大的地址空间。在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址。

b)自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置方式。无状态地址自动配置方式是获得地址的关键。在这种方式下,需要配置地址的节点使用一种邻居发现机制来获得一个局部连接地址。一旦得到这个地址之后,它将用另一种即插即用的机制,在没有任何人工干预的情况下,获得一个全球惟一的路由地址。

c)服务质量。服务质量(QoS)包含几个方面的内容。从协议的角度看,IPv6与目前的IPv4具有相同的QoS,但是IPv6能提供不同的服务。这些优点来自于IPv6报头中新增的字段“流标志”。有了这个20位长的字段,在传输过程中,中国的各节点就可以识别和分开处理任何IP地址流。尽管对这个流标志的准确应用还没有制定出有关标准,但将来它无疑将用于基于服务级别的新计费系统。

d)移动性。移动IPv6在新功能和新服务方面可提供更大的灵活性。每个移动设备设有一个固定的家乡地址,这个地址与设备当前接入互联网的位置无关。当设备在家乡以外的地方使用时,通过一个转交地址即可提供移动节点当前的位置信息。移动设备每次改变位置都要将它的转交地址告诉给家乡地址和它所对应的通信节点。

4结束语

4G移动通信系统目前还只是一个基本概念,4G网络的定义仍然还不明确,IEEE等标准化组织仍处于制定标准和规范的过程中。但是融合现有的各种无线接入技术的4G系统将成为一个无缝连接的统一系统,实现跨系统的全球漫游及业务的可携带性,是满足未来市场需求的新一代的移动通信系统,它将帮助我们实现充满个性化的通信梦想。

参考文献

[1]AjayR.Mishra著,中京邮电通信设计院,无线通信研究所译.蜂窝网络规划与优化基础.北京:机械工业出版社,2004.

[2]何琳琳,杨大成.4G移动通信系统的主要特点和关键技术.移动通信,2004(2).

[3]NamgiKim;HymenChoir;HyunsooYoon.Seamlesshandoffschemefor4GmobilesystemsbasedonIPandOFDM.2004IEEE60thVolume5,26-29Sept.2004Page(s):3315-3318Vol.5

[4]Gazis,V.;Housos,N.;Alonistioti,A.;Merakos,L.Genericsystemarchitecturefor4Gmobilecommunications.The57thIEEESemiannualVolume3,22-25April2003Page(s):1512-1516vol.3

[5]Lu,municationsMagazine,IEEEVolume41,Issue3,March2003Page(s):104-106

[6]刘伟,丁志杰.4G移动通信系统研究进展与关键技术.中国数据通信,2004(2).

移动技术论文篇7

随着信息时代的到来,人们对计算机性能要求的日渐提高。尤其是网络技术的迅猛发展的今天,一些在传统上由PC机处理的任务将转移到网络上处理,从而也对计算机技术提出了更高的要求。然而“技术瓶颈”成为目前摆在PC制造商面前的主要困难,比如一种新型的个人计算方法等。因而从某种意义上说,如果要打破这些技术壁垒,就要求这些制造商们必须开发出更为高级的微处理技术和更先进的计算机存储技术。为此,目前各国的计算机研究开发人员正在加紧研制新型的计算机,计算机无论从体系结构的变革还是到器件与技术革命都要产生一次量的乃至质的飞跃。在不久的将来,新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪悄悄走进我们的生活,乃至遍布于社会各个领域。

一、计算机技术的发展

自从1946年世界上第一台电子计算机诞生以来,电子计算机技术的发展已经走过了半个多世纪的历程。从第一代电子管计算机到现在正在开发的第六代神经网络计算机,计算机的体积不断变小,但性能、运行速度和存储功能却在不断提高。然而,人类的追求是无止境的,科学家们一刻也没有停止研究更好、更快、功能更强的计算机。从目前的研究方向看,未来电脑将向着以下几个方面发展。

(一)工作专业化。其实用过计算机的人都知道,并不是我们的每一件工作都需要一部高性能的PC才能完成,甚至有的时候,你采用高性能的计算机来办一个简单的事情还可能带来麻烦,因为高性能会带来高能耗、高发热量等不良的负面效应。因而可以预测,未来的计算机会根据大家从事的工作不同,在其性能上和外观上也会有很大的不同。专项工作的PC将会有专用设备,从而提高我们的工作效率。其实现在您如果仔细留意的话,目前在我们的身边就正在发生这样的变化。比如大型超市里的收银机、售卖的PC机和银行的运行终端等等,这些都是为了提高某一项工作的效率和减少成本,逐渐由通用PC慢慢演变而来的。也许在不久的将来这样的趋势就会出现在我们的家庭生活中,比如用“家庭智控计算机”作为家用电器控制中心,为我们控制家中的电灯、电视、冰箱、空调、洗衣机等等,把我们的家变成一个智能的家。

(二)系统智能化。伴随着计算机的综合能力的日益强大,可以预见,未来民用化的计算机也可能会开始具备某种程度的智能化,以帮助我们来处理日常生活中的琐事,甚至出现以前我们所想的专门做家务活的机器人,这样可以让人们可以腾出更多的时间用于工作、学习、交际和娱乐等。大家知道当今社会,电子宠物已经越来越受到青少年一代的喜爱。这不仅因为电子化的宠物比真实的小猫小狗饲养更加方便,而且它还可以不断进行更新换代,另外它更容易与主人进行交流,甚至可以模拟多种宠物,可以与计算机之间进行通信等等。这些优势将让电子宠物取代一部分真正的宠物,成为未来人类的新伙伴。

(三)设计环保化。环境保护和节约能源是当今时代的主题。社会的发展也应当以保护环境、节约能源为前提,计算机行业也不能例外。我们知道随着计算机综合性能的提高,其能耗也将随之越来越大;而且现在计算机在人们的家庭生活中的扮演着越来越重要的角色,它运行的时间也将随之变得更长。因而为了不让计算机成为家中用电量最大的电器,技术人员也想尽各种方法让计算机的能耗降低,在这种情况下,就出现了像我们上面提到的那些专门化的计算机,它不仅让计算机的效率大幅提高,而且可以让低性能的硬件系统具备专业的功能,从而达到减少能耗的目的。另外还可以通过采用新的架构,比如采用“量子”“光子”“纳米”方式代替现有的硅架构的计算机,大幅降低计算机的能耗。而耗电的第二大户——显示系统,也将因为LCD、OLED等显示器的普及,不再成为用电大户。

(四)交流人性化。作为未来人类的工作和生活的工具以及家庭的智能控制中心,计算机需要和使用人之间进行不断地交流,才能更好为使用人服务。这就要求计算机和人之间的交流要人性化,才能让使用人真正乐意使用计算机。我们用美国微软古川副总裁所说“计算机将会变成一种能够与用户交流冷暖和喜怒哀乐等情感的产品”这句话来阐述未来计算机的发展思路,我想再贴切不过了。

为了实现这个目标,可以想象,未来的计算机的与使用人的交互方式将会实现多样化.而且随着计算机智能化的提高,多数工作它们可以自动选择操作的流程,其中的过程无需人们参与,所以软件的界面也越来越简单,使用起来就像现在操作家用电器或者手机一样简单,使用人无需再进行专门的学习或培训,就连老人小孩都能运用自如。信息技术的发展会使人们与计算机交流就像与人交流一样。人们使用计算机将变得更自然。其结果是:计算机的用户界面将变得更像人,虽然其应用程序并非“人工智能”程序。

二、移动技术的发展

随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,未来社会各个行业新的业务和应用将随之不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为行业发展的重要方向。引入了移动计算的信息化平台有三个方面的内涵:第一,加上综合信息化平台不但要达成业务网络和传递网络的互联互通,还要具备移动或无线的运作能力。第二,可移动性将会带来自由性和自如性,这是丰富商务操作的充分条件,为其带来了更大的便利。第三,让更为灵活的信息和越加务实的要约真正具有时空价值和可转让性,进而有机地在行业内化竞争为合作,化封闭为共赢,激活固化的产品和服务,使企业和行业更加轻松面对机遇与挑战,使运营者富于想象力。这些都是构筑一个行业信息平台的必要条件。

移动计算主要包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。其实在移动计算这个概念提出之前,人们对它的三个要素的研究已经有很长时间了,而移动计算是第一次把它们综合起来进行研究。它们三者之间可以相互转化,例如,通信系统的容量可以通过计算处理而得到提高。移动计算,由于它是一个大融合的综合工具,所以它至少可以在三个层面上为信息化“锦上添花”。首先,它可根据应用者不同的需要融合各种通信网络和技术,以达到效用的完全性;其次,它是计算机技术和通信技术的完美融合,能够使两者在行业体系中发挥更大的作用;第三,它可以将企业管理工具和业务工具融入信息化的大体系之中,使企业的管理、经营决策的做出是建立在完善的信息平台之上,因而大大增加了它的及时性和有效性。

