欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

混凝土材料实用13篇

混凝土材料
混凝土材料篇1

1混凝土

组成钢筋混凝土主要材料之一的混凝土的发展方向是高强、轻质、耐久(抗磨损、抗冻融、抗渗)、抗灾(地震、风、火〕、抗爆等。

1.1高性能混凝土(highperformanceconcrete,HPC)

HPC是近年来混凝土材料发展的一个重要方向,所谓高性能:是指混凝上具有高强度、高耐久性、高流动性等多方面的优越性能。从强度而言,抗压强度大于C50的混凝土即属于高强混凝土,提高混凝土的强度是发展高层建筑、高耸结构、大跨度结构的重要措施。采用高强混凝土,可以减小截面尺寸,减轻自重,因而可获得较大的经济效益,而且,高强混凝土一般也具有良好的耐久性。我国己制成C100的混凝土。已有文献报道1),国外在试验室高温、高压的条件下,水泥石的强度达到662MPa(抗压)及64.7MPa(抗拉)。在实际工程中,美国西雅图双联广场泵送混凝土56d抗压强度达133.5MPa。

在我国为提高温凝土强度采用的主要措施有[1]:(1)合理利用高效减水剂,采用优质骨料、优质水泥,利用优质掺合料,如优质磨细粉煤灰、硅灰、天然沸石或超细矿渣。采用高效减水剂以降低水灰比是获得高强及高流动性混凝土的主要技术措施;(2)采用525,625,725号的硫铝酸盐水泥、铁铝酸盐水泥及相应的外加剂,这是中国建筑材料科学研究院制备高性能混凝土的主要技术措施;(3)以矿渣、碱组分及骨料制备碱矿渣高强度混凝土,这是重庆建筑大学在引进前苏联研究成果的基础上提出的研制高强混凝土的技术措施;(4)交通部天津港湾工程研究所采用复合高效减水剂,用525号水泥320kg/m3,水灰比0.43,和425号水泥480kg/m3,水灰比0.32,在试验室中制成了抗压强度分别为68MPa和65MPa的高强混凝土。

文献[2]报告了采用某些金属矿石粗骨料如赤铁矿石、钛铁矿石等,可以比用普通石料作粗骨料获得强度更高、耐久性和延性更好的高性能混凝土。

高强混凝土具有优良的物理力学性能及良好的耐久性,其主要缺点是延性较差。而在高强混凝土中加入适量钢纤维后制成的纤维增强高强混凝土,其抗拉、抗弯、抗剪强度均有提高,其韧性(延性)和抗疲劳、抗冲击等性能则能有大幅度提高。此外,在高层建筑的高强混凝土柱中,也可采用X形配筋、劲性钢筋或钢管混凝土等结构方面的措施来改善高强混凝土柱的延性和抗震性能[3]。

1.2活性微粉混凝土(reactivepowderconcrete,RPC)[4]

RPC是一种超高强的混凝土,其立方体抗压强度可达200-800MPa,抗拉强度可达25~150MPa,断裂能可达30KJ/m2,单位体积质量为2.5-3.0t/m3。制成这种混凝土的主要措施是:(1)减小颗粒的最大尺寸,改善混凝土的均匀性;(2)使用微粉及极微粉材料,以达到最优堆积密度(packingdensity);(3)减少混凝土用水量,使非水化水泥颗粒作为填料,以增大堆积密度;(4)增放钢纤维以改善其延性;(5)在硬化过程中加压及加温,使其达到很高的强度。

普通混凝土的级配曲线是连续的,而RPC的级配曲线是不连续的台阶形曲线,其骨料粒径很小,接近于水泥颗粒的尺寸。RPC的水灰比可低到0.15,需加入大量的超塑化剂,以改善其工作度。RPC的价格比常用混凝土稍高,但大大低于钢材,可将其设计成细长或薄壁的结构,以扩大建筑使用的自由度。在加拿大Sherbrook已设计建造了一座跨度为60m、高3.47m的B200级RPC的人行-摩托车用预应力桁架桥。

1.3低强混凝土[4]

美国混凝土学会(AC1)229委员会,提出了在配料、运送、浇筑方面可控制的低强混凝土,其抗压强度为8MPa或更低。这种材料可用于基础、桩基的填、垫、隔离及作路基或填充孔洞之用,也可用于地下构造,在一些特定情况下,可用其调整混凝土的相对密度、工作度、抗压强度、弹性模量等性能指标,而且不易产生收缩裂缝。荷兰一座隧洞工程中曾采用了低强度砂浆(1ow-strengthmortar,LSM〕,其组分为:水泥150kg/m3,砂;1080kg/m3,水570kg/m3,超塑化剂6kg/m3,膨润土35kg/m3,所制成的LSM的抗压强度为3.5MPa,弹性模量低于500Mpa。LSM制成的隧洞封闭块,比常规的土壤稳定法节约造价50%,故这种混凝土可望在软土工程中得到发展应用。

1.4轻质混凝土[5]

利用天然轻骨料(如浮石、凝灰岩等)、工业废料轻骨料(如炉渣、粉煤灰陶粒、自燃煤矸石等)、人造轻骨料(页岩陶粒、粘土陶粒、膨胀珍珠岩等)制成的轻质混凝土具有密度较小、相对强度高以及保温、抗冻性能好等优点利用工业废渣如废弃锅炉煤渣、煤矿的煤矸石、火力发电站的粉煤灰等制备轻质混凝土,可降低混凝土的生产成本,并变废为用,减少城市或厂区的污染,减少堆积废料占用的土地,对环境保护也是有利的。

1.5纤维增强混凝土[6]

为了改善混凝土的抗拉性能差、延性差等缺点,在混凝土中掺加纤维以改善混凝土性能的研究,发展得相当迅速。目前研究较多的有钢纤维、耐碱玻璃纤维、碳纤维、芳纶纤维、聚丙烯纤维或尼龙合成纤维混凝土等。

在承重结构中,发展较快、应用较广的是钢纤维混凝土。而钢纤维主要有用于土木建筑工程的碳素钢纤维和用于耐火材料工业中的不锈钢纤维。用于土木建筑工程的钢纤维主要有以下几种生产方法:(1)钢丝切断法;(2)薄板剪切法;(3)钢锭(厚板)铣削法;(4)熔钢抽丝法。

当纤维长度及长径比在常用范围,纤维掺量在1%到2%(体积分数,本文中的掺量均指体积分数)的范围内,与基体混凝土相比,钢纤维混凝土的抗拉强度可提高40%~80%,抗弯强度提高50%~120%,抗剪强度提高50%~100%,抗压强度提高较小,在0~25%之间,弹性阶段的变形与基体混凝土性能相比没有显著差别,但可大幅度提高衡量钢纤维混凝土塑性变形性能的韧性。

中国工程建设标准化协会于1992年批准颁布了由大连理工大学等单位编制的《钢纤维混凝土结构设计与施工规程》(CECS38:92),对推广钢纤维混凝土的应用起到了重要作用。

钢纤维混凝土采用常规的施工技术,其钢纤维掺量一般为0.6%~2.0%。再高的掺量,将容易使钢纤维在施工搅拌过程中结团成球,影响钢纤维混凝土的质量。但是国内外正在研究一种钢纤维掺量达5%~27%的简称为SIFCON的砂浆渗浇钢纤维混凝土,其施工技术不同于一般的搅拌浇筑成型的钢纤维混凝土,它是先将钢纤维松散填放在模具内,然后灌注水泥浆或砂浆,使其硬化成型。SIFCON与普通钢纤维混凝土相比,其特点是抗压强度比基体材料有大幅度提高,可达100~200MPa,其抗拉、抗弯、抗剪强度以及延性、韧性等也比普通掺量的钢纤维混凝土有更大的提高[7]。

另一种名为砂浆渗浇钢纤维网混凝土(SIMCON)的施工方法与SIFCON的基本相同,只是预先填置在模具内的不是乱向分布的钢纤维,而是钢纤维网,制成的产品中,其纤维掺量一般为4%~6%,试验表明,SIMCON可用较低的钢纤维掺量而获得与SIFCON相同的强度和韧性,从而取得比SIFCON节约材料和造价的效果。

虽然SIFCON或SIMCON力学性能优良,但由于其钢纤维用量大、一次性投资高,施工工艺特殊,因此它们只是在必要时用于某些特殊的结构或构件的局部,如火箭发射台和高速公路的抢修等。

在砂浆中铺设钢丝网及网与网之间的骨架钢筋(简称钢丝网水泥)所做成的薄壁结构,具有良好的抗裂能力和变形能力,在国内外造船、水利、建筑工程中应用较为广泛。近年来,在钢丝网水泥中又掺人钢纤维来建造公路路面、渔船、农船等,取得了更好的双重增韧、增强效果。1.6自密实混凝土(self-compactingconcrete)

自密实混凝土不需机械振捣,而是依靠自重使混凝土密实。混凝土的流动度虽然高,但仍可以防止离析。配制这种混凝土的方法有[4]:(1)粗骨料的体积为固体混凝土体积的50%;(2)细骨料的体积为砂浆体积的40%;(3)水灰比为0.9-1.0;(4)进行流动性试验,确定超塑化剂用量及最终的水灰比,使材料获得最优的组成。

这种混凝土的优点有:在施工现场无振动噪音;可进行夜间施工,不扰民;对工人健康无害;混凝土质量均匀、耐久;钢筋布置较密或构件体型复杂时也易于浇筑;施工速度快,现场劳动量小。

1.7智能混凝土(smartconcrete)[4]

利用混凝土组成的改变,可克服混凝土的某些不利性质,例如:高强混凝土水泥用量多,水灰比低,加入硅灰之类的活性材料,硬化后的混凝土密实度好,但高强混凝土在硬化早期阶段,具有明显的自主收缩和孔隙率较高,易于开裂等缺点。解决这些问题的一个方法是,用掺量为25%的预湿轻骨料来替换骨料,从而在混凝土内部形成一个"蓄水器",使混凝土得到持续的潮湿养护。这种加入"预湿骨料"的方法,可使混凝土的自生收缩大为降低,减少了微细裂缝。

高强混凝土的另一问题是良好的密实性所引起的防火能力降低.这是因为在高温(火灾〕时,砂浆中的自由水和化学结合水转变为水气,但却不能从密实的混凝土中逸出,从而形成气压,导致柱子保护层剥落,严重降低了柱的承载力,解决这个问题的一种方法是,在每方混凝土中加2kg聚丙烯纤维,在高温(火灾)时,纤维熔化,形成了能使水气从边界区逸出的通道,减小了气压,从而防止柱的保护层剥落。

1.8预填骨料升浆混凝土1)

国内在大连中远60000t船坞工程中,因地质条件复杂,船坞底板首次采用了坐落于基岩上的预填骨料升浆混凝土,即用密度较大的厚4~5m的铁矿石作为预填骨料,矿石层下再铺设1m厚的石灰石块石。矿石层上是厚60~80cm的现浇钢筋混凝土板在预填骨料层中布置压浆孔注入砂浆,形成预填骨料升浆混凝土。采取这种工艺,缩短了工期,取得了良好的经济效益。

1.9碾压混凝土[8]

碾压混凝土近年发展较快,可用于大体积混凝土结构(如水工大坝、大型基础)、工业厂房地面、公路路面及机场道面等。

用于大体积混凝土的碾压混凝土的浇筑机具与普通混凝土不同,其平整使用推土机,振实用碾压机,层间处理用刷毛机,切缝用切缝机,整个施工过程的机械化程度高,施工效率高,劳动条件好,可大量掺用粉煤灰,与普通棍凝土相比,浇筑工期可缩短1/3~1/2,用水量可减少20%,水泥用量可减少30%~60%。