虽然移动性可以给计算和通信在行业内带来新的应用,但同时不可避免的也会带来许多问题。其中存在的最大问题就是如何面对无线移动环境带来的挑战。在无线移动环境中,信号要受到各种各样因素的干扰和影响,因为会有多径和移动,给信号带来时间地域和频率地域弥散、频带资源受限、较大的传输时间延缓等等问题。这样一个环境下,引出了很多在移动通信网络和计算机网络中未遇到的问题。第一,信号通道可靠性问题和系统配置问题。有限的无线带宽、恶劣的通信环境使各种应用必须建立在一个不可靠的、可能断开的物理连接上。在移动计算网络环境下,移动终端位置的移动要求系统能够实时进行配置和更新。第二,为了真正实现在移动中进行各种计算,必须要对宽带数据业务进行支持。第三,如何将现有的主要针对话音业务的移动管理技术拓展到宽带数据业务。第四,如何把一些在固定计算网络中的成熟技术移植到移动计算网络中。当然,随着网络技术和移动计算技术的逐渐成熟和完善,这些问题都将会得到有效的解决,相信在不久的将来人类将迈入一个全新网络世界。那时候的工作、学习、生活方式将会如何,我想非常值得我们期待。

移动技术论文篇8

一、数字电视地面广播(DTTB)

在现代通信中,通信传输手段主要是光纤、卫星、数字微波等,加上地面无线电视广播电视发射构成信息主体。目前在我国数字电视按信号传输方式可以分为地面无线传输数字电视、卫星传输数字电视、有线传输数字电视三类。而移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响;数字电视地面广播通过电视台制高点天线发射无线电波,覆盖电视用户,用户通过接收天线和电视机收看电视节目,主要的受众也是针对本地区的。完善的数字电视地面广播系统所具备的蜂窝单频网功能,不仅提高了频谱的利用率,而且可应用与宽带无线接入市场;而移动和便携的独特优势使该系统能满足现代信息社会"信息到人"的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

二、移动接收所遇到的主要问题

移动接收采用的方式是无线数字信号发射、地面接收。因此,移动接收所遇到的问题之一就是衰落,这是所有无线通信系统都会遇到的问题。对于固定接收可以采用分集接收等方法予以克服,但对于移动接收而言分集接收的方法显然不实用,因此衰落问题尤为突出。电波在沿地表传播中会受到各种阻碍物的反射、散射和吸收,实际到达收信天线处的电波除了来自发射天线的直接波外,还存在来自各种物体(包括地面)的反射波和散射波。反射波和散射波在收信天线处形成干涉场,此外,在移动通信中,还存在因移动台(天线)的快速移动而划过颠簸的波节和波幅的驻播现象及由于多普勒效应而造成的相移,凡此种种原因,就使得实际移动台接收到的场强在振幅和相位上均随时随地在急骤变化,使信号很不稳定,这就是无线电波的衰落现象。衰落的严重程度通常随频率或路径长度的增加而增大。目前还无法对衰落进行精确的预测,但区分绕射衰落和多径衰落两种不同类型的衰落是十分重要的。前者为慢衰落,短期信号中值电平在长期中的起伏;后者为快衰落,即瞬时信号电平在短期中的起伏。这两种衰落的表现和影响是不同的。另外,与其他无线通信系统不同的是,移动接收的关键点是移动。因此,移动接收还存在一个其他无线通信不会遇到的问题,这就是多普勒效应。

在日常生活中,我们会注意到远处迎面驶来发出警报声的警车在离你越近时,汽笛声的音调越高。从警车到达你所在位置开始,音调开始降低,而当警车离开你后,听到的音调会越来越低,这种现象就称为多普勒效应。奥地利物理学家多普勒是这样解释这种现象的:朝你驶来的警车发出的声波对你而言稍微压缩从而相对集中,这时你听到的声音波长短于该声源静止时的波,而短波音调是高的。相反,离你而去的声源的声波稍微扩散,这时你听到的波长比该声源静止时的波长长,长波音调是低的,这样的效应对电磁波同样适用。比如一个趋近我们的天线发出的信号,它的频率高于该天线相对于我们静止时的频率,波长相对变短;相反,一个离我们远去的天线发出的信号,其频率则会低于该天线在相对我们静止时相对于我们的频率,波长相对变长。同时波长的位移量与天线的运动速度存在正比关系,即速度越快,则波长移动越大。以上现象就是多普勒效应(Doppler)。系统方面,移动接收还要考虑覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题。从基本原理考虑,模拟广播电视信号是不宜实现移动接收的。为了解决移动接收中遇到的问题,广播电视信号必须首先实现数字化。利用数字技术无线接收,可有效解决以上问题。只要在信号有效覆盖范围内,所有移动交通工具,只要配有接收设备,都可以接收数字移动电视信号。

三、移动接收中的关键技术--OFDM

OFDM是正交频分复用(OrthogonalFrequencyDivisionMultiplexing)的缩写,是在严重电磁干扰的通信环境下保证数据稳定完整传输的技术措施。OFDM的基本原理是:高速信息数据流通过串/并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。主要技术特点如下:1)可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;2)通过各子载波的联合编码,具有很强的抗衰落能力;3)各子信道的正交调制和解调可通过离散傅利叶反变换和离散傅利叶变换实现;OFDM能够有效地对抗衰落和多普勒现象带来的负面影响,使受到干扰的信号能够可靠地接收。OFDM码率低,又加入了时间保护间隔,具有极强的抗干扰能力。其多径时延小于保护间隔,所以系统不受码间干扰的困扰。在有关移动接收的几种标准的制定过程中,都采用OFDM作为其核心技术。

移动技术论文篇9

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

移动技术论文篇10

CDMA(CodeDivisionMultipleAccess码分多址)是近年来被应用于商业的一种数字接口技术。他拥有频率利用率高、手机功耗低等优点。CDMA手机是指基于CDMA网络的移动通信终端。目前,19家企业被批准有资格生产CDMA终端产品。

CDMA手机除了能够提供GSM手机的通话功能和信息服务外,还具有高速无线数据传输和多媒体功能。能提供的服务主要有:

(1)基本增值服务,如呼叫转移、信息提示等。

(2)语音邮件服务,如邮件、传真、新闻等语音信息。

(3)短信息服务,如天气、交通、证券、广告等。

(4)无线智能网服务,如虚拟网络、个人号码识别等。

(5)无线互联网服务,如网络浏览、电子商务、电子邮箱、网络游戏等。

二、CDMA所具有的优点

与GSM手机相比,CDMA手机具有以下优点:

(1)CDMA手机发射功率小(2mw)。

(2)CDMA手机采用先进的切换技术——软切换技术(即切换是先接续好后再中断),使得CDMA手机的通话可与固定电话媲美,而且不会有GSM手机的掉线现象。

(3)使用CDMA网络,运营商的投资相对减少,这就为CDMA手机资费的下调预留了空间。

(4)因采用以拓频通信为基础的一种调制和多址通信方式,其容量比模拟技术高10倍,超过GSM网络约4倍。

(5)基于宽带技术的CDMA使得移动通信中视频应用成为可能,从而使手机从只能打电话和发送短信息等狭窄的服务中走向宽带多媒体应用。

在第三代移动通信的无线接口国际提案中,WCDMA和CDMA2000都是极为重要的技术。这两种宽带CDMA方案,除了码片速率、同步方式、导频方式等有所不同外,其他如功率、软切换等基本技术并无大的区别。

CDMAOne是基于IS-95标准的各种CDMA产品的总称,即所有基于CDMAOne技术的产品,其核心技术均以IS-95作为标准。CDMA2000是美国向ITU提出的第三代移动通信空中接口标准的建议,是IS-95标准向第三代演进的技术体制方案,这是一种宽带CDMA技术。CDMA2000室内最高数据速率为2Mb/s以上,步行环境时为384kb/s,车载环境时为144kb/s以上。

CDMA2000-1X原意是指CDMA2000的第一阶段(速率高于IS-95,低于2Mb/s),可支持308kb/s的数据传输,网络部分引入分组交换,可支持移动IP业务。

CDMA2000-1XEV是在CDMA2000-1X基础上进一步提高速率的增强体制,采用高速率数据(HDR)技术,能在1.25MHz(同CDMA2000-1X带宽)内提供2M/s以上的数据业务,是CDMA2000-1X的边缘技术。3GPP已开始制订CDMA2000-1XEV的技术标准,其中用高通公司技术的称为HDR。

与CDMAOne相比,CDMA2000有下列技术特点:多种信道带宽,前向链路上支持多载波和直扩两种方式;反向链路仅支持直扩方式;可以更加有效地使用无线资源;可实现系统平滑过渡;核心网协议可使用IS-41,GSM-MAP以及IP骨干网标准;前向发送分集;快速前向功率控制;使用Turbo码;辅助导频信道;灵活帧长;反向链路相干解调;可选择较长的交织器。CDMA2000-1X采用扩频速率为SR1,即指前向信道和反向信道均用码片速率1.2288Mb/s的单载波直接序列扩频方式。因此他可以方便地与IS-95(A/B)后向兼容,实现平滑过渡。运营商可在某些需求高速数据业务而导致容量不够的蜂窝上,用相同载波部署CDMA2000-1X系统,从而减少了用户和运营商的投资。由于CDMA2000-1X采用了反向相干解调、快速前向功控、发送分集、Turbo编码等新技术,其容量比IS-95大为提高。在相同条件下,对普通话音业务而言,容量大致为IS-95系统的两倍。

三、CDMA关键技术所在

CDMA2000-1X关键技术包括以下几个方面。

(7)灵活的帧长与IS-95不同,CDMA2000-1X支持5ms,10ms,20ms,40ms,80ms和160ms多种帧长,不同类型信道分别支持不同帧长。前向基本信道、前向专用控制信道、反向基本信道、反向专用控制信道采用5ms或20ms帧,前向补充信道、反向补充信道采用20ms,40ms或80ms帧,话音信道采用20ms帧。较短帧可以减少时延,但解调性能较低;较长帧可降低对发射功率的要求。

(8)增强的媒体接入控制功能媒体接入控制子层控制多种业务接入物理层,保证多媒体业务的实现。他实现话音、分组数据和电路数据业务同时处理,提供发送、复用和Qos控制,提供接入程序。与IS-95相比,他可以满足更高宽带和更多业务的要求。CDMA1X网络的关键设备,分组数据服务节点(PDSN)、鉴权、授权、计费服务器(AAA)、本地(HA)是CDMA1X系统支持分组数据业务的关键设备,为此对他们进行专门的介绍。PDSN是连接无线网络和分组数据网的接入网关,为移动Internet/Intranet用户提供分组数据接入服务。除了使点到点协议(PPP)封装的IP包能在无线网络和IP网络间正确传输外,PDSN还与其他各种接入服务商的IP分组网络连接,从而为终端用户提供诸如互联网接入、电子商务、WAP应用等多种业务。PDSN同时还完成AAA服务器所需的合并的分组会话计费数据和无线会话计费数据搜集功能,并且支持移动IP的外部(FA)和用户设备的85认证功能,同时还能提供移动IP业务,满足终端用户丰富多彩的移动互联网业务需求。

AAA服务器完成的功能有:用户注册信息的认证,即通过验证一些预先登记的信息来提供用户身份认证;数据业务的授权,即决定是否授权移动用户访问特定的网络资源;计费信息的处理,即搜集资源使用信息,用于进行计费、审计、成本分配或趋势分析等。此外,他还须实现与PDSN,HA及其他AAA服务器的交互功能,向移动用户提供分组数据业务。AAA服务器具有下列特征:使用RADIUS协议,支持大规模的外部和漫游业务,RADIUS能向外部的RADIUS服务器提供可靠的AAA功能;通过目录支持功能和程序化的配置接口,完成配置、计费和其他业务管理部件的集成,从而降低运营成本和加快业务推出速度;通过支持集中化的IP地址分配和对跨多地理区域接入设备会话的限制,高效使用管理资源。

只有使用“移动IP”时才需要HA。作为一个独立的网络单元,HA用来完成对移动IP和移动IP用户的移动性管理功能。HA通过移动终端登记来定位移动用户,同时把分组数据转发到用户当前所登记的FA(位于PDSN内)。HA同时支持动态的IP地址分配和反向隧道。HA具有冗余备份功能,可由一个HA替代另一个HA。这样,新的HA可以用原有IP地址和转换地址维护关联表,保证移动关联表处于同步状态。此外,这种方式还能保证解决方案的可用性和可扩展性。

近一段时间以来,联通开始大举推广CDMA1X网络,并明确宣称将把重心放在无线互联的移动数据业务上。而目前,无线局域网成熟的标准可达到11Mb/s的速率,新的标准最高达54Mb/s的速率,这对移动用户具有非常大的吸引力。

早在2003年4月的博鳌亚洲论坛首届年会上,海南联通在当地建了3个CDMA1X的基站,并向前来采访年会的记者分发了近300张的无线上网卡,CDMA1X+WLAN方案的数据业务更是引起了广泛关注。按照设想,海南联通甚至要为沿海渔民以及钻井平台上的工作人员提供包括天气预报等在内的移动数据服务。

WLAN这种早已被电信网通普遍采纳的无线接入技术,一经与CDMA1X融合,就显示出其独特的魅力。一般说来,虽然WLAN可以提供高速的数据业务,但WLAN却缺少对用户进行鉴权与计费的成熟机制,而且无线局域网的覆盖范围较小,一般都在热点地区,用户使用时受到地点的限制。而CDMA1X网络经过了几十年的研究与实验,不仅有成熟鉴权与计费机制,并且具有覆盖广的特点。

CDMA1X网络可以利用WLAN高速数据传输的特点以弥补自己数据传输速率受限的不足,而无线局域网不仅充分利用了CDMA1X网络完善的鉴权与计费机制,而且可结合CDMA1X网络覆盖广的特点,进行多接入切换功能。这样就可实现WLAN用户与CDMA1X用户统一的管理。

为了获得无线局域网提供的数据业务,终端必须处于无线局域网的信号覆盖范围内,即首先要连接到AP。当终端发起数据业务的呼叫时,先在APGW和PDSN之间建立RP连接,然后到PDSN进行分组网络的注册,才可进行数据业务,其具体连接过程如下:

(1)终端在WLAN网络系统中检测WLAN的信号,并连接到AP。

(2)当终端有数据业务的需求时,发起连接请求,在AP/APGW收到连接消息后,APGW向PDSN发送Au注册请求消息。若注册请求消息有效,则PDSN通过返回带接收指示的Au注册应答消息接收该连接,PDSN和APGW均产生关于A10连接的绑定记录。

(3)终端和PDSN建立PPP的连接,在建立PPP连接的过程中,如果是SimpleIP用户,PDSN会分配给终端一个IP地址(对MobileIp用户,还需进行MIP的注册)。

(4)PPP连接建立成功,终端可以通过GRE帧在A10连接上发送或接收数据。

(5)在Au注册生存期超过前,APGW发送Au注册请求消息以更新A10连接的注册。Au注册请求消息也用于向PDSN传送与计费相关的信息以及其他信息,这些信息在系统定义的触发点上传送。

(6)对于有效的注册请求,PDSN返回带接受指示和生存期值的A11注册应答消息。PDSN和APGW均更新A10连接的绑定记录。PDSN在返回注册应答消息之前保存与计费相关的信息(如果收到的话)用于进一步处理。

(7)如果用户或PDSN终止数据业务,则PDSN将终止和用户PPP连接,并拆除与APGW的RP连接。

WLAN网络,其中无线接入点(AccessPoint,AP)是无线终端接入固定电信网的连接设备,为用户提供无线接入功能,可提供话音和数据的接入服务。AP完成简单的对无线用户的管理和对无线信道的动态分配,并完成802.11与802.3协议的转换,经过AP转换后的数据包是以太网包。

接入点网关(AccessPointGateway,APGW)是将AP转换出的以太网数据包封装成IP包,并发送到PDSN的设备。一般PDSN设备放置的位置与无线网络侧设备AP、APGW离得比较远,要实现PDSN接入网关的作用经常需要将AP转换的二层数据包穿越三层网络以到达PDSN。因此,APGW功能实体就是为了完成此功能的转换设备。

参考文献

[1]TeroOjanpera.宽带CDMA:第三代移动通信技术[M].北京:人民邮电出版社,2001.

[2]杨大成.CDMA2000技术[M].北京:北京邮电大学出版社,2001.