碾压混凝土的层间抗剪性能是修建混凝土高坝的关键问题,国内大连理工大学等单位曾开展这方面的研究工作。

在公路、工业厂房地面等大面积混凝土工程中,采用碾压混凝土,或者在碾压混凝土中再加入钢纤缝,成为钢纤维碾压混凝土,则其力学性能及耐久性还可进一步改善。

1.10再生骨料混凝土

新中国建国至今己逾50年,建国前后修建的不少混凝土结构,因老化或随着经济的发展,需拆除重建,其拆除量十分巨大,在拆除的混凝土中,约有一半是粗骨料,应该考虑如何使之再生利用。以减少环境垃圾,变废为用。

文献[4]报道,在荷兰的德尔夫特,一个272所住宅的方案中,所有的混凝土墙均利用了再生骨料,该方案下一步的计划,是在混凝土楼板中也利用再生骨料。当然,在利用这些再生骨料时,需对这种馄凝土的性能进行试验,例如,文献[9]报道了有关再生轻质混凝土收缩和徐变较为显著的试验成果,值得重视。

2配筋及增强材料

2.1纤维筋[6]

钢筋混凝土结构的配筋材料,主要是钢筋最近在国际上研究较多的是树脂粘结的纤维筋(fiberreinforcedplastics,FRP)作馄凝土及预应力混凝土结构的非金属配筋,常用的纤维筋有树脂粘结的碳纤维筋(GFRP)、玻璃纤维筋(GFRP)及芳纶纤维筋(AFRP)国外研究指出,这几种纤维筋的强度都很高,只是玻璃纤维筋的抗碱化性能较差。纤维筋的突出优点是抗腐蚀、高强度,此外,还具有良好的抗疲劳性能、大的弹性变形能力、高电阻及低磁导性,其缺点是断裂应变性能较差、较脆、徐变(松弛)值较大,热膨胀系数较大。

国外已有日本、德国、荷兰等国将纤维筋用于预应力混凝土桥,包括体外预应力桥的实例[4]。

2.2双钢筋[1]

为了减小裂缝宽度和构件的变形,国内在一些工程中,采用焊成梯格形的双钢筋,在构件内平放或竖放布置。

2.3冷轧变形钢筋[1]

为了节约钢材用量,国内引进国外设备或自制设备,用光圆钢筋,经过冷轧,轧成带肋的直径小于母材直径的钢筋,称为冷轧带肋钢筋。另一种类似的钢筋,是用I级光圆用筋冷轧扭转成型,称为冷轧变形用筋或冷轧扭钢筋。这两种冷轧钢筋的抗拉强度标准值(极限抗拉强度)及设计值都比母材大大提高,与混凝土的粘结强度也得到提高,但直径较小。它们主要用作板式构件的受力钢筋或梁、柱构件的箍筋或作预应力筋。由于强度提高,可以节约材料用量,获得经济效益。这两种钢筋,国内己制订了规程。为将这种小直径钢筋的用途扩展至梁、柱的受力钢筋,也可采用双筋或三筋的并筋,但需适当增大其锚固长度。

2.4环氧树脂涂敷钢筋[1]

在海洋环境或者有腐蚀性介质的环境中(如冬季撒盐的桥面),钢筋锈蚀是影响结构耐久性的重要原因。为了防止钢筋锈蚀,用不锈钢制造钢筋是一个途径,但是价格昂贵。另一个途径是用环氧树脂涂敷钢筋表面,形成防锈的涂层,以防止钢筋生锈,这种方法在日本、美国应用较多。钢筋在工厂中校直、加热、喷涂树脂粉末,形成防护薄膜,冷却后经检验合格,用于有严格防锈蚀要求的工程,可使结构的耐久性大大提高。

2.5预应力混凝土用钢棒、预应力混凝土用螺旋肋钢丝

在传统用于预应力混凝土的钢丝、钢绞线、热处理钢筋的基础上,从国外引进生产线,己生产出直径达12.6mm、抗拉强度达1570MPa的预应力混凝土用的带螺旋肋的钢棒(stee1bar),及直径达12.0mm、抗拉强度达1570MPa的带螺旋肋的钢丝。这种新产品的特点是:高强度、低松弛,与混凝土的粘结强度好,易墩粗,可点焊,可盘卷等。

2.6纤维布、纤维条、纤维板

国内在对钢筋混凝土结构进行加固时,常用的一种技术是钢板粘结加固技术,但是钢板质量重、运送不便,剪切成型也比较复杂。

最近在国内外发展并应用了以质量很轻、易于加工、单向抗拉强度很高的纤维布(条、板〕代替钢板进行构件加固的技术,取得了良好的效果。例如,冶金工业局建筑研究总院使用从日本进口的碳纤维,开发了加固改造修复混凝土结构新技术[10],其使用的碳纤维布,厚0.111-0.165mm,单向抗拉强度3000~3550MPa,这种碳纤维布的特点是:具有很高的单向抗拉强度(为普通钢材的10倍),弹模与钢材接近,很适用于钢筋混凝土结构的加固;质量轻,密度仅为钢的1/4,加固层厚度一般不大于1mm,基本不增加结构自重及截面尺寸;施工方便,功效高;耐腐蚀,无须定期维护。

国外在用碳纤维布或碳纤维条时,还利用不同弹模的碳纤维进行优化组合,降低造价。

除碳纤维外,与纤维筋类似,也有用芳纶纤维和玻璃纤维制成的产品(布、条或扳〕.值得指出的是,国际桥梁与结构工程学会(IABSE)在1999年11月出版的StructuralEngineering第9卷第4期中,集中报道了加拿大、美国、日本、欧洲诸国在发展使用这种新型材料方面的经验,对激发我国开展这种新材料的生产与应用很有意义。

3结束语

混凝土是水泥、砂、石、水、外加剂、掺合料等多组分构成的一种性能多样化的材料,其性能不仅与组成材料的性能有直接关系,而且还与施工技术、所处环境及维护条件等有关;笔者只是从一个结构工程技术人员的工程实用角度出发,对于所涉及过的研究领域和知之不多的混凝土及其增强材料的发展与应用等方面,作了抛砖引玉的介绍。期望在混凝土结构领域内,有更多的专家学者开发出更多新的材料,并进而研究将这些材料用于结构工程所需解决的设计方法、施工技术以及维护要求等,以促进我国混凝土结构技术的进一步发展。

参考文献

[1]赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社。1999

[2]AjiboyeF.oluokun,SaryA.J.Malak.Toughness,ductility,flexura1,andcompresseivebehaviorofmetallicaggregateconcrete[J].ACIMaterialsJournal.1999.96(3):320-330.

[3]赵国藩,张德娟,黄承逵.钢管混凝土增强高强混凝土柱的抗震性能研究[J]大连理工大学学报199636(6):750~766.

[4]WairavenJ.Theevolutionofconcrete[J].Structuralconcrete,1999.PL(1):3~11.

[5]陈本沛.混凝土结构理论和应用研究的理论与发展[M].大连理工大学出版社.1994.

[6]赵国藩,黄承逵.纤维混凝土的研究与应用[M].大连:大连理工大学出版社。1992.

[7]曲福进.高性能纤维混凝土SIFCON静动态特性研究[D].大连:大连理工大学土木工程系.1996.

混凝土材料篇2

混凝土材料在我国建筑中被广泛应用,其质量问题也引起广泛的重视。混凝土的质量主要体现在其强度、变形以及耐久性等地方,其检验一般热力学方面为基准,其中热膨胀系数是主要的直接和间接的影响混凝土结构安全性能和耐久性能。

1.混凝土材料检验的背景及意义

混凝土作为我国各类建筑工程的主要材料之一,受到各种因素作用。如:各种复杂地理、温度、荷载、盐碱等环境因素。混凝土由浆体、粗细集料、细孔等材料构成,其种类因建筑需要而不同,如钢筋混凝土、水泥混凝土等。混凝土材料是一种复合材料,其不同组分的热变形特征也不相同,此时,温度是影响混凝土的最大因素。温度影响一般分为两方面,气候温差及高温过程。气候温差主要是季节更替和天气因素造成的,高温过程是建筑物受到火灾或爆炸等高温环境。当材料温度发生变化时,其材料成分也发生不同热变形,导致组分热应变,由于固相组成之间的热膨胀性能有所不同而发生挤压或拉伸现象。而且,如果材料由于硬化龄期增加或者与外界组分的反应引起化学成分和孔隙结构改变,就会进一步改变其组成及其热变形性质, 改变了混凝土结构温度条件下的服役性能。此外,混凝土在低温时,水泥浆体结构具有冻胀特性,在温度低于零度时,浆体中的水分变为结冰水和过冷水,泥浆发生冻结而出现体积膨胀压力及渗透压力。过热和过冷的温度差异考验着混凝土的结构质量,热度差异导致混凝土出现热胀冷缩的现象,混凝土材料因此易产生裂隙。我国建筑中使用的大体积混凝土及超长结构混凝土在广泛应用过程中常因混凝土水化硬化过程放热量大,容易聚集而导致内部温度急剧上升,加之混凝土水化放热及周围环境辐射等因素加大了辐射热量使其内部温度更高,更易造成开裂退化现象,影响混凝土材料的耐久性。所以,对混凝土材料进行热力学检验意义重大,是保障建筑物安全与质量的前提和基础。

2.混凝土材料的检验

2.1混凝土的热变形性质检验

物质的长度或体积随温度的升高而变大称之为热膨胀,物体体积随温度升高而变大,随温度降低而减小称之为热胀冷缩。混凝土的热变形检验主要是检验其热胀冷缩的性质,其热胀冷缩的性质又受热膨胀系数影响。混凝土作为一种复合材料,其热膨胀系数受很多因素影响。如硬化水泥浆体、孔隙大小及含水量、材料成分等。混凝土材料中硬化水泥浆体的热膨胀性能主要受其浆体中水含量、固相成分、孔隙率的多少影响,其中浆体中的氢氧化钙的热膨胀系数最大,致密的结构物质热膨胀系数大,所以,混凝土材料中氢氧化钙的含量越大、孔隙率越小,其热膨胀系数越大。当混凝土材料热膨胀系数增加到一定值时,其将浆体内的自由水与吸附水随温度升到而流失,内部化学结合水不能得到排除,自由水在浆体内来回进出,继而产生湿热膨胀。混凝土空隙中的水分和凝胶孔中的水分受热膨胀后,体积急剧变大,引起的湿胀压力可使混凝土表面及内部出现裂隙。混凝土热变形检验主要是混凝土热膨胀系数测量,是对其耐久性的检验。

目前,检验混凝土热变形检验的方法很多,清华大学建材研究所开发的温度一应力实验机、哈尔滨工业大学研发的静水力学称重法能测量混凝土材料的热膨胀系数,静水力学称重法主要是通过测量试件在水中的浮力变化大小来计算其体积变化大小。中国建材研究院设计出在高温条件下对混凝土材料的热膨胀性能测定的方法。实际工程中混凝土的热稳定性非常重要,所以其热膨胀系数的测定也应更加精准。

2.2混凝土的热敏感性检验

混凝土的宏观性虽然可以看成一个完整的体系,但其各个成分相之间的性质存在较大差异,直接影响混凝土材料的热敏感性。热敏感性指混凝土材料的热膨胀系数对温度变化的敏感程度。混凝土中的水泥凝胶、氢氧化钙晶体、未水化的水泥、孔隙等结构的常温线性膨胀系数存在较大差异,热敏感性能也存在较大差异。热敏感性与热膨胀系数联系紧密,热敏感性越小,其热膨胀系数就越小。所以,在检验混凝土材料的热敏感性时可通过调控减小其热敏感性的组分,达到改善混凝土结构热稳定性的目的。东南大学研发的通过电加热控制温度直接测试不同温度下试件的长度变形大小,在经过计算公式直接测混凝土的热膨胀系数,利用相关关系体现出混凝土的热敏感性。热敏感性的检验对混凝土材料的热力学检测具有重要意义。

2.3混凝土的热不相容性检验

混凝土的热不相容性是指当环境温度变化时,混凝土结构及性能会随着其体积的变化而改变,在反复变化的过程中,组成相界面区域会产生热疲劳损伤,在此状态下混凝土各成分之间的温度协调性。由于我国地大物博,各地环境存在明显差异,例如新疆、内蒙等地区,环境干燥、湿度较大且温度变化幅度很大。这些地区建筑使用的混凝土就常因气候问题出现开裂的现象。一些专家对混凝土界面过渡区展开了深入研究,指出其结构和硬化水泥浆体之间区别较大,并认为界面过渡区是混凝土中组成最薄弱的区域。当环境温度出现较大变化时,造成混凝土内部由于温度梯度而产生热应力,以及各相间由于热作用变形而产生的挤压应力。混凝土界面过渡区在温度反复波动时的应力作用下容易出现损伤,其中的材料因热膨胀系数不同而使界面处产生相对运动和错位的趋势, 多次热循环后混凝土的性能产生显著下降。

检验混凝土热不相容性使用最多的方法是红外热成像技术。红外热成像技术是近几年快速发展起来的结构无损检测和监测技术。其原理是利用一切物体都能辐射红外线的特点,应用测仪测定目标和背景之间的红外线差异制作出红外图像,也就是物体表面温度分布图像,利用热传导在物体内部的差异,进而判断物体内部是否存在缺陷。红外热像法和数字图像相关法可针对混凝土材料在准静态荷载下的力学行为进行检测。红外热成像能清晰地显示混凝土材料试件由冻结到解冻损伤过程中造成的微裂纹状态下的热弹性祸合以及热耗散。在检测混凝土的热不相容性时,是利用红外热成像对混凝土在疲劳或损伤过程中的热红外辐射征的研究,分析混凝土在疲劳、损伤、破裂和破坏等过程中伴随的热现象,监测损伤和破坏过程中微裂纹从出现到逐渐增长发育的整个过程,判断混凝土结构内部损伤存在的具置,从而进行疲劳强度评价等。红外热成像技术应用广泛,具有方便快速,大面积扫测,直观等优点。此外,红外热像法还能进行混凝土温度场的模拟,利用红外热成像测定特定温度条件下混凝土表面和内部的边界的状况,达到模拟实际环境中混凝土温度场内变化的过程,继而应用计算机技术分析方法找出混凝土结构中存在的缺陷。

结语:

随着建筑工程的不断发展,其安全问题逐渐被重视起来。混凝土材料的检验是建筑工程安全保障的重要部分,得到建筑企业和监理部门的广泛重视,随着新兴科技手段的运用,混凝土材料的检验必将更加规范和严格。

参考文献:

混凝土材料篇3

1混凝土

组成钢筋混凝土主要材料之一的混凝土的发展方向是高强、轻质、耐久(抗磨损、抗冻融、抗渗)、抗灾(地震、风、火〕、抗爆等。

1.1高性能混凝土(highperformanceconcrete,HPC)

HPC是近年来混凝土材料发展的一个重要方向,所谓高性能:是指混凝上具有高强度、高耐久性、高流动性等多方面的优越性能。从强度而言,抗压强度大于C50的混凝土即属于高强混凝土,提高混凝土的强度是发展高层建筑、高耸结构、大跨度结构的重要措施。采用高强混凝土,可以减小截面尺寸,减轻自重,因而可获得较大的经济效益,而且,高强混凝土一般也具有良好的耐久性。我国己制成C100的混凝土。已有文献报道1),国外在试验室高温、高压的条件下,水泥石的强度达到662MPa(抗压)及64.7MPa(抗拉)。在实际工程中,美国西雅图双联广场泵送混凝土56d抗压强度达133.5MPa。

在我国为提高温凝土强度采用的主要措施有[1]:(1)合理利用高效减水剂,采用优质骨料、优质水泥,利用优质掺合料,如优质磨细粉煤灰、硅灰、天然沸石或超细矿渣。采用高效减水剂以降低水灰比是获得高强及高流动性混凝土的主要技术措施;(2)采用525,625,725号的硫铝酸盐水泥、铁铝酸盐水泥及相应的外加剂,这是中国建筑材料科学研究院制备高性能混凝土的主要技术措施;(3)以矿渣、碱组分及骨料制备碱矿渣高强度混凝土,这是重庆建筑大学在引进前苏联研究成果的基础上提出的研制高强混凝土的技术措施;(4)交通部天津港湾工程研究所采用复合高效减水剂,用525号水泥320kg/m3,水灰比0.43,和425号水泥480kg/m3,水灰比0.32,在试验室中制成了抗压强度分别为68MPa和65MPa的高强混凝土。

文献[2]报告了采用某些金属矿石粗骨料如赤铁矿石、钛铁矿石等,可以比用普通石料作粗骨料获得强度更高、耐久性和延性更好的高性能混凝土。

高强混凝土具有优良的物理力学性能及良好的耐久性,其主要缺点是延性较差。而在高强混凝土中加入适量钢纤维后制成的纤维增强高强混凝土,其抗拉、抗弯、抗剪强度均有提高,其韧性(延性)和抗疲劳、抗冲击等性能则能有大幅度提高。此外,在高层建筑的高强混凝土柱中,也可采用X形配筋、劲性钢筋或钢管混凝土等结构方面的措施来改善高强混凝土柱的延性和抗震性能[3]。

1.2活性微粉混凝土(reactivepowderconcrete,RPC)[4]

RPC是一种超高强的混凝土,其立方体抗压强度可达200-800MPa,抗拉强度可达25~150MPa,断裂能可达30KJ/m2,单位体积质量为2.5-3.0t/m3。制成这种混凝土的主要措施是:(1)减小颗粒的最大尺寸,改善混凝土的均匀性;(2)使用微粉及极微粉材料,以达到最优堆积密度(packingdensity);(3)减少混凝土用水量,使非水化水泥颗粒作为填料,以增大堆积密度;(4)增放钢纤维以改善其延性;(5)在硬化过程中加压及加温,使其达到很高的强度。

普通混凝土的级配曲线是连续的,而RPC的级配曲线是不连续的台阶形曲线,其骨料粒径很小,接近于水泥颗粒的尺寸。RPC的水灰比可低到0.15,需加入大量的超塑化剂,以改善其工作度。RPC的价格比常用混凝土稍高,但大大低于钢材,可将其设计成细长或薄壁的结构,以扩大建筑使用的自由度。在加拿大Sherbrook已设计建造了一座跨度为60m、高3.47m的B200级RPC的人行-摩托车用预应力桁架桥。

1.3低强混凝土[4]

美国混凝土学会(AC1)229委员会,提出了在配料、运送、浇筑方面可控制的低强混凝土,其抗压强度为8MPa或更低。这种材料可用于基础、桩基的填、垫、隔离及作路基或填充孔洞之用,也可用于地下构造,在一些特定情况下,可用其调整混凝土的相对密度、工作度、抗压强度、弹性模量等性能指标,而且不易产生收缩裂缝。荷兰一座隧洞工程中曾采用了低强度砂浆(1ow-strengthmortar,LSM〕,其组分为:水泥150kg/m3,砂;1080kg/m3,水570kg/m3,超塑化剂6kg/m3,膨润土35kg/m3,所制成的LSM的抗压强度为3.5MPa,弹性模量低于500Mpa。LSM制成的隧洞封闭块,比常规的土壤稳定法节约造价50%,故这种混凝土可望在软土工程中得到发展应用。

1.4轻质混凝土[5]

利用天然轻骨料(如浮石、凝灰岩等)、工业废料轻骨料(如炉渣、粉煤灰陶粒、自燃煤矸石等)、人造轻骨料(页岩陶粒、粘土陶粒、膨胀珍珠岩等)制成的轻质混凝土具有密度较小、相对强度高以及保温、抗冻性能好等优点利用工业废渣如废弃锅炉煤渣、煤矿的煤矸石、火力发电站的粉煤灰等制备轻质混凝土,可降低混凝土的生产成本,并变废为用,减少城市或厂区的污染,减少堆积废料占用的土地,对环境保护也是有利的。

1.5纤维增强混凝土[6]

为了改善混凝土的抗拉性能差、延性差等缺点,在混凝土中掺加纤维以改善混凝土性能的研究,发展得相当迅速。目前研究较多的有钢纤维、耐碱玻璃纤维、碳纤维、芳纶纤维、聚丙烯纤维或尼龙合成纤维混凝土等。

在承重结构中,发展较快、应用较广的是钢纤维混凝土。而钢纤维主要有用于土木建筑工程的碳素钢纤维和用于耐火材料工业中的不锈钢纤维。用于土木建筑工程的钢纤维主要有以下几种生产方法:(1)钢丝切断法;(2)薄板剪切法;(3)钢锭(厚板)铣削法;(4)熔钢抽丝法。

当纤维长度及长径比在常用范围,纤维掺量在1%到2%(体积分数,本文中的掺量均指体积分数)的范围内,与基体混凝土相比,钢纤维混凝土的抗拉强度可提高40%~80%,抗弯强度提高50%~120%,抗剪强度提高50%~100%,抗压强度提高较小,在0~25%之间,弹性阶段的变形与基体混凝土性能相比没有显著差别,但可大幅度提高衡量钢纤维混凝土塑性变形性能的韧性。

中国工程建设标准化协会于1992年批准颁布了由大连理工大学等单位编制的《钢纤维混凝土结构设计与施工规程》(CECS38:92),对推广钢纤维混凝土的应用起到了重要作用。

钢纤维混凝土采用常规的施工技术,其钢纤维掺量一般为0.6%~2.0%。再高的掺量,将容易使钢纤维在施工搅拌过程中结团成球,影响钢纤维混凝土的质量。但是国内外正在研究一种钢纤维掺量达5%~27%的简称为SIFCON的砂浆渗浇钢纤维混凝土,其施工技术不同于一般的搅拌浇筑成型的钢纤维混凝土,它是先将钢纤维松散填放在模具内,然后灌注水泥浆或砂浆,使其硬化成型。SIFCON与普通钢纤维混凝土相比,其特点是抗压强度比基体材料有大幅度提高,可达100~200MPa,其抗拉、抗弯、抗剪强度以及延性、韧性等也比普通掺量的钢纤维混凝土有更大的提高[7]。

另一种名为砂浆渗浇钢纤维网混凝土(SIMCON)的施工方法与SIFCON的基本相同,只是预先填置在模具内的不是乱向分布的钢纤维,而是钢纤维网,制成的产品中,其纤维掺量一般为4%~6%,试验表明,SIMCON可用较低的钢纤维掺量而获得与SIFCON相同的强度和韧性,从而取得比SIFCON节约材料和造价的效果。

虽然SIFCON或SIMCON力学性能优良,但由于其钢纤维用量大、一次性投资高,施工工艺特殊,因此它们只是在必要时用于某些特殊的结构或构件的局部,如火箭发射台和高速公路的抢修等。

在砂浆中铺设钢丝网及网与网之间的骨架钢筋(简称钢丝网水泥)所做成的薄壁结构,具有良好的抗裂能力和变形能力,在国内外造船、水利、建筑工程中应用较为广泛。近年来,在钢丝网水泥中又掺人钢纤维来建造公路路面、渔船、农船等,取得了更好的双重增韧、增强效果。

1.6自密实混凝土(self-compactingconcrete)