移动技术论文篇11

要在手机上看电视,技术上需要处理好三个环节:信号源、传播途径和接收终端。信号源方面,需要有高压缩比的信源压缩编码标准;传播途径方面,有无线微波和网络传输。为了实现移动接收,需要抗干扰能力强的数字调制和信道处理技术。接收终端方面,必须开发高集成度、体积小、重量轻、耗电小的芯片,以及体积小、高容量的充电电池。

目前,该服务的实现主要有三条途径:

1.利用移动网络实现的方式

目前美国和我国移动运营商推出的手机电视业务主要是依靠现有的移动网络来实现的。中国移动的手机电视业务是基于其GPRS网络,中国联通则是依靠其CDMA网络。不管是GPRS手机还是CDMA手机,都需要在装有操作系统的手机终端(一般是PDA手机等高档产品)上安装相应的播放软件,而相应的电视节目源则由移动通信公司或者通过相应的服务提供商来组织和提供。

2.利用卫星网络实现的方式

利用手机来接收卫星播发的电视节目信号是一个非常新的想法。目前只有韩国在力推手机电视广播(DMB)。这种DMB接收机能提供高质量的图像,使用该接收机模块能使用户同时接收地面无线电视广播和卫星电视广播的信号。

3.手机中安装数字电视接收模块的方式

目前最被看好的手机电视技术方式是通过整合数字电视和移动电话的方式。这种方式需要在手机终端上安装微波数字电视接收模块,可以不通过移动通信网络的链路,直接获得数字电视信号。目前,手机数字电视标准只有欧洲的DVB-H和日本的单频段转播标准。

在国内,只有中央电视台和少数的几家移动公司相继推出了手机电视业务。以中央电视台为例,由于目前国内还没有DVB-H的数字广播网络,他们是通过2.5G或2.75G网络传输技术来播放“手机电视”节目的,即利用中国移动GPRS/EDGE网络或中国联通CDMA网络,通过WAP门户网站为用户提供在线直播或点播的流媒体音视频节目的服务。

以下讨论关于手机电视的传输标准和编码标准:

一、手机电视的传输标准——DVB-HDVB-H(早期为DVB-X)标准全称为DigitalVideoBroadcastingHandheld,它是DVB组织为通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。

DVB-H植基于DVB-T,是一种以IP封包(datagrams)来传送资料(主要为数字多媒体资料)的系统。该标准被认为是DVB-T标准的扩展应用,但是和DVB-T相比,DVB-H终端具有更低的功耗,移动接收和抗干扰性能更为优越,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收信号。事实上,由于DVB-H是一种支持多媒体业务的标准,除了电视业务外它还可以开展电子报纸、电子拍卖、旅游向导、游戏、视频点播和交互等多种综合性业务。总之,DVB-H标准就是依托目前DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等便携设备能够稳定的接收广播电视信号。

为了减低小型手持式设备的功耗,DVB-H采用了一种叫做“时间切片”(time-slicing)的技术,把IP封包在切割成很短的时段(timeslots)内以数据突发DataBurst方式传送。接受器的前端电路(frontend)只有在所选定服务DataBurst的时段才会开启,在这个极短暂的时段之中,资料被高速地接收下来,并可以储存在设备具有的缓冲区内,此缓冲区可以储存下载的内容,也可以直接播放现场直播的资料文件。

1、DVB-H系统结构

DVB-H支持的是手机等小型移动终端设备,是手机数字电视传输的标准。DVB-H是建立在DVB数据广播和DVB-T传输之上的标准,更注重于协议的实现。系统前端由DVB-H封装机和DVB-H调制器构成,DVB-H封装机负责将IP数据封装成MPEG-2系统传输流,DVB-H调制器负责信道编码和调制;系统终端由DVB-H解调器和DVB-H终端构成,DVB-H解调器负责信道解调、解码,DVB-H终端负责相关业务显示、处理。

DVB-H传输系统还具有以下特殊要求:

(1)为延长电池的使用时间,终端周期地关掉一部分接收电路以节省功耗;

(2)能漫游,漫游时仍能非常顺利地接收DVB-H业务;

(3)传输系统能保证在各种移动速率下顺利接收DVB-H业务;

(4)系统具有很强的抗干扰能力;

(5)系统具有相当的灵活性,以适应不同传输带宽和信道带宽应用。

2、协议层次划分

DVB-H标准将实现数据链路层和物理层。

(1)数据链路层——采用时间分片技术,用于降低平均功耗,便于进行平稳、无缝的业务交换;采用MPE(多协议封装)前向纠错技术,提高移动使用中的C/N门限和多普勒性能,增强抗脉冲干扰能力。

(2)物理层——与DVB-T相比,增加了4k传输模式和深度符号交织等内容。

其它技术特点包括:在传输参数信令(TransmissionParameterSignaling,TPS)比特中增加DVB-H信令,用于提高业务发展速度;蜂窝标识(在TPS中)用于支持移动接收时快速信号扫描和频率交换;增加4k模式以适应移动接收和单频蜂窝网,提高网络设计、规划的灵活性;2k和4k模式进行深度符号交织,进一步提高移动环境和冲击噪声环境下的鲁棒性。

3、关键新技术

(1)功耗:DVB-H要求射频接收和信道解调、解码部分的功耗小于100mW。

(2)网络设计

由于DVB-H终端在网络内移动时接收天线小巧且单一,必须优化设计单频网。为此,DVB-H增加了新的技术模块,主要包括:

①时间分片——基于时分复用的技术,节省接收终端功耗和便于网络交换;

②MPE-FEC——基于RS纠错编码技术,增加额外的前向纠错编码,提高系统的移动和抗脉冲干扰能力;

③4k模式——用于提高网络设计的灵活性;

④DVB-HTPS——为DVB-H专用的传输参数信令,用于提高系统同步和业务访问速度。

下面对时间分片、MPE-FEC、4k模式及DVB-HTPS进行详细的介绍:

①时间分片

时间分片技术是DVB-H中最为重要的新技术模块,采用突发方式传送数据,每个突发时间片传送一个业务,在业务传送时间片内该业务将单独占有全部数据带宽,并指出下一个相同业务时间片产生的时刻,这样手持终端能够在指定的时刻接收选定的业务,在业务空闲时间做节能处理,从而降低总的平均功耗。这期间前端放射机是一直工作的,在相同业务的两个时间片之间将会传送其他业务数据,DVB-H信号就是由许多这样的时间片组成的。从接收机的角度而言,接收到的业务数据并非如传统恒定速率的连续输入方式,数据以离散的方式间隔到达,称之为突发传送,如果解码终端要求数据速率较低但必须是恒定码率,接收机可以对接收到的突发数据先进行缓冲,然后生成速率不变的数据流。它不但能够有效降低手持终端的平均功耗,并且还是实现不同网络间平稳、无缝的业务交换基础。

a、时间分片与功耗

时间分片技术采用突发式传送数据,与传统数据流业务相比具有更高的瞬时速率。为了达到节省功耗的要求,突发带宽一般为固定带宽的10倍左右。例如一个恒定速率为350kbit/s的业务流,它意味着要求一个4Mbit/s左右的突发带宽。突发带宽在固定带宽两倍的情况下功耗就可以节省50%,因此如果带宽为10倍,可以节省90%。

b、时间分片与PSI/SI

DVB-H标准规定PSI/SI(节目特定信息ProgramSpecificInformation,PSI/业务信息ServiceInformation,SI)信息不进行时间分片处理,它们将被分配一个固定带宽进行传送,这主要是因为目前使用的PSI/SI信息并不支持时间分片传送,如果进行改动将难以和目前数据表兼容。PSI信息使用4个表来定义码流的结构:节目关联表(ProgramAssociationTable,PAT)、节目映射表(ProgramMapTable,PMT)、网络信息表(NetworkInformationTable,NIT)、条件访问表(ConditionalAccessTable,CAT)。

手持终端在DVB-H系统中需访问SI中的NIT(NetworkInformationTable,NIT网络信息表)、和中间代码INT表。NIT表的目的是提供有关物理网络的信息,其内容是固定的,当手持终端加入到一个新网络中时首先要接收该表,确定网络参数。当在不同的传输流之间切换时,手持终端需读取INT表,除非以后INT表发生了变更,则终端将不再接收INT表,INT表变更信息在PSI的PMT(ProgramMapTable,PMT节目映射表)表中进行标识。PMT表指出了组成节目业务(Service)的各个码流的PID号,并对各路码流进行描述。

由于DVB标准规定PSI信息必须每隔100ms重传一次,如果突发脉冲的业务传送时间比100ms时间长,则手持终端能在接收业务的同时访问所有PSI信息;如果业务传送时间小于100ms,手持终端需在业务接收完毕后继续保持一段工作时间,以确保完成所请求PSI表的接收。

c、时间分片与业务交换

采用时间分片技术使手持终端能在业务传送的空闲周期对相邻的蜂窝进行监视,扫描其他的频率信号、测试信号的强度,但并不中断本业务的接收。当用户进入新的网络时,根据监视结果在空闲周期切换到具有相同业务的不同传输流上,以实现较好的无缝隙业务交换。如果在前端对业务同步精确编排,能够使相同业务及时出现在相邻峰窝的不同时隙上,而用户不会察觉这种变化。

d、时间片和条件接收

DVB-H可采用两种方式实现条件接收,一种是基于IP的条件接收系统(IP-CAS,IP数据广播加密)。所有的CAS(条件接收系统)相关信息都在IP数据中,并可以支持时间分片技术,确保节省功耗。但DVB-H标准不须支持CAS和接收机间的双向传送,IP-CAS的只须支持广播环境。

另一种方式是采用DVB通用加扰算法的条件接受系统(DVB-CAS,电视加密系统),此时在DVB-H系统通中传送CAS信息将面临一些问题。由于DVB-CAS使用电子干扰ECM(ElectronicCounterMeasure)传送解扰密钥,因此ECM不能进行时间分片,另外DVB-CAS还使用管理信息EMM(EMM-EntitlementManagementMessage),用于传送授权管理信息,由于EMM的时间间隔是随机的,终端必须一直工作以确保不会丢失EMM,并且直接使用DVB-CAS将影响网络漫游业务。

为确保解扰工作的进行,接收机必须完成ECM接收,系统通过ECM重复率描述符标识ECM最小重复周期。如果手持终端在开始接收业务数据前至少完成了一个ECM最小周期接收,则至少能收到一个ECM,从而获取解扰密钥。通常解扰密钥的有效时间为10s,为此接收机必须确保在业务数据到达前10s完成解扰密钥接收。

EMM将采用时间片方式传送。首先将EMM封装为IP数据报形式,封装后EMM-IP数据的时间分片方式与其他的IP数据相同,并采用MPE-FEC以减少数据丢失。从接收终端的角度来看,载有EMM的IP数据是一个附加业务,它是必须被接收的,恢复出的EMM-IP数据将被传送到DVB-CAS特定的模块对EMM信息处理。

通过上述方式处理后,DVB-CAS不会对用户漫游造成任何影响。

②MPE-FEC

DVB-H标准在数据链路层为IP数据报增加了RS(Reed-Solomon)纠错编码,作为MPE的前向纠错编码,校验信息将在指定的FEC段中传送,我们称之为MPE-FEC。MPE-FEC的目标是提高移动信道中的C/N、多普勒性能以及抗脉冲干扰能力。

实验证明即使在非常糟糕的接收环境中,适当的使用MPE-FEC仍可以准确无误恢复出IP数据。MPE-FEC的数据开销分配非常灵活,在其它传输参数不变的情况下,如果校验开销提高到25%,则MPE-FEC能够使手持终端达到和使用天线分集接收时相同的C/N。实际上,我们可以通过选定一个高配置的传输参数提高传输码率来补偿MPE-FEC的开销,而它将提供比DVB-T(没有MPE-FEC)好得多的性能,例如在高速、单一天线的情况下,采用MPE-FEC的手持终端能够在DVB-T环境下接收8K/16-QAM甚至是8K/64-QAM信号,此外MPE-FEC提供非常好的抗脉冲干扰能力。

③4k模式和深度符号交织

DVB-H标准在DVB-T原有的2K(2048)和8K(8192)模式下增加了4K(4096)模式,通过协调移动接收性能和单频网规模进一步提高网络设计的灵活性。同时,为进一步提高移动时2K和4K模式的抗脉冲干性能,DVB-H标准特别引入了深度符号交织(in-depthinterleaving)技术。

在DVB-T系统中,2K模式比8K模式提供更好的移动接收性能,但是2K模式的符号周期和保护间隔非常短,使得2K模式仅仅适用于小型单频网。新增加的4K模式符号具有较长的周期和保护间隔,能够建造中型单频网,网络设计者能够更好地进行网络优化,提高频谱效率,虽然这种优化不如8K模式的效率高,但是4K模式比8K模式的符号周期短,能够更频繁的进行信道估计,提供一个比8K更好的移动性能。

总之,4K模式的性能介于2K和8K之间,为覆盖范围、频谱效率和移动接收性能的权衡提供了一个额外的选项。

DVB-H中3种模式关于单频网峰窝规模和移动接收性能的特点可总结如下:

a、8K模式适用于单个发射机和大、中、小型单频网,它的多普勒性能允许进行高速的移动接收。

b、4K模式适用于单个放射机和中、小型单频网,它的多普勒性能允许进行更高速的移动接收。

c、2K模式适用于单个放射机和小型单频网,它的多普勒性能允许进行超高速的移动接收。

在脉冲噪声干扰条件下,由于8K模式的符号周期较长,噪声功率被平均分配到8192个子载波上,因此比2K和4K具有更好的抗干扰性能。DVB-H标准为克服这一缺点,利用8K符号的交织器对2K和4K进行深度符号交织,使二者能够具有接近8K模式的抗脉冲干扰性能。

④DVB-H的传输参数信令TPS

DVB-H的TPS能够为系统提供一个鲁棒、易访问的信令机制,能使接收机更快地发现DVB-H业务。TPS是一个具有良好鲁棒性的信号,即使在低C/N的条件下,解调器仍能快速将其锁定。DVB-H系统使用两个新TPS比特标识时间片和可选的MPE-FEC是否存在,另外用DVB-T中已存在的一些共享比特表示4K模式、符号交织深度和峰窝标识。

DVB-H标准适用于移动通信和多媒体业务,为电视广播做准备,因此视频压缩技术至关重要。传统的视频压缩标准如MPEG-2显然不能满足DVB-H的要求,为此针对DVB-H考查了多种视频压缩格式,其中最为令人瞩目的是H.264。

二、手机电视的信源压缩编码标准—H.264

H.264是ITU-T视频编码专家组(VCEG)和ISO/IEC活动图像编码专家组(MPEG)的联合视频组(JVT)开发的一个新的数字视频编码标准,它既是ITU-T的H.264,又是ISO/IEC的MPEG-4的第10部分。在技术上,H.264标准中有多个亮点,如:统一的VLC符号编码;高精度、多模式的位移估计;基于4×4块的整数变换;分层的编码语法等。这些技术亮点使得它具备更好的压缩性能,同时也增强了对各种信道的适应能力,采用“网络友好”的结构和语法,有利于对误码和丢包的处理;应用范围较宽,以满足不同速率、不同解析度及不同传输(存储)场合的需求;这些使得H.264算法具有很高的编码效率,它的压缩率比MPEG-2高2~3倍,1Mb/s速率的图像效果接近MPEG-2中DVD的图像质量,同样,H.264码流结构的网络适应性也很强,这增强了它的差错恢复能力,能够很好地适应IP和无线网络应用。是目前手机电视中最为理想的信源压缩编码标准。

1、H.264的技术特点:

(1)H.264就改善图像质量有以下特点

H.2补偿中的块大小可变,最小的亮度补偿块可以小到4×4。

H.264采用了1/4采样精度的运动补偿,大大减少了内插处理的复杂度。

H.264中运动矢量不再限制在已编码参考图像的内部。

H.264中使用了高级图像选择技术,可以用已编过码且保留在缓冲区的图像进行预测。

???H.264消除了参考图像的顺序必须依赖显示图像顺序的这种相关性。

H.264消除了参考图像与图像表示方式的限制,使B帧图像在很多情况下也能作为参考帧预测图像。

H.264采用了加权预测,允许一定的加权补偿预测和偏移,在淡入淡出中可大大的提高编码效率。

H.264改变了在以前的标准中,预测编码图像的“跳过”区不能有运动的限制。对“跳过”区的运动采用推测方法。对双预测的B帧图像,采用高级运动预测方法,称为“直接”运动补偿,进一步改善编码效率。

H.264采用帧内编码的直接空间预测,将编码图像边沿进行外推应用到当前帧内编码图像的预测。

H.264采用了循环去块效应滤波器,此消除基于块的视频编码在图像中存在块效应,改善视频的主观和客观质量。

(2)H.264就善预测方法来改善编码效率有以下特点:

①以前的标准变换的块都是8×8,H.264主要使用4×4块变换,使编码器表示信号局部适应性更好,更适合预测编码,减少“铃”效应。另外图像边界需要小块变换。

②H.264通常使用小块变换,但有些信号包含足够的相关性,要求以大块表示,这就是分级块变换。H.264有两种方式实现。低频色度信号可用8×8,;对帧内编码,可使用特别的编码类型,低频亮度信号可用16×16块。

③所有以前标准使用的变换要求32位运算,H.264C只使用16位运算的短字长变换。

④以前标准反变换和变换之间存在一定容限的误差,每个解码器输出视频信号都不相同,产生小的漂移,最终影响图像的质量,H.264实现了完全匹配。

⑤H.264使用两种熵编码方法,CAVLC(上下文自适应的可变长编码)和CABAC(上下文自适应二进制算术编码),两种都是基于上下文的熵编码技术。

(3)H.264具有强大的纠错功能和各种网络环境操作灵活性,主要特性如下:

①H.264的参数集结构设计了强大、有效的传输头部信息具有较强的抗误码特性,采用了很灵活、特殊的方式,分开处理关键信息,可以在各种环境下可靠传送。

②H.264中的每一个语法结构放置在称为NAL网络抽象层的单元中,改变了以前标准中都要采用强制性特定位流接口的情况,能适应不同网络中的视频传输,有较好的网络亲和性。

③在H.264可采用非常灵活的像条大小。

④H.264可以将图像划分为像条组,每个像条可以独立解码。灵活宏块排序(FMO)通过管理图像区之间的关系,具有很强的抗数据丢失能力。

⑤H.264支持任意的像条排序,每个像条几乎可以独立解码,所以像条可以按任意顺序发送和接收。在实时应用中,可以改善端到端的延时特性。

⑥为提高抗数据丢失的能力,H.264允许编码器发送图像区的冗余表示,当图像区的主表示丢失时仍可以正确解码。

⑦H.264可以根据每个像条语法元素的范畴,将像条语法划分为3部分,分开传送。

下面就H.264的几个重要特性进行详细介绍:

1、帧内预测

对I帧的编码是利用空间相关性而非时间相关性而实现的。以前的标准只利用了一个宏块内部的相关性,而忽视了宏块之间的相关性,所以编码后的数据量较大。为了进一步利用空间相关性,H.264引入了帧内预测以提高压缩效率。简单地说,帧内预测编码就是用周围邻近的象素值来预测当前的象素值,然后对预测误差进行编码。这种预测是基于块的,对于亮度分量,块的大小可以在16×16和4×4之间选择,16×16块有4种预测模式16×16、16×8、8×16和8×8,4×4块有9种预测模式;对于色度分量,预测是对整个8×8块进行的,有4种预测模式。除了DC预测外,其他每种预测模式对应不同方向上的预测。

2、帧间预测

(1)预测时所用块的大小可变

假设基于块的运动模型块内所有象素都做了相同的平移,在运动比较剧烈时或者在运动物体的边缘处,这一假设会与实际出入较大,导致较大的预测误差,这时减小块的大小可以使假设在小的块中依然成立。同时,小的块所造成的块效应相对也小,从而提高预测的效果。

H.264一共采用了7种方式对一个宏块进行分割,每种方式下块的大小和形状都不相同,这就使编码器可以根据图像的内容选择最好的预测模式以提高预测效果。与仅使用16×16块进行预测相比,使用不同大小和形状的块可以使码率降低15%以上。

(2)更精细的预测精度

在H.264中,亮度分量的运动矢量使用1/4象素精度。色度分量的运动矢量由亮度运动矢量导出,由于色度分量的分辨率是亮度分量的一半(对4∶2∶0),所以其运动矢量精度将为1/8。既一个单位的色度分量的运动矢量所代表的位移仅为色度分量取样点间距离的1/8。如此精细的预测精度,比整数精度可使码率降低20%以上。

(3)多参考帧

H.264支持多参考帧预测,即可以有多于一个(最多5个)在当前帧之前的解码帧作为参考帧,产生对当前帧的预测。这适用于视频序列中含有周期性运动的情况。这种技术,可以改善运动估计的性能,提高H.264解码器的错误恢复能力;但它也增加了缓存的容量,加大了编解码器的复杂性。与只使用一个参考帧相比,使用5个参考帧可以使码率降低5~10%。

(4)去块效应滤波器

它的作用是消除经反量化和反变换后重建图像中由于预测误差产生的块效应,即消除块边缘处的象素值跳变,从而改善图像的主观质量,并减小预测误差。H.264中的去块效应滤波器还可以根据图像内容做出判断,只对由于块效应产生的象素值跳变进行平滑,而对图像中物体边缘处的象素值不连续给予保留,以免造成边缘模糊。与以往的去块效应滤波器同的是,经过滤波后的图像将根据需要放在缓存中用于帧间预测,而不是仅仅在输出重建图像时用来改善主观质量。对于帧内预测,使用的是未经过滤波的重建图像。

3、整数变换

H.264对帧内或帧间预测的残差进行DCT编码。为了避免舍入误差造成的编码器和解码器之间不匹配的问题,H.264对DCT的定义做了修改,使得变换仅用整数加减法和移位操作即可实现,这样在不考虑量化影响的情况下,解码端的输出可以准确地恢复编码端的输入。当然,这样做的代价是压缩性能略微下降。此外,该变换是针对4×4块进行的,这也有助于减小块效应。

为了进一步利用图像的空间相关性,在对色度分量的预测残差和16×16帧内预测的预测残差进行上述整数DCT之后,H.264标准还将每个4×4变换系数块中的DC系数组成2×2或4×4大小的块,进一步做哈达玛(Hadamard)变换。

4、熵编码

对于Slice层以上的数据,H.264采用Exp-Golomb码,这是一种没有自适应能力的VLC。而对于Slice层(含)以下的数据,如果是残差,H.264有两种熵编码方式:基于上下文的自适应变长码(CAVLC)和基于上下文的自适应二进制算术编码(CABAC);如果不是残差,H.264采用Exp-Golomb码或CABAC编码,视编码器的设置而定。

(1)CAVLC

VLC的基本思想就是对出现频率高的符号使用较短的码字,而对出现频率低的符号采用较长的码字。这样可以使得平均码长最小。

在CAVLC中,H.264采用若干VLC码表,不同的码表对应不同的概率模型。编码器能够根据上下文,如周围块的非零系数或系数的绝对值大小,在这些码表中自动地选择,尽可能地与当前数据的概率模型匹配,从而实现上下文自适应的功能。

(2)CABAC

算术编码是一种高效的熵编码方案,其每个符号所对应的码长被认为是分数。由于对每一个符号的编码都与以前编码的结果有关,所以它考虑的是信源符号序列整体的概率特性,而不是单个符号的概率特性,从而能够更大程度地逼近信源的极限熵,降低码率。

H.264中的CABAC实现了绕开算术编码中无限精度小数的表示问题和对信源符号概率进行估计的问题。在CABAC中,每编码一个二进制符号,编码器就会自动调整对信源概率模型(用一个“状态”来表示)的估计,随后的二进制符号就在这个新的概率模型基础上进行编码。这样的编码器不需要信源统计特性的先验知识,而是在编码过程中自适应地估计。这使得CABAC有更大的灵活性,可以获得更好的编码性能—码率降低大约10%。

5、SPSlice

SPSlice的主要目的是用于不同码流的切换,也可用于码流的随机访问、快进/快退和错误恢复。这里指的不同码流,是指在不同比特率限制下对同一信源进行编码所产生的码流。设切换前传输码流中最后一帧为Al,切换后的目标码流第一帧为B2(假设是P帧),由于B2的参考帧不存在,直接切换显然会导致严重失真,而且这种失真会向后传递。简单的解决方法就是传输帧内编码的B2,但是一般I帧的数据量很大,这种方法会造成传输码率陡然增大。根据前面的假设,由于是对同一信源进行编码,尽管比特率不同,但切换前后的两帧必然有相当大的相关性,所以编码器可以将Al作为B2的参考帧,对B2进行帧间预测,预测误差就是SPSlice,然后通过传递SPSlice完成码流的切换。与常规P帧不同的是,生成SPSlice所进行的预测是在Al和B2的变换域中进行的。SPSlice要求切换后B2的图像和直接传送目标码流时一样。当然,如果切换的目标是毫不相关的另一码流,SPSlice就不适用了。

6、灵活的宏块排序

灵活的宏块排序(FMO),是指将一幅图像中的宏块分成几个组,分别独立编码,某一个组中的宏块不一定是在常规扫描顺序下前后连续,而可能是随机地分散在图像中各个不同的位置。这样,在传输时,如果发生错误,某个组中的某些宏块不能正确解码时,解码器仍然可以根据图像的空间相关性,依靠其周围正确译码的象素,对其进行恢复。