自密实混凝土不需机械振捣,而是依靠自重使混凝土密实。混凝土的流动度虽然高,但仍可以防止离析。配制这种混凝土的方法有[4]:(1)粗骨料的体积为固体混凝土体积的50%;(2)细骨料的体积为砂浆体积的40%;(3)水灰比为0.9-1.0;(4)进行流动性试验,确定超塑化剂用量及最终的水灰比,使材料获得最优的组成。

这种混凝土的优点有:在施工现场无振动噪音;可进行夜间施工,不扰民;对工人健康无害;混凝土质量均匀、耐久;钢筋布置较密或构件体型复杂时也易于浇筑;施工速度快,现场劳动量小。

1.7智能混凝土(smartconcrete)[4]

利用混凝土组成的改变,可克服混凝土的某些不利性质,例如:高强混凝土水泥用量多,水灰比低,加入硅灰之类的活性材料,硬化后的混凝土密实度好,但高强混凝土在硬化早期阶段,具有明显的自主收缩和孔隙率较高,易于开裂等缺点。解决这些问题的一个方法是,用掺量为25%的预湿轻骨料来替换骨料,从而在混凝土内部形成一个"蓄水器",使混凝土得到持续的潮湿养护。这种加入"预湿骨料"的方法,可使混凝土的自生收缩大为降低,减少了微细裂缝。

高强混凝土的另一问题是良好的密实性所引起的防火能力降低.这是因为在高温(火灾〕时,砂浆中的自由水和化学结合水转变为水气,但却不能从密实的混凝土中逸出,从而形成气压,导致柱子保护层剥落,严重降低了柱的承载力,解决这个问题的一种方法是,在每方混凝土中加2kg聚丙烯纤维,在高温(火灾)时,纤维熔化,形成了能使水气从边界区逸出的通道,减小了气压,从而防止柱的保护层剥落。

1.8预填骨料升浆混凝土1)

国内在大连中远60000t船坞工程中,因地质条件复杂,船坞底板首次采用了坐落于基岩上的预填骨料升浆混凝土,即用密度较大的厚4~5m的铁矿石作为预填骨料,矿石层下再铺设1m厚的石灰石块石。矿石层上是厚60~80cm的现浇钢筋混凝土板在预填骨料层中布置压浆孔注入砂浆,形成预填骨料升浆混凝土。采取这种工艺,缩短了工期,取得了良好的经济效益。

1.9碾压混凝土[8]

碾压混凝土近年发展较快,可用于大体积混凝土结构(如水工大坝、大型基础)、工业厂房地面、公路路面及机场道面等。

用于大体积混凝土的碾压混凝土的浇筑机具与普通混凝土不同,其平整使用推土机,振实用碾压机,层间处理用刷毛机,切缝用切缝机,整个施工过程的机械化程度高,施工效率高,劳动条件好,可大量掺用粉煤灰,与普通棍凝土相比,浇筑工期可缩短1/3~1/2,用水量可减少20%,水泥用量可减少30%~60%。

碾压混凝土的层间抗剪性能是修建混凝土高坝的关键问题,国内大连理工大学等单位曾开展这方面的研究工作。

在公路、工业厂房地面等大面积混凝土工程中,采用碾压混凝土,或者在碾压混凝土中再加入钢纤缝,成为钢纤维碾压混凝土,则其力学性能及耐久性还可进一步改善。

1.10再生骨料混凝土

新中国建国至今己逾50年,建国前后修建的不少混凝土结构,因老化或随着经济的发展,需拆除重建,其拆除量十分巨大,在拆除的混凝土中,约有一半是粗骨料,应该考虑如何使之再生利用。以减少环境垃圾,变废为用。

文献[4]报道,在荷兰的德尔夫特,一个272所住宅的方案中,所有的混凝土墙均利用了再生骨料,该方案下一步的计划,是在混凝土楼板中也利用再生骨料。当然,在利用这些再生骨料时,需对这种馄凝土的性能进行试验,例如,文献[9]报道了有关再生轻质混凝土收缩和徐变较为显著的试验成果,值得重视。

2配筋及增强材料

2.1纤维筋[6]

钢筋混凝土结构的配筋材料,主要是钢筋最近在国际上研究较多的是树脂粘结的纤维筋(fiberreinforcedplastics,FRP)作馄凝土及预应力混凝土结构的非金属配筋,常用的纤维筋有树脂粘结的碳纤维筋(GFRP)、玻璃纤维筋(GFRP)及芳纶纤维筋(AFRP)国外研究指出,这几种纤维筋的强度都很高,只是玻璃纤维筋的抗碱化性能较差。纤维筋的突出优点是抗腐蚀、高强度,此外,还具有良好的抗疲劳性能、大的弹性变形能力、高电阻及低磁导性,其缺点是断裂应变性能较差、较脆、徐变(松弛)值较大,热膨胀系数较大。

国外已有日本、德国、荷兰等国将纤维筋用于预应力混凝土桥,包括体外预应力桥的实例[4]。

2.2双钢筋[1]

为了减小裂缝宽度和构件的变形,国内在一些工程中,采用焊成梯格形的双钢筋,在构件内平放或竖放布置。

2.3冷轧变形钢筋[1]

为了节约钢材用量,国内引进国外设备或自制设备,用光圆钢筋,经过冷轧,轧成带肋的直径小于母材直径的钢筋,称为冷轧带肋钢筋。另一种类似的钢筋,是用I级光圆用筋冷轧扭转成型,称为冷轧变形用筋或冷轧扭钢筋。这两种冷轧钢筋的抗拉强度标准值(极限抗拉强度)及设计值都比母材大大提高,与混凝土的粘结强度也得到提高,但直径较小。它们主要用作板式构件的受力钢筋或梁、柱构件的箍筋或作预应力筋。由于强度提高,可以节约材料用量,获得经济效益。这两种钢筋,国内己制订了规程。为将这种小直径钢筋的用途扩展至梁、柱的受力钢筋,也可采用双筋或三筋的并筋,但需适当增大其锚固长度。

2.4环氧树脂涂敷钢筋[1]

在海洋环境或者有腐蚀性介质的环境中(如冬季撒盐的桥面),钢筋锈蚀是影响结构耐久性的重要原因。为了防止钢筋锈蚀,用不锈钢制造钢筋是一个途径,但是价格昂贵。另一个途径是用环氧树脂涂敷钢筋表面,形成防锈的涂层,以防止钢筋生锈,这种方法在日本、美国应用较多。钢筋在工厂中校直、加热、喷涂树脂粉末,形成防护薄膜,冷却后经检验合格,用于有严格防锈蚀要求的工程,可使结构的耐久性大大提高。

2.5预应力混凝土用钢棒、预应力混凝土用螺旋肋钢丝

在传统用于预应力混凝土的钢丝、钢绞线、热处理钢筋的基础上,从国外引进生产线,己生产出直径达12.6mm、抗拉强度达1570MPa的预应力混凝土用的带螺旋肋的钢棒(stee1bar),及直径达12.0mm、抗拉强度达1570MPa的带螺旋肋的钢丝。这种新产品的特点是:高强度、低松弛,与混凝土的粘结强度好,易墩粗,可点焊,可盘卷等。

2.6纤维布、纤维条、纤维板

国内在对钢筋混凝土结构进行加固时,常用的一种技术是钢板粘结加固技术,但是钢板质量重、运送不便,剪切成型也比较复杂。

最近在国内外发展并应用了以质量很轻、易于加工、单向抗拉强度很高的纤维布(条、板〕代替钢板进行构件加固的技术,取得了良好的效果。例如,冶金工业局建筑研究总院使用从日本进口的碳纤维,开发了加固改造修复混凝土结构新技术[10],其使用的碳纤维布,厚0.111-0.165mm,单向抗拉强度3000~3550MPa,这种碳纤维布的特点是:具有很高的单向抗拉强度(为普通钢材的10倍),弹模与钢材接近,很适用于钢筋混凝土结构的加固;质量轻,密度仅为钢的1/4,加固层厚度一般不大于1mm,基本不增加结构自重及截面尺寸;施工方便,功效高;耐腐蚀,无须定期维护。

国外在用碳纤维布或碳纤维条时,还利用不同弹模的碳纤维进行优化组合,降低造价。

除碳纤维外,与纤维筋类似,也有用芳纶纤维和玻璃纤维制成的产品(布、条或扳〕.值得指出的是,国际桥梁与结构工程学会(IABSE)在1999年11月出版的StructuralEngineering第9卷第4期中,集中报道了加拿大、美国、日本、欧洲诸国在发展使用这种新型材料方面的经验,对激发我国开展这种新材料的生产与应用很有意义。

3结束语

混凝土是水泥、砂、石、水、外加剂、掺合料等多组分构成的一种性能多样化的材料,其性能不仅与组成材料的性能有直接关系,而且还与施工技术、所处环境及维护条件等有关;笔者只是从一个结构工程技术人员的工程实用角度出发,对于所涉及过的研究领域和知之不多的混凝土及其增强材料的发展与应用等方面,作了抛砖引玉的介绍。期望在混凝土结构领域内,有更多的专家学者开发出更多新的材料,并进而研究将这些材料用于结构工程所需解决的设计方法、施工技术以及维护要求等,以促进我国混凝土结构技术的进一步发展。

参考文献

[1]赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社。1999

[2]AjiboyeF.oluokun,SaryA.J.Malak.Toughness,ductility,flexura1,andcompresseivebehaviorofmetallicaggregateconcrete[J].ACIMaterialsJournal.1999.96(3):320-330.

[3]赵国藩,张德娟,黄承逵.钢管混凝土增强高强混凝土柱的抗震性能研究[J]大连理工大学学报199636(6):750~766.

[4]WairavenJ.Theevolutionofconcrete[J].Structuralconcrete,1999.PL(1):3~11.

[5]陈本沛.混凝土结构理论和应用研究的理论与发展[M].大连理工大学出版社.1994.

[6]赵国藩,黄承逵.纤维混凝土的研究与应用[M].大连:大连理工大学出版社。1992.

[7]曲福进.高性能纤维混凝土SIFCON静动态特性研究[D].大连:大连理工大学土木工程系.1996.

混凝土材料篇4

一、不同厂家和出厂日期的水泥混合仓储

1、表现形式

同强度级别、同品种的不同厂牌、不同出厂日期的水泥混合堆放,从而导致过期水泥与好水泥难以区分,使混凝土强度不能得到保证。

2、产生原因

现场负责人员管理疏忽

3、防治措施

(1)不同出厂日期、不同厂家的水泥应分类保存。

(2)不同厂家的水泥,应和不同品种、不同强度级别的水泥一样,分别运输、装卸和贮存,并做好明显标志,严防混淆。

(3)万一发生不同出厂日期同厂有的水泥混仓,可按最早出厂时间使用。如不同厂家水泥混仓,要取样进行水泥品质检验,并拟配混凝土的试样进行检验,合格的按试验结论使用。

二、水泥过期、结块

1、现现形式

水泥出厂时间超过规定使用期,或者有结块存在,从而影响混凝土强度。

2、产生原因

(1)出厂的水泥不符合质量标准,日期不清。

(2)水泥入库时未经过严格检查。

(3)水泥贮存条件太差,使水泥在库存时受潮。

3、防治措施

(1)加强对入库水泥的检查,保证做到各批水泥“三清”:出厂日期清、放库时是否受潮清、存放地点清。

(2)对于散装水泥要采用相应的存贮措施,尽量贮存在水泥仓罐中,无条件时,也应将水泥库的地面、外墙内侧进行防潮处理,防止潮气侵入。

(3)袋装水泥应按相应的类别排列成堆垛,堆垛高度以8~10袋为宜,水泥库内保持干燥,水泥垛应离开四周墙壁20cm以上,各垛间应留70cm以上宽的通道,便于取用和通风。

三、砂、石料含泥量超标

1、表现形式

在对砂、碎石或卵石使用时,发现含泥量超标。这不仅降低混凝土强度,而且易发生混凝土干缩裂缝。

2、产生原因

(1)石砂、石料入场时含泥量已超标,未进行检查或控制不严。

(2)堆料场为普通土地,推土机推料时混入水泥造成超标。

(3)倒运砂、石材料时,运输车轮未清扫,混入水泥石及有害物质。

3、防治措施

(1)堆放砂、石场地应平整,排水通畅,且应铺筑水泥混凝土地面。

(2)推堆砂石时,不要抄底,使一部分砂、石成为场地材料铺装于原地面上,防止泥土等杂物混入砂、石中。

(3)严格对进行材料的含泥量进行检验,检验不合格产品坚决禁止进场。

(4)当运输车辆交替装运砂、石与其他物质时,应清扫运输车辆。

四、混凝土相对强度偏低或产生蜂窝、露筋问题

1、表现形式

砂、碎石、卵石各级粒径的含量不答合国家有关规范、标准的要求。

2、产生原因

(1)天然砂料原级配变化大,造成偏细或偏粗。

(2)碎石、卵石进场时级配合格,但由于反复用推土机推,用装载机装倒,使原级配遭到破坏。

3、防治措施

(1)应分别对不同级别的碎石或卵石进行堆放,使用时,可根据级配需要进行掺配。当备料场有限时,按级配加工要求进行备料,备料不要过多,堆的也不要过高,防止推土机推堆时多次重复碾压,破坏原有级配。

(2)发现砂的级配不符合标准时,可根据级配偏细还是偏粗的情况,用其相应的砂进行掺配。不得已时,也可筛除过粗或过细的颗粒,使其符合标准要求。

(3)碎石或卵石级配偏粗或偏细时,可用相应所缺粒径级配的碎石或卵石进行掺配,使之具有良好的级配。

五、骨料存在碱活性成分

1、表现形式

由于水泥中含有金属的可溶性碱,在室内潮湿环境下,会发生碱骨料内的吸水膨胀而产生混凝土的开裂。

2、产生原因

当活性骨料含量超过1%时,骨料中的活性SiO2与可溶性碱发生化学反应,生成碱性硅酸盐凝胶。由于该凝胶周围吸收水分后,发生体积膨胀,从而引起水泥混凝土的膨胀开裂。

3、防治措施

(1)对于那些经常接触水或处在潮湿环境中的混凝土所用的骨料,须严格按照中国工程建设标准化协会标准标求,对骨料进行碱活性检验。

(2)对碱―骨料反应,须加强重视。实践证明,碱―骨料反应与其他混凝土的破坏相互影响,而易被人将由碱―骨料反应引起的破坏归为其他原因找不准破坏原因。

(3)若工程中必须使用碱活性的骨料,必须控制混凝土的总碱含量不超过2.0~3.0kg/m3 。

(4)若水泥不能在骨料存在活性情况下保证低碱含量,可在水泥中掺入硅灰、火山灰、矿渣等混合料。因为上述混合材料中都含有较丰富的SiO2 ,可以在水泥混凝土硬化前,将水泥中的碱含量消耗掉,从而降低了碱―骨料反应。

六、外加剂使用不当

1、表面形式

外加剂使用不当主要表现为:混凝土强度不足;混凝土受冻;浇筑混凝土后,局部或大部长时间不凝结、不硬化;已浇筑完的混凝土内部出现蜂窝、孔洞。

2、产生原因

(1)早强剂与防冻剂复合使用,掺量超过规定数值,造成后期强度损失大及影响其耐久性。

(2)外加剂使用方法不正确,或未按规定对外加剂进行进场复验,或外加剂掺量过小或不均,或掺入了缓凝型减水剂。

(3)外加剂与硫酸钠混合由于搅拌不均匀,使其在小范围集堆,混凝土石化后集堆硫酸钠开始鼓包,不仅表面会出现“开花”,还会有蜂窝、孔洞,使混凝土内部有严重空洞现象。

3、防治措施

(1)严格对进场的外加剂进行检验。对进场外加剂应按批进行复验,复验项目应符合《混凝土外加剂应用技术规范》等国家现行标准规定,复验合格后方可使用。

(2)外加剂的使用前要弄清其特性、适宜的掺量范围、掺拌的方法,以便合理选用,适宜掺量,经试拌合格后再投入使有。掺拌方法要注意是制成溶液还是直接使用的区别。

(3)硫酸钠外加剂尽量不要单独使用,含有氯化物的外加剂严禁用于预应力混凝土结构中。

(4)外加剂存放要对其进行归类,不得相互混杂。粉状外加剂要保持干燥,注意防潮,如结块应烘干、碾碎,过0.6筛后才能使用。

七、混凝土配合比撑握不够严格

1、表现形式

混凝土强度不能得到保障,或者强度不足,或强度超标。

2、产生原因

(1)技术管理、质量控制制度不完善,岗位责任制不健全。

(2)施工人员现场经验欠缺,质量意识薄弱。

(3)上料不过磅或不灵、不准,形同虚设。

3、防治措施

(1)加强相应的各项制度,并完善质量保障系统。

(2)推行全面质量管理方法,提高相关负责人的质量意识。

(3)各组成材料的称量设备,应经常检查和维修,保持灵敏,可靠的工作状态。采用普通磅秤时,应该完善称量设施,派专人督察操作人员上料过磅。

混凝土材料篇5

随着环境保护、保持生态多样性及维持社会可持续发展的呼声日益高涨,新型混凝土材料的应用也会越来越得到世界各国材料与环境学者的重视。新型混凝土称为高性能混凝土,即HPC。组成HPC的材料包括水泥、粗细集料、多种矿物掺合料、水和超塑化剂,其组成和配比要比普通混凝土复杂得多,要求也相应高得多。从强度而言, HPC 具有高强(60~100MPa)和超高强(≥100MPa)的特性,采用高强混凝土,可以减小截面尺寸,从而减轻结构自重和对地基的负荷,并减少材料的用量,增大使用的空间,大幅度的降低工程造价,因而获得较大的经济效益。由于 HPC 具有高工作性,不仅可以减轻施工劳动的强度,还能节约施工的能耗。HPC 还有良好的耐久性,可增加对恶劣环境的抵御能力,延长建筑物的使用寿命,并减少维修费用及对环境带来的影响,具有显著经济效益。由于 HPC 的优良性能,近十几年来在国内外都得到了广泛的应用。综合材料的性能,HPC 代表着当今混凝土发展的总趋势,具有大流动性、高强度、高耐久性、 低水化热、 高体积稳定性等多方面的优越性能,它的应用将对混凝土建筑施工技术和混凝土结构性能起到重要的作用。 一、新型混凝土材料的应用

1.高性能混凝土

一些发达国家相继研制成功高性能混凝土,这在很大程度上,使混凝土进入了高科技时代,同时,也受到国际材料界和工程界的重视。高性能混凝土之所以受人们的重视是由于其本身在应用时,存在着以下优点:首先,高性能混凝土具有超高强特性,可使混凝土结构尺寸大大减少,从而减轻结构自重和对地基的荷载,并减少材料用量,增加使用空间,大幅度的降低工程造价;其次,具有高工作性,可以减轻施工劳动强度, 节约施工能耗。

2.预应力混凝土

预应力混凝土,是利用预先施加的拉应力抵抗使用过程中出现的压应力,或利用预先施加的压应力抵抗使用过程中出现的拉应力。混凝土的抗拉性能远好于抗压性能,其抗拉强度仅为抗压强度的1/18-1/8,极限拉应变仅为0.10×10-3-0.15×10-3。

在正常使用阶段,普通钢筋混凝土梁一般是带裂缝工作的,截面的开裂导致构件刚度降低、变形增大,结构的耐久性降低。预加应力的目的是将混凝土变成弹性材料“,无拉应力”或“零应力”作为预应力混凝土设计准则,使高强钢材和混凝土能够共同工作,进而达到荷载平衡。预应力混凝土的主要优点主要表现在以下几点:一、变被动设计为主动设计;在使用荷载作用下不开裂或延迟开裂、限制裂缝开展,提高结构的耐久性;二、可以合理、有效地利用高强钢筋和高强混凝土,从而节省材料,减轻结构自重;同时,还可以提高结构或构件的刚度,使混凝土结构的应用范围进一步扩大;三、施加预应力相当于对结构或构件作了一次检验,有利于保证质量,而由于在正常使用阶段钢筋和混凝土的应力变化幅度较小,重复荷载下的抗疲劳性能较好;此外,其还具有良好的裂缝闭合性能,与其相应的抗剪性能也有所提高。

3.活性微粉混凝土

这种混凝土也具超强性,通常情况下,其抗压强度可以达到200MPa-800MPa左右,是建立于普通混凝土基础上,在形成过程中,主要采用了以下措施:一、增大堆积密度;二、减少混凝土用水量;等等,从而来使得混凝土达到超高强度。另外,在使用过程中,由于其骨料粒径很小, 接近于水泥颗粒的尺寸。因此,在配合比设计时,要以单位体积的混凝土中各组成材料的质量比例,确定这种数量比例关系的工作,进行混凝土配合比设计。一般情况下,混凝土配合比设计必须达到以下四项基本要求,即:一、满足结构设计的强度等级要求;二、满足混凝土施工所要求的和易性;三、满足工程所处环境对混凝土耐久性的要求;四、符合经济原则,即节约水泥以降低混凝土成本。

4.轻质混凝土

这种类型的混凝土主要是利用天然轻骨料、工业废料轻骨料、人造轻骨料制成的轻质混凝土,强度高、密度小、保温好是其最为主要的特点,另外,保护环境方面也是极为有利的。对于这种类型的混凝土,在配合比设计时,要正确把握水灰比、单位用水量和砂率是的三个基本参数。混凝土配合比设计中确定三个参数的原则是:一、在满足混凝土强度和耐久性的基础上,确定混凝土的水灰比;二、在满足混凝土施工要求的和易性基础上,根据粗骨料的种类和规格确定单位用水量;三、砂率应以砂在骨料中的数量填充石子空隙后略有富余的原则来确定。混凝土配合比设计以计算1m3混凝土中各材料用量为基准,计算时骨料以干燥状态为准。

5.预填骨料升浆混凝土

在预填骨料层中布置压浆孔注入砂浆,形成预填骨料升浆混凝土。采取这种工艺,缩短了工期,取得了良好的经济效益。在制作时,其水灰比可低到0.15,需加入大量的超塑化剂,以改善其工作度。但是预填骨料升浆混凝土的价格比常用混凝土稍高,但大大低于钢材, 可将其设计成细长或薄壁的结构, 以扩大建筑使用的自由度。

6.智能混凝土

智能混凝土一种应用比较广泛的新型混凝土。首先,要计算水泥用量,根据已确定的混凝土中水泥用量,保证混凝土的耐久性;其次,要控制合理砂率,通过试验、计算求得,通过变化砂率检测混合物坍落度,能获得最大流动度的砂率为最佳砂率。第三,要根据骨料种类、规格及混凝土的水灰比,有效进行配合比的调整与确定。

7.掺减水剂混凝土

混掺减水剂混凝土,是以干燥骨料为基准的,由于在实际工地使用的骨料常含有一定的水分,因此必须将实验室配合比进行换算,换算成扣除骨料中水分后、工地实际施工用的配合比。掺减水剂混凝土配合比设计,首先要按混凝土配合比设计规程计算出空白混凝土的配合比;其次要在空白混凝土的配合比用水量和水泥用量的基础上,进行减水和减水泥,算出减水和减水泥后的每立方米混凝土的实际用水量和水泥用量,另外,还要重新计算砂、石用量。计算每立方米混凝土中的减水剂用量。