H.264的这些特点使得它的应用场合相当广泛,包括可视电话(固定或移动)、实时视频会议系统、视频监控系统及因特网视频传输、多媒体信息存储等。

三、小结

移动技术论文篇12

随着信息时代的到来,人们对计算机性能要求的日渐提高。尤其是网络技术的迅猛发展的今天,一些在传统上由PC机处理的任务将转移到网络上处理,从而也对计算机技术提出了更高的要求。然而“技术瓶颈”成为目前摆在PC制造商面前的主要困难,比如一种新型的个人计算方法等。因而从某种意义上说,如果要打破这些技术壁垒,就要求这些制造商们必须开发出更为高级的微处理技术和更先进的计算机存储技术。为此,目前各国的计算机研究开发人员正在加紧研制新型的计算机,计算机无论从体系结构的变革还是到器件与技术革命都要产生一次量的乃至质的飞跃。在不久的将来,新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪悄悄走进我们的生活,乃至遍布于社会各个领域。

一、计算机技术的发展

自从1946年世界上第一台电子计算机诞生以来,电子计算机技术的发展已经走过了半个多世纪的历程。从第一代电子管计算机到现在正在开发的第六代神经网络计算机,计算机的体积不断变小,但性能、运行速度和存储功能却在不断提高。然而,人类的追求是无止境的,科学家们一刻也没有停止研究更好、更快、功能更强的计算机。从目前的研究方向看,未来电脑将向着以下几个方面发展。

(一)工作专业化。其实用过计算机的人都知道,并不是我们的每一件工作都需要一部高性能的PC才能完成,甚至有的时候,你采用高性能的计算机来办一个简单的事情还可能带来麻烦,因为高性能会带来高能耗、高发热量等不良的负面效应。因而可以预测,未来的计算机会根据大家从事的工作不同,在其性能上和外观上也会有很大的不同。专项工作的PC将会有专用设备,从而提高我们的工作效率。其实现在您如果仔细留意的话,目前在我们的身边就正在发生这样的变化。比如大型超市里的收银机、售卖的PC机和银行的运行终端等等,这些都是为了提高某一项工作的效率和减少成本,逐渐由通用PC慢慢演变而来的。也许在不久的将来这样的趋势就会出现在我们的家庭生活中,比如用“家庭智控计算机”作为家用电器控制中心,为我们控制家中的电灯、电视、冰箱、空调、洗衣机等等,把我们的家变成一个智能的家。

(二)系统智能化。伴随着计算机的综合能力的日益强大,可以预见,未来民用化的计算机也可能会开始具备某种程度的智能化,以帮助我们来处理日常生活中的琐事,甚至出现以前我们所想的专门做家务活的机器人,这样可以让人们可以腾出更多的时间用于工作、学习、交际和娱乐等。大家知道当今社会,电子宠物已经越来越受到青少年一代的喜爱。这不仅因为电子化的宠物比真实的小猫小狗饲养更加方便,而且它还可以不断进行更新换代,另外它更容易与主人进行交流,甚至可以模拟多种宠物,可以与计算机之间进行通信等等。这些优势将让电子宠物取代一部分真正的宠物,成为未来人类的新伙伴。

(三)设计环保化。环境保护和节约能源是当今时代的主题。社会的发展也应当以保护环境、节约能源为前提,计算机行业也不能例外。我们知道随着计算机综合性能的提高,其能耗也将随之越来越大;而且现在计算机在人们的家庭生活中的扮演着越来越重要的角色,它运行的时间也将随之变得更长。因而为了不让计算机成为家中用电量最大的电器,技术人员也想尽各种方法让计算机的能耗降低,在这种情况下,就出现了像我们上面提到的那些专门化的计算机,它不仅让计算机的效率大幅提高,而且可以让低性能的硬件系统具备专业的功能,从而达到减少能耗的目的。另外还可以通过采用新的架构,比如采用“量子”“光子”“纳米”方式代替现有的硅架构的计算机,大幅降低计算机的能耗。而耗电的第二大户——显示系统,也将因为LCD、OLED等显示器的普及,不再成为用电大户。

(四)交流人性化。作为未来人类的工作和生活的工具以及家庭的智能控制中心,计算机需要和使用人之间进行不断地交流,才能更好为使用人服务。这就要求计算机和人之间的交流要人性化,才能让使用人真正乐意使用计算机。我们用美国微软古川副总裁所说“计算机将会变成一种能够与用户交流冷暖和喜怒哀乐等情感的产品”这句话来阐述未来计算机的发展思路,我想再贴切不过了。

为了实现这个目标,可以想象,未来的计算机的与使用人的交互方式将会实现多样化.而且随着计算机智能化的提高,多数工作它们可以自动选择操作的流程,其中的过程无需人们参与,所以软件的界面也越来越简单,使用起来就像现在操作家用电器或者手机一样简单,使用人无需再进行专门的学习或培训,就连老人小孩都能运用自如。信息技术的发展会使人们与计算机交流就像与人交流一样。人们使用计算机将变得更自然。其结果是:计算机的用户界面将变得更像人,虽然其应用程序并非“人工智能”程序。

二、移动技术的发展

随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,未来社会各个行业新的业务和应用将随之不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为行业发展的重要方向。引入了移动计算的信息化平台有三个方面的内涵:第一,加上综合信息化平台不但要达成业务网络和传递网络的互联互通,还要具备移动或无线的运作能力。第二,可移动性将会带来自由性和自如性,这是丰富商务操作的充分条件,为其带来了更大的便利。第三,让更为灵活的信息和越加务实的要约真正具有时空价值和可转让性,进而有机地在行业内化竞争为合作,化封闭为共赢,激活固化的产品和服务,使企业和行业更加轻松面对机遇与挑战,使运营者富于想象力。这些都是构筑一个行业信息平台的必要条件。

移动计算主要包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。其实在移动计算这个概念提出之前,人们对它的三个要素的研究已经有很长时间了,而移动计算是第一次把它们综合起来进行研究。它们三者之间可以相互转化,例如,通信系统的容量可以通过计算处理而得到提高。移动计算,由于它是一个大融合的综合工具,所以它至少可以在三个层面上为信息化“锦上添花”。首先,它可根据应用者不同的需要融合各种通信网络和技术,以达到效用的完全性;其次,它是计算机技术和通信技术的完美融合,能够使两者在行业体系中发挥更大的作用;第三,它可以将企业管理工具和业务工具融入信息化的大体系之中,使企业的管理、经营决策的做出是建立在完善的信息平台之上,因而大大增加了它的及时性和有效性。超级秘书网

虽然移动性可以给计算和通信在行业内带来新的应用,但同时不可避免的也会带来许多问题。其中存在的最大问题就是如何面对无线移动环境带来的挑战。在无线移动环境中,信号要受到各种各样因素的干扰和影响,因为会有多径和移动,给信号带来时间地域和频率地域弥散、频带资源受限、较大的传输时间延缓等等问题。这样一个环境下,引出了很多在移动通信网络和计算机网络中未遇到的问题。第一,信号通道可靠性问题和系统配置问题。有限的无线带宽、恶劣的通信环境使各种应用必须建立在一个不可靠的、可能断开的物理连接上。在移动计算网络环境下,移动终端位置的移动要求系统能够实时进行配置和更新。第二,为了真正实现在移动中进行各种计算,必须要对宽带数据业务进行支持。第三,如何将现有的主要针对话音业务的移动管理技术拓展到宽带数据业务。第四,如何把一些在固定计算网络中的成熟技术移植到移动计算网络中。当然,随着网络技术和移动计算技术的逐渐成熟和完善,这些问题都将会得到有效的解决,相信在不久的将来人类将迈入一个全新网络世界。那时候的工作、学习、生活方式将会如何,我想非常值得我们期待。

移动技术论文篇13

3G系统采用码分多址(CDMA)和分组交换技术。三种主流的技术标准:WCDMA、CDMA2000、TD-SCDMA。主要问题在于:没有一个统一的世界标准;语音不是在IP网络结构上;数据传输达不到速度要求。

国际两大3G标准化组织:3GPP和3GPP2。第三代合作伙伴计划(3rdGenerationPartnershipProject,即3GPP)成立于1998年12月。成员包括欧洲ETSI、日本ARIB和TTC、中国CCSA、韩国TTA和北美ATIS。3GPP的目标是在ITU的IMT-2000计划范围内制订和实现全球性的(第三代)移动通信系统规范,致力于WCDMA的发展。第三代合作伙伴计划2(3rdGenerationPartnershipProject2,即3GPP2)成立于1998年12月,成员包括:TIA(北美)、CCSA(中国)、ARIB/TTC(日本)和TTA(韩国)。3GPP2其致力于使ITU的IMT-2000计划中的(3G)移动电话系统规范在全球的发展,它是从2G的CDMA或者IS-95发展而来的CDMA2000标准体系的标准化机构。

WCDMA有Release99、Release4、Release5、Release6等版本。WCDMA(宽带码分多址)采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz。基于Release99/Release4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。

HSDPA(高速下行分组接入,HighSpeedDownlinkPackagesAccess)技术是实现提高WCDMA网络高速下行数据传输速率最为重要的技术,是3GPP在R5协议中为了满足上下行数据业务不对称的需求提出来的,HSDPA是与R99的信道在同一载波上,只是为HSDPA增加了专门的信道,只需要进行软件升级即可。HSDPA下行峰值速率理论最大值可达14.4Mbps。

HSUPA(高速上行链路分组接入,highspeeduplinkpacketaccess)。HSUPA通过采用多码传输、HARQ、基于NodeB的快速调度等关键技术,使得单小区最大上行数据吞吐率达到5.76Mbit/s,大大增强了WCDMA上行链路的数据业务承载能力和频谱利用率。HSUPA引入了五条新的物理信道E-DPDCH、E-DPCCH、E-AGCH、E-RGCH、E-HICH和两个新的MAC实体MAC-e和MAC-es,并把分组调度功能从RNC下移到NodeB,实现了基于NodeB的快速分组调度,并通过混合自动重传HARQ、2ms无线短帧及多码传输等关键技术,使得上行链路的数据吞吐率最高可达到5.76Mbit/s,大大提高的上行链路数据业务的承载能力。

HSDPA是WCDMA下行链路方向(从无线接入网络到移动终端的方向)针对分组业务的优化和演进。与HSDPA类似,HSUPA是上行链路方向(从移动终端到无线接入网络的方向)针对分组业务的优化和演进。HSUPA是继HSDPA后,WCDMA标准的又一次重要演进。

CDMA2000即CDMA20001×EV,1xEV的意思为“Evolution”,表示标准的发展,DO意为DataOnly(后来把DataOnly改为DataOptimized,表示EV-DO是对CDMA20001X网络在提供数据业务方面的一个有效的增强)。CDMA20001×EV-DO(DataOnly),采用话音分离的信道传输数据。CDMA20001×EV-DV(DateandVoice),即数据信道于话音信道合一。CDMA网提供两大类应用,语音和数据。根据应用CDMA2000演进可分为继续提高语音容量,从CDMA20001X演进到1X增强版或从CDMA20001X标准演进到EV-DO版本0,然后从EV-DO版本0演进到EV-DO版本A以及EV-DO版本B再到EV-DO增强版。

CDMA20001X到1X增强版的平滑演进是利用1/8空白速率帧,使用更有效的闭环功控、反向链路提早结束、前向链路提早结束、前向链路干扰抵消(QLIC)、QOF等技术,采用双天线接收的话,则每扇区的容量可达120个同时通话。1X增强版显著增加了语音容量,同时让网络和频谱投资最大化。

从CDMA20001X演进到EV-DO版本0,在原有的1X基站上增加一个专门用来做高速数据传输的载频,还需要增加新的PCF(分组控制功能模块)。兼容特性使得1xEV-DO可沿用现有网络的规划及射频部件。1xEV-DO基站还可与CDMA20001X的基站合一,并允许用户经由1X的载波使用高质量的话音服务和通过1xEV-DO的载波使用高性能的移动数据业务。

从EV-DO版本0演进到EV-DO版本A,只需对EV-DO版本0网络设备进行软件更新,升级基站中的信道板,基站系统中的其他硬件设备则完全可以保留重用。针对网络的不同情况,EV-DO版本A标准还支持终端在EV-DO版本A和EV-DO版本0网络之间的快速切换。终端和网络的后向兼容性保证了运营商可以逐步向版本A演进,保护了对原版本0网络和终端的投资。由于EV-DO版本A设备已经成熟,可以选择跳过EV-DO版本0而直接从CDMA20001X升级为EV-DO版本A。EV-DO版本A到EV-DO版本B,基站和终端之间可以在前反向多个载波上同时传送数据,从而获得更高的峰值传输速率和系统吞吐量。EV-DO版本B可以通过支持多个载频的EV-DO版本A基站进行升级来实现,这需要对基站和基站控制器进行软件更新。EV-DO版本B完全后向兼容EV-DO版本0和EV-DO版本A。EV-DO版本A和EV-DO版本0终端可以无缝接入到EV-DO版本B网络中获取服务。EV-DO版本B网络可以更有效地支持VoIP和可视电话等实时业务。EV-DO增强版完全后向兼容EV-DO版本0、EV-DO版本A和EV-DO版本B。EV-DO版本B、EV-DO版本A和EV-DO版本0的终端可以无缝接入到EV-DO增强版网络中获取服务。

2在3G之后,第四代(4G)移动通信更先进的技术旨在建立一个新的全IP化的接入网和与固网融合的纯IP核心网,目的是提供宽带移动无线接入

3G向4G的演进路线为:WCDMA和TD-SCDMA,均从HSDPA演进至HSUPA,进而到LTE(3GPP长期演进项目);CDMA2000沿着1xEV-DO.0、1xEV-DO.A、1xEV-DO.B,最终到UMB,超移动宽带(UltraMobileBroadband)。中国-3GLTE使用OFDM(OrthogonalFrequencyDivisionMultiplexing、正交频分复用技术)以及它的后续技术OFDMA(OrthogonalFrequencyDivisionMultipleAccess、正交频分多址技术)是未来无线宽带技术的基础。同UMB一样,LTE也采用了OFDM/OFDMA作为物理层的核心技术,不同的是LTE不再支持CDMA,而UMB为了保持良好的兼容性仍然支持在总带宽中分出一部分带宽来支持CDMA。LTE在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms;支持100Km半径的小区覆盖;能够为350Km/h高速移动用户提供大于100kbps的接入服务;支持成对或非成对频谱,并可灵活配置1.25MHz到20MHz多种带宽。UMB是可以在1.25MHz和20MHz间以约150KHz的频率增量灵活部署,支持频段包括450MHz、700MHz、850MHz、1700MHz、1900MHz、1700/2100MHz、1900/2100MHz(IMT)和2500MHz(3G扩展频段),可与现有的CDMA20001X和1xEV-DO系统兼容,但在数据传输速率、延迟性、覆盖度、移动能力及布建弹性等方面都更具优势。UMB系统继承了1xEV-DO系统的自适应编码调制、HARQ(物理层混合重传)以及QoS控制机制,结合了CDMA、TDM、QOFDMA(准OFDMA)、LDPC(低密度奇偶校验码)等其它先进技术,同时引入了基于MIMO(多路输入输出)、SDMA(空分复用接入)和Beamforming(波束赋性)等多天线技术。在4G网络中将主要使用以下一些核心技术。

正交频分复用(OFDM)/正交频分多址接入(OFDMA).OFDM是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,子载波并行传输。每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM可以消除或减小信号波形间的干扰,提高了频谱利用率。OFDMA是OFDM调制的一种形式,具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟。OFDMA会把副载波的子集分配给各个用户,以信道状态的反馈能执行自适应用户到副载波的分配。与OFDM相比,快速衰退、窄带同频干扰性能都得到了提高,改进了系统的频谱效率。

软件无线电是把尽可能多的无线及个人通信功能通过可编程软件来实现,使其成为一种多工作频段、多工作模式、多信号传输与处理的无线电系统。也可以说,是一种用软件来实现物理层连接的无线通信方式。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。多输入多输出(MIMO、Multiple-InputMultiple-Out-put)技术利用多发射、多接收天线进行空间分集的技术,采用分立式多天线能够有效地将通信链路分解成为许多并行的子信道,从而大大提高容量。MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

第四代移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

综上,随着移动通信的发展呈现趋势传送宽带化、应用个性化、接入多样化、网络数据化、系统互补化及有线、无线一体化的大趋势,宽带无线市场必定潜力巨大,发展前景一片光明。

参考文献:

[1]彭林.第三代移动通信技术.电子工业出版社.【ISBN】750538361.

[2]康桂霞,田辉,朱禹涛,杜娟.CDMA20001x无线网络技术.人民邮电出版社[ISBN].978-7-115-16664-7.

在线咨询