另外,还要一些其他的新型混凝土材料,如纤维增强混凝土、自密实混凝土、碾压混凝土、再生骨料混凝土等等。

二、新型混凝土材料的发展

在工程施工中,混凝土的应用是一种极为重要的材料,而且目前,在市场的应用和推广越来越广泛。当前,相关部门还加大投入,建立了专门的研究单位,研制出了很多了高性能混凝土以及相关的耐久性检测设备。尤其是随着科学的发展,混凝土性能的不断提高,越来越体现出新型混凝土的优越性,所以,使得混凝土在工程中的应用的认可度提高。

总结

总而言之,随着科学技术的发展,城市建设进程的不断加快,这在很大程度上,推动了我国混凝土的应用和发展,进而,在市场竞争中,混凝土的质量和性能也成为保证工程质量的主要因素。因此,需要我们加强研究,加大新型混凝土的应用和推广。

参考文献

混凝土材料篇6

混凝土作为一种传统的建筑材料具有悠久的历史,而随着科技和经济的发展,建筑的形式也在不断发展。高层、大跨度结构对建筑材料的要求越来越高,混凝土材料的品种不断增多,质量逐步提高,使用范围越来越广。当今根据性能的要求,在普通混凝土中添加材料并实施在工艺上,派生出名目繁多、性能特异、用途不一的新型混凝土,本文介绍了几种新型混凝土在建筑工程领域中的应用。

一、新型混凝土材料的概述与特性

自19世纪20年代波特兰水泥问世以来,由于用它配制成的混凝土具有工程所需要的强度和耐久性,而且原料易得,造价较低,特别是能耗较低,因而成为土建工程中不可缺少的材料。其技术的发展距今已有百年历史,20世纪初,发表的水灰比定理等学说,初步奠定了混凝土强度的理论基础,随后,相继出现了轻集料混凝土、加气混凝土及其他混凝土,在1938年发现了引气剂,六十年代初又出现了高效的减水剂等等,随着混凝土外加剂的广泛使用,衍生出了高效减水剂和相应的流态混凝土,伴着现代技术高分子材料进入混凝土材料领域,出现了聚合物混凝土和多种纤维被用于分散配筋的纤维混凝土。现如今,在普通混凝土的基础上,根据添加的材料和施工工艺的不同,派生出了名目繁多、性能特异、用途不一的新型混凝土,如石膏混凝土、硅酸盐混凝土、水玻璃混凝土、聚合物混凝土、结构混凝土、保温混凝土、防水混凝土、耐火混凝土、防辐射混凝土、离心混凝土、真空混凝土、灌浆混凝土、喷射混凝土、碾压混凝土、干硬性混凝土、半干硬性混凝土、塑性混凝土、流动性混凝土、高流动性混凝土、流态混凝土、高性能混凝土、活性微粉混凝土、低强度混凝土、钢纤维混凝土、自密实混凝土和智能混凝土等。

随着新世纪的到来,新型混凝土朝着高强、轻质、耐久、抗磨损、抗冻融、抗渗、抗灾、抗爆等方向迅速发展。目前,新型外加剂和胶凝材料的出现使原本已有良好工作性能的混凝土,又增加了优异的力学性能和耐久性能。这种新型混凝土称为高性能混凝土(High Performance Concrete),即HPC。组成HPC的材料包括水泥、粗细集料、多种矿物掺合料、水和超塑化剂,其组成和配比要比普通混凝土复杂得多,要求也相应高得多。从强度而言,HPC具有高强(60~100MPa)和超高强(≥100MPa)的特性,采用高强混凝土,可以减小截面尺寸,从而减轻结构自重和对地基的负荷,并减少材料的用量,增大使用的空间,大幅度的降低工程造价,因而获得较大的经济效益。由于HPC具有高工作性,不仅可以减轻施工劳动的强度,还能节约施工的能耗。HPC还有良好的耐久性,可增加对恶劣环境的抵御能力,延长建筑物的使用寿命,并减少维修费用及对环境带来的影响,具有显著经济效益。由于HPC的优良性能,近十几年来在国内外都得到了广泛的应用。综合材料的性能,HPC代表着当今混凝土发展的总趋势,具有大流动性、高强度、高耐久性、低水化热、高体积稳定性等多方面的优越性能,它的应用将对混凝土建筑施工技术和混凝土结构性能起到重要的作用。

二、新型混凝土材料的应用及发展

1、新型混凝土的工作性。新型混凝土所要求的标准要比普通混凝土高很多,需要具备很高的工作性,这个工作性是一个全面的综合的指标。它要求在流动性、可泵性和填充性等方面都要具有良好的性能,尤其是流动性,一般要保持坍落度在二十到二十五厘米之间,这样的话可以在搅拌、运输和浇注的过程中都满足工艺要求。新型混凝土可以达到在浇注的过程中,不用振捣就可以自流平,这是普通的混凝土所无法达到填充性,具有良好的稳定性。这些要求是普通混凝土难以满足的。与普通混凝土相比,HPC 的组分复杂,多种掺合料与超塑化剂配合使用,其目的是通过这些组分来调整性能。

2、新型混凝土的性能。现代建筑向高层化、大跨度方向发展,因此促进了高强HPC的研究和开发。在高层建筑中,混凝土强度是对应于柱子的轴力。可以说建筑物的层数是由所使用的混凝土强度来决定的。25~30层的建筑物要使用强度36MPa~42MPa的混凝土,30~35层要42MPa~48MPa,更高层的建筑就需要更高强的混凝土,如60层需用100MPa。目前建筑物设计和施工以30~35层(高度约100m)居多。因此,上述讨论的强度范围60MPa~120MPa的HPC是目前研究和今后发展的方向,而大量使用的强度标号是C40混凝土。在此情况下,配合比设计可以参照普通混凝土的方法,但是主要组成材料和性能应满足HPC的要求。HPC可能比普通混凝土要耐久得多,这是因为在设计配合比时,就考虑到耐久性问题。特别是早期下沉和硬化收缩小、干缩小、水化放热低,因而提高了混凝土抗裂缝能力,无初始结构缺陷。硬化后的混凝土密实、渗透性低。这些都使混凝土抵抗外部因素的能力得到提高,最终得到耐久性好的混凝土。

3、实际中的土木工程建设要求新型混凝土具有较大的流动性,以满足混合物集中搅拌、运输、泵送和浇筑等工艺过程,甚至在浇注时可以流平(即良好的填充性),最终得到均匀稳定的混凝土材料。这些要求是普通混凝土难以满足的。相对于普通混凝土,新型混凝土的组分较为复杂。其中的关键技术是多种掺合料与超塑化剂的配合使用(目的在于通过这些组分来调整其性能),必须将高效的减水剂与缓凝剂、引气剂、稳定剂等混合配比,组成的复合超塑化剂才能较全面的满足混凝土对工作性的要求。在此情况下,配合比的设计可以参照普通混凝土的方法,但是主要的组成材料和性能应满足新型混凝土的要求。新型混凝土可以比普通混凝土要耐久得多,因此在设计配合比时,就要考虑到耐久性的问题,特别是早期下沉和硬化收缩小、干缩小和水化放热低等。如今,我国高性能混凝土的研究、应用发展迅速。通过材料研究挑选、采用特殊工艺、制造出来的具有特殊结构与表面特性的新型高性能的混凝土,能减少环境的负荷,并能与生态环境相协调,从而为环保事业做出贡献,因此新型混凝土材料的发展前景被众多建筑人士所看好。新型混凝土材料应向着智能化、规模化、理论化、体系化和集成化的方向迅猛发展,以适应经济全球化的发展模式,促使我国建筑界得到更广阔的发展。

总结

新型混凝土的研发对我国的工程建设质量有了很大的提高,在工程领域已经得到了应用,但是范围还不是很广泛,要想大范围大面积的使用还是需要一个过程的,新型混凝土以其优良的性能在工程中普遍应用将会成为发展的趋势。在我国社会不断发展的过程中,基础建设发展势头良好,新型混凝土势必会成为工程材料的主力军,为我国的工程建设奠定良好的基础。

参考文献

[1]张鹏,新型混凝土材料在土木工程领域中的应用[J].邢台职业技术学院学报,2008,(2)。

[2]俞瑞堂,高性能混凝土的发展与展望[J].水利水电工程设计,1997,(2)。

混凝土材料篇7

一、混凝土耐久性不足的后果

高性能混凝土的核心是保证耐久性。耐久性对土木工程量浩大的混凝土来说意义非常重要,如果在土木工程建设中,混凝土的耐久性不足,就会导致出现严重的后果,给人民的生活带来严重的危害,给未来的社会造成极为沉重的负担。通过调查显示,在美国由于混凝土耐久性不足,许多工程的寿命不足20年。回过头来,在看我们国家,在50~60年代所建设的混凝土工程已使用40余年,如果混凝土的平均寿命是30~50年,照此下去的10~30年之间,这些工程就会需要投入大量的资金进行维修。所要的维修费用和重建费用将是极其巨大的。因此说,高性能混凝土就要从提高混凝土耐久性入手,以降低和减少巨额的维修费用和重建费用。

二、影响土木工程混凝土耐久性的主要因素

1、混凝土的材质。混凝土主要是由一些碎石、砂、水泥和水拌合后凝硬而形成的。这些材料的优劣影响了硬化后的混凝土的密实度和强度,因此,只有好质量的材料才会为土木工程中使用的混凝土材料的耐久性打下很好的基础。在社会步伐加快发展的今天,土木工程迅速的发展,在建筑施工的过程中忽视了对材料的要求,在土木工程的施工现场只重视混凝土的强度来作为工程需要材质的唯一评判的标准。可见,混凝土材料的不合格,将会导致混凝土在初期形成裂缝,对其结构的安全产生了隐患。

2、混凝土的密实性。混凝土的内部缺陷也就是说混凝土不够密实,在使用的过程中很容易受到各种因素的侵袭,主要由以下几种形式:

第一,混凝土的抗渗性。混凝土的抗渗性指的就是混凝土抵抗压力水渗透的能力。混凝土外的液体流向混凝土内部的时候,由于受到混凝土的阻碍,不容易流向其内部,这就说明混凝土的抗渗性很好。简单地说,混凝土的耐久性与水和其他的一些液体流向混凝土内部的数量以及范围有直接的关系,所以说,混凝土的抗渗性越高,混凝土的耐久性也就越高。当混凝土的强度不高以及密实度不够的时候,由于受到水和其它化学物质的侵入,在化学的反应下,使得混凝土受到了严重的侵蚀,从而影响了混凝土的耐久性。

第二,混凝土的冻融破坏。当混凝土的结构在零度以下的环境的时候,混凝土孔隙中的水就会结冰,然后体积膨胀,在过冷水的压力下达到一定程度的时候,就会,导致混凝土的破坏。混凝土的抗冻性能与混凝土内部的孔隙中气孔结构和气泡的数量有关。在气孔少和小的情况下,破坏的作用就会越小,封闭气泡越多,就说明抗冻性越好,影响混凝土的抗动性除了这些因素外,还与混凝土饱和度、水灰比、混凝土的龄期、集料的空隙率及其间的含水率有关。当混凝土的强度不高和密实度不够的情况下,就会有很多的水进入到混凝土的体内,在温度低的情况下,混凝土体内的水就会结冰,然后体积膨胀从而产生压力,使得混凝土的内部结构发生循环破坏,降低了轻度,从而导致混凝土的耐久性能不好。

第三,混凝土的碳化。混凝土的碳化指的就是混凝土中的Ca(OH)2与空气中的CO2产生了化学反应,从而形成了中性的碳酸盐CaCO3。混凝土在没有碳化之前是碱性的,这时的碱度PH值为11.5,在经过碳化之后的混凝土的PH值为大约在8.5~9.5之间。可以比较出,混凝土在碳化之后碳度也受到的影响,降低了碳度。这时候,混凝土孔隙溶液中氢离子数量变多了,从而也降低了混凝土对钢筋的保护作用。在碳化超过混凝土的保护层时,由于受到水和空气环境的影响下,混凝土就完全的失去了保护钢筋的作用,这时候,钢筋就会开始生锈,受到锈蚀的体积会变大,从而对周围的混凝土产生膨胀力,最后导致混凝土裂缝的情况发生。在这中状态下,水和一些其它的物质就会渗入到混凝土的体内。总之,当混凝土的强度不高以及密实度不好的时候,空气中的水和CO2渗入到混凝土的体内,形成了碳酸,再加上与氢氧化钙的化学反应,最终将钢筋锈蚀,这一过程就是混凝土的碳化过程。

三、提高混凝土耐久性的主要技术措施

1、掺入高效减水剂。掺入高效减水剂对于提高混凝土的抗渗性以及提高混凝土的抗冻性都起到了良好的作用,在特殊的情况下,还可以节省水泥的用量。

2、掺入高效活性矿物掺料。掺入高效活性矿物掺料之后的水泥结构更加密实,阻断了一些渗漏物质的路线。另外对于集料与水泥石的交界处有所改善,还能够改善交界面的性能,这些对于增加混凝土的耐久性都起着至关重要的作用。

3、在进行混凝土搅拌的过程中,要搅拌得均匀,按照施工程序进行,这样可以保证混凝土的施工质量,同时还能提高混凝土的耐久性能。

4、控制混凝土的水灰比及水泥用量。控制好水灰比是决定影响混凝土的强度以及密实度的关键要素,同时,控制好水灰比的大小也是影响混凝土的耐久性的要素。

结束语

由此可见,提高混凝土的耐久性是混凝土发展的必然趋势,同时,混凝土的耐久性能的好坏直接影响着土木工程的使用寿命。我们要从分的认识影响土木工程混凝土耐久性的主要因素,然后根据土木工程的具体实际的情况,来采取提高混凝土耐久性的主要技术措施。本文只是对土木工程中混凝土材料的耐久性进行了简单的陈述,由衷的希望,在今后的工作当中,有更多的人士参与进来发表自己的见解和观点,以此来提高混凝土的耐久性,延长混凝土结构的使用寿命。

参考文献

混凝土材料篇8

一高性能混凝土的特点:

我们都知道,传统的混凝土材料由水泥、沙子、石灰、石子和水组成,一直以来,在建筑工程中发挥重要的作用。然而,近年来,高性能混凝土以其显著的特点和优越的性能,在土建工程中逐步取代传统混凝土材料,处于重要地位。新型混凝土材料的特点如下:

1 在组成上,高性能混凝土增加了多种矿物掺合料和超塑化剂,且在配比方面也比普通混凝土复杂很多,流动性大及流动度经时损失小。

以上特点满足了混凝土在搅拌、浇注、运输等过程的要求,甚至在浇注时要求混凝土不振捣自流平,具有良好的填充性和稳定性。这些特点和功能是普通混凝土难以达到的效果。

2高性能混凝土以其新型的外加剂和胶凝材料的使用使其呈现出独特的力学性能和耐久性能。

现代的建筑形式追求高层和跨度大的风格,这就对混凝土的性能提出了更高更强的要求,而高性能混凝土恰恰能满足这样的要求。特别是其早期下沉和硬化程度收缩小、水化后放热量低,因而提高了混凝土抗裂缝能力,硬化后的混凝土密实、渗透性低耐久性能优越。

3 高性能混凝土具有高强的特性,使得其在应用中大大减小结构尺寸,从而减少材料的耗用量,降低工程总体造价。

建筑物的层数是由所使用的混凝土强度来决定的,而建筑层数越高,对混凝土的强度要求越大,而高性能混凝土的这种高强特性可以轻松的达到要求,并能在土建工程中节省空间,节省了大量建筑资金。

4性能混凝土的耐性特别强,从而能够抵挡外界恶劣环境的侵袭,使建筑物本身的寿命延长,从长远方面来说,具有极高的社会经济效益。

基于这一特点,高性能混凝土北用于高层建筑、大跨度桥梁、海上采油平台、矿井工程、海港码头等工程中。

二绿色高性能混凝土材料的展望:

多年来,关于高性能混凝土材料的研究过于偏重使其达到某种或综合的优良性能上,而对其耐久性重视程度不够。然而,随着全球环境问题的日益突出,人们越来越希望高性能混凝土的绿色化。然而,实现水泥生产“绿色化”一个环节是不够的,必须同时开展如下工作:

第一、要加强混凝土科研开发、标准制定、工程设计和施工人员等的环保节能意识,引起混凝土工程领域各环节的高度重视。

第二、工程设计人员应更新传统的混凝土设计方法,施工人员要提高质量意识,严格施工,控制某些种类防冻剂和早强剂的掺量。

第三,开发适合于掺活性混合材混凝土的高性能外加剂,以解决掺混合材对混凝土性能产生的某些负面效应,同时还可避免过分提倡混合材超细磨所引起的能耗问题。

第四,研究和制定绿色高性能混凝土的质量控制方法、验收标准。

三土建工程中的造价控制:

土建工程造价控制贯穿于整个建筑项目的全过程,在整个土建施工过程中,要严格把造价控制在一定的限额内。加强土建工程造价的管理,能保证准确无误地将资金合理地分配到各个项目中,从而实现在各投资项目之间进行均衡而合理的分配,有助于控制成本费用,有利于整体经济效益的提高。

1在工程决策中队造价的控制

在土建工程开始之前,要认真搜集有关资料,做好项目的整体规划,对整个工程进行科学合理的分析,认真做好工程款预算,做到全面细致。此外,要从现实出发,充分考虑到施工过程中可能出现的各种情况及不利因素对工程造价的影响,预留款项以防影响工程的施工和整个工期的长短,使投资基本上符合实际。

2在设计阶段的造价控制

整个建筑工程的方案设计贯穿整个施工进程中,起着无可替代的作用。所以为了节省资金,施工单位在审查设计时,要重视设计方案的优化,利用各种指标对设计进行认真分析,以先进、适用、经济、合理、切实可行为原则来改进完善施工的设计方案。

3 在招标阶段的造价控制在工程招投标过程中,严格按《招投标法》操作,规范招投标行为,遵循公开、公平、公正原则,合理确定标底,做好工程承包合同的签署工作,尽量少指定分包项目,尽可能堵住一切漏洞,减少费用变更。

     【结束语】:

现在建筑业的发展趋势是愈加倾向于新型建筑材料的使用,和能源的节约以及再利用,这不仅是能源方面的突破,也是处于环保的要求,高性能混凝土能很好的实现材料、能源和环保的有机结合。土建工程造价的管理与投资控制的主要目的,就是运用科学方法解决土建工程中经营与管理问题,只有在整个工程的各个阶段都严格控制造价,才能尽量减少或避免建设资金的流失,最大限度地提高资源的利用率。

【参考文献】:

混凝土材料篇9

一、高性能混凝土(High Performance Concrete)概述

混凝土技术发展已有170多年的历史,在缓慢的发展过程中,曾出现几次变革,那就是1919年发现了水灰比定理,1938年发现了引气剂,60年代初出现高效减水剂。目前,混凝土技术发展又处在一个变革时期。新型外加剂和胶凝材料的出现使既有良好的工作性,又有优异的力学性能和耐久性能的混凝土的生产成为现实。这种新型混凝土称为高性能混凝土(High Performance Concrete),简称HPC。HPC的应用将对混凝土建筑施工技术和混凝土结构性能起重要作用。因此,美国、日本、英国、法国、加拿大、挪威等国都将HPC作为跨世纪的新材料,投入大量人力物力进行研究和开发。

20世纪80年代以来,一些发达国家相继研制成功高性能混凝土(以下称HPC),使混凝土进入了高科技时代,日益受到国际材料界和工程界的重视。很多国家把HPC作为跨世纪的新材料加以研究与利用,使其成为当代混凝土研究和应用领域中的一个热点。

HPC组成材料包括水泥、粗细集料、多种矿物掺合料、水和超塑化剂,其组成和配比要比普通混凝土复杂,要求也高得多。

HPC的优点体现在:

1.由于HPC的高强(60Mpa~100MPa)和超高强(≥IOOMPa)特性,可使混凝土结构尺寸大大减少,从而减轻结构自重和对地基的荷载,并减少材料用量,增加使用空间,大幅度的降低工程造价。

2.由于HPC具有高工作性,可以减轻施工劳动强度,节约施工能耗。

3.HPC的高耐久性可增加对恶劣环境的抵御能力,延长建筑物的使用寿命,减少维修费用及对环境带来的影

响,具有显著的社会和经济效益。

二、高性能混凝土在建筑工程中的应用

为了分析高性能混凝土在建筑工程中的应用,笔者首先从高性能混凝土的特性来了解高性能混凝土。

(一)高性能混凝土特性

1.新拌混凝土的工作性。新拌混凝土的工作性是一个综合指标,如流动性、可泵性、填充性、均匀性等。HPC要求新拌混凝土具有大流动性(坍落度20cm~25cm)及流动度经时损失小,以满足混凝土集中搅拌、运输、泵送、浇注的工艺要求。甚至在浇注时要求混凝土不振捣自流平,即好的填充性。最终得到均匀稳定的混凝土。这些要求是普通混凝土难以满足的。与普通混凝土相比,HPC的组分复杂,多种掺合料与超塑化剂配合使用,其目的是通过这些组分来调整性能。其中最关键的技术之一是超塑化剂及其组成。单一成分的超塑化剂(如萘系和三聚氰胺系高效减水剂)虽然对水泥浆有强的分散作用,减水率高达18以上,但并不能满足HPC对工作性的全部要求。因为单一成分的超塑化剂(SP)难以解决坍落度损失、离析分层等问题。因此,必须将高效减水剂与缓凝剂、引气剂、稳定剂等组成复合超塑化剂(CSP)才能较全面满足HPC对工作性的要求。

2.硬化混凝土的性能。现代建筑向高层化、大跨度方向发展,因此促进了高强HPC的研究和开发。在高层建筑中,混凝土强度是对应于柱子的轴力。可以说建筑物的层数是由所使用的混凝土强度来决定的。25~30层的建筑物要使用强度36MPa~42MPa的混凝土,30~35层要42MPa~48MPa,更高层的建筑就需要更高强的混凝土,如60层需用100MPa。目前建筑物设计和施工以30~35层(高度约lOOm)居多。因此,上述讨论的强度范围60MPa~120MPa的HPC是目前研究和今后发展的方向,而大量使用的强度标号是C40混凝土。在此情况下,配合比设计可以参照普通混凝土的方法,但是主要组成材料和性能应满足HPC的要求。HPC可能比普通混凝土要耐久得多,这是因为在设计配合比时,就考虑到耐久性问题。特别是早期下沉和硬化收缩小、干缩小、水化放热低,因而提高了混凝土抗裂缝能力,无初始结构缺陷。硬化后的混凝土密实、渗透性低。这些都使混凝土抵抗外部因素的能力得到提高,最终得到耐久性好的混凝土。

(二)高性能混凝土的应用研究

据悉,全世界每年混凝土用量可达90亿吨,规模之大、耗资之巨、应用之广,作为现代工程主要材料的地位依然不被撼动。混凝土用于工程结构至今已有170多年历史了,纵观混凝土技术的发展进程,其发展主要遵循复合化、高强化、高性能化三大技术路线长期以来,人们过分注重于混凝土的力学性能,主要集中在提高混凝土的强度上,以搞压强度的比例关系来代表其性能的优劣,而对影响混凝土耐久性则重视不够,从而导致了许多工程结构的开裂,甚至崩塌。例如,1980年3月,北海Stavanger近海钻井平台Alexander Kjell号突然破坏;乌克兰境内的切尔诺贝利核电站的泄漏;日本的一些钢筋混凝土桥梁,投入不到20年因不能使用而被炸毁;辽宁盘锦辽河大桥的断毁等等。此外,由于混凝土耐久性不高,致使混凝土工程的维修费急剧增大。如何延长混凝土的使用寿命,发展高性能混凝土势在必行。

2001年10月用高性能混凝土成功浇捣的航站楼工程第一块大面积楼板,为浇筑量约800m3的主楼南区二层楼板。该楼板呈长条型,宽约20m,长约80m,厚500mm,浇筑前沿楼板长度方向由南往北布置2条施工泵管,分别提供泵送混凝土。施工浇筑时,投入混凝土生产线2条、混凝土搅拌车22台、混凝土泵机2台,施工用时14h,施工过程顺利。其后,在检查认可了这种新型混凝土抗裂性以及总结了它的施工养护经验的基础上,陆续浇捣了其它的大面积楼板,整个航站楼施工补偿收缩纤维混凝土总量超过4万m3。经检验,所有应用补偿收缩纤维混凝土施工的楼板强度均达到设计要求,没有发现任何明显的肉眼可见裂缝,抗裂效果得到各方认可和好评。

早在1992年,吴中伟首次将高性能混凝土介绍到国内。如今,我国高性能混凝土的研究、应用发展迅速。我国是生产和使用混凝土的大国,混凝土的质量在不断地提高,涉足高性能混凝土的研究和应用还是近10年的事。随着高性能混凝土的优越性不断地得到认可,混凝土应用技术的进步,城市建设速度的加快,高性能混凝土获得了迅速发展。

高性能混凝土在实际工程中获得了越来越广泛的应用,尤其是在高层建筑、大跨度桥梁、海上采油平台、矿井工程、海港码头等工程中的应用日益增多。例如:上海金茂大厦(C60)、北京静安中心大厦(C80)、辽宁物产大厦(C80)、南京希尔顿国际大酒店(C30和C50)、长春国际商贸城(C55)、广州虎门大桥(C50)、上海杨浦大桥(C50)等都是应用的典范。

全国很多研究单位已经研制出普通泵送高性能混凝土、大掺量粉煤灰高性能混凝土、高流态自密实高性能混凝土、纤维增加高性能混凝土、轻骨料高性能混凝土、水下不分散高性能混凝土港工与海工高性能混凝土、高抛纤维高性能混凝土等等,研制出C30-C80的各种强度等级的高性能混凝土和完备的混凝土耐久性检测设备,以及掌握了配套的施工成套技术和各种混凝土耐久性检测技术等。其中具有优异耐久性的C30高性能混凝土即将在地质条件复杂的深圳地铁工程中大规模使用。

三、结语

如今我国HPC发展形势一片良好,但是要使HPC在建筑工程中推广使用还需一个认识和实践的过程。随着我国建筑基础建设的不断增强,HPC必将成为新世纪的重要建筑工程材料。

参考文献

混凝土材料篇10

针对以上混凝土实验存在的问题,在借鉴兄弟院校的经验和充分了解学生兴趣,以及混凝土发展状况的基础上,提出“基于项目的混凝土综合设计实验”教学模式。并从实验内容、组织方式、成绩评价等进行了一系列的改革。混凝土的实验“基于项目”是混凝土方面实验教学以实际土木工程中的混凝土结构构件为例子,可以是梁、板、柱、基础等,设计的强度、和易性、耐久性均以现场施工图为依据,水泥、砂、石等完全在现场工地提取,让学生在实验室完成水泥、砂、石等实验数据的测定,依此数据完成混凝土配合比的设计,再进行混凝土一系列的实验。让学生通过项目熟悉混凝土配合比设计、混凝土拌合物性能和混凝土强度实验的全过程,使学生清楚工程背景和自己的工作职责。“综合设计”就是混凝土配合比实验改验证性为综合设计性实验。综合设计性实验,目的是培养学生综合运用知识和工程观念,让学生根据老师提出的要求,模拟实际工程,完成查找资料、独立设计、实验、设计编写实验报告的全过程。综合设计性实验的核心是设计、选择实验方案,并在实验中检验方案的正确性与合理性。对于培养学生理论联系实际、分析问题和解决问题的能力及创新精神和创新能力具有重要作用,是培养土建类工程应用型人才不可缺少的环节。

总之,“基于项目的混凝土综合设计实验”教学模式就是以实际工程中的混凝土梁、板、柱、基础等结构为例子,按照设计图纸中对混凝土强度、和易性、耐久性等要求,将水泥、砂、石实验整合进行混凝土配合比设计和相关实验。实验中严格按实际工作的程序进行教学,试块抗压强度进行两个对比:混凝土自然养护和混凝土标准养护相互比较,混凝土7天、28天的抗压强度相互比较。学生从对比中分析混凝土强度的影响因素,从而加深对理论知识的理解和掌握,同时可以保证知识的连续性和工作的真实性。实验过程详细见图1。另外,混凝土实验教学应遵循因材施教的原则,在设立了必做实验项目(即以上实验)以外,还增加了选做和研究性实验项目。选做实验项目主要有水泥路面混凝土(交通工程专业学生必选,其他专业学生选做)、轻集料混凝土、粉煤灰混凝土和泵送混凝土等配合比设计等;研究性实验项目主要是学有余力的学生参与教师的科研项目。这样可以满足不同层次学生的学习需求。选做和研究性实验不占计划学时,学生利用业余时间、根据自己的兴趣爱好选择。

三混凝土实验的实施

混凝土综合设计性实验作为教学改革的一部分,为完成好应从以下几方面建设和实施。

1实验条件的准备

为了体现学生人人参与、个个动手的组织理念,将改革前的5~6人一组,改为2~3人一组,实验仪器设备、各种实验所需材料应满足分组要求。为此实验室根据学生的分组情况补足所用的各种仪器设备,增加实验用房,从硬件上满足综合设计性实验的要求。

2组织与实施

时间安排。将改革前的分散实验,改为最大限度的集中时间进行,尤其是砂石和混凝土实验尽可能集中进行,以便于实验数据的有效利用。依次递进完成各实验的学时分配为:水泥性能实验(2学时)、砂、石实验(2学时)、混凝土设计性实验(4学时)。实验组织:每个班分为4个大组,12个小组,每个小组2~3人,每个班分2批次以小组为单位进行实验。4个大组分别以实际工程中的柱、梁、板、基础为背景资料和实验条件,每一大组中的3个小组,分别制作四组试块,分别测定自然养护和标准养护下的7天、28天的抗压强度。第一次实验完成水泥、砂,石等原材料性能实验后,要求每组学生在课余时间自行查阅文献和新的标准规范,结合各组成材料的检测数据,自行设计混凝土配合比,由指导教师审核后再进行混凝土拌合料的实验,完成混凝土抗压强度实验后,要求同一大组(3各小组)的实验结果进行对比、讨论、分析,并在实验报告中充分体现。

3实验评价改革

改革之前实验成绩主要根据学生上交的实验报告评定,很难客观公正的评出学生的真实水平。改革后,加大了实验成绩占课程总成绩的比例,从10%增加到30%。成绩评定原则是以知识运用的“合理性”为主,即学生应能拿出理由说明其设计的合理性,并有适当的分析与思辨。混凝土实验成绩综合了混凝土配合比设计资料(包括水泥、砂石实验数据的真实性,实验记录等)、过程评价(包括出勤率、实验研究操作和动手能力、解决问题的能力等)、实验报告(对结果的对比分析、报告质量等)、小组互评和团队协同能力等进行评价。

四混凝土实验的改革效果

通过混凝土实验的改革为真实工程条件下的综合设计性实验以来,经过2届学生的实践发现,学生的学习主动性和实验教学效果明显提高,主要表现在以下几方面。

1学生主动获取和综合运用知识的能力进一步加强

以往学生做完水泥、砂石实验就认为实验结束,基本不会对实验过程或结果进行思考。现在,每组学生为了合理设计混凝土配合比,首先清楚应从组成混凝土的原材料实验中获取哪些实验数据和参数,其次这些数据和参数对混凝土配合比设计要求有何影响,进一步思考在满足混凝土施工要求、强度和耐久性的前提下,采取什么方法能够节约水泥和降低混凝土的成本等问题,能主动思考,把前后实验有机地结合起来,综合运用知识的能力、分析问题和解决问题的能力得到了锻炼和提高。

2培养了学生动手能力和团队协作能力

改革后,减少实验小组每组人数,在规定的时间内完成实验,要求小组成员应分工明确,相互协作,保证每个学生都能动手操作,尽量让每个学生都得到实验技能的训练。若实验结果达不到有关标准,要求学生认真分析原因,不得对试验数据进行修改,培养实事求是、严谨认真的科学工作态度与作风。

混凝土材料篇11

第二条、材料应符合下列第_________项技术标准(包括质量要求)。

1、国家标准,标准号 。

2、地方标准,标准号 。

3、双方约定的附加技术要求(见附件)。

第三条、计量方法

国家或主管部门有规定的,按规定执行;无规定的,双方约定为: 。

第四条、包装标准和包装物的供应与回收

对于包装标准,国家或主管部门有规定的,按规定执行;无规定的,双方约定为:_____ 无 ____。 对于包装物,除国家规定由甲方供应的以外,应由乙方负责供应;包装物的回收为:_____ 无 ____。

第五条 交货方法、运输方式、到货地点

1、交货方法:_____ ____。

2、运输方式:_____ ____。

3、交货地点:____ ___。

4、甲方应提前_________小时以(书面/电话)方式向乙方提出供货需求;交货完毕双方应签字确认。

第六条、验收方法

1、甲方应在货到24小时内按相关标准进行验收。

2、经验收不合格的,甲方有权拒收并退回乙方。

3、甲方因使用、保管不善等造成产品质量下降的,应自行承担相关责任。

第七条、价款结算及支付

1、价款的结算依据:双方签字确认的磅单或签字盖章的对账单。

2、价款的支付方式:___ ______。

3、价款的支付时间:_____ ____。

4、在供货过程中,如甲方不能按合同约定期限支付价款,乙方可中止供货,但应提前5日通知甲方。

第八条、违约责任

1、甲方未按本合同约定给付价款的,自应付价款之日起按银行同期贷款利率向乙方支付所欠价款的利息。

2、甲方未按合同约定履行其他义务的,应按_________向乙方支付违约金;给乙方造成损的,还应承担赔偿责任。

3、乙方未按合同约定履行义务的,应按_________向甲方支付违约金;给甲方造成损失的,还应承担赔偿责任。

4、因不可抗力原因致使本合同不能继续履行或造成的损失,甲、乙双方互不承担责任;因不可抗力原因而终止合同造成的损失,由双方协商承担。

第九条、争议解决方式

本合同项下发生的争议,由双方当事人协商解决或向_________申请调解解决;协商或调解解决不成的,按下列第_________种方式解决:

1、向_________人民法院提起诉讼;

2、向_________仲裁委员会提起仲裁。

混凝土材料篇12

1原材料质量对商品混凝土质量的影响

(1)原材料的质量直接影响到商品混凝土的质量;商品混凝土是一种胶结性质的材料和集料以及填料按设计比例混合后加水并成型后,经凝固硬化而粘结成为具有一定强度的结构性构件实体。商品混凝土主要构成为水泥、骨料等。商品混凝土是目前用量最大的建筑材料。混凝土工程质量的好坏直接影响着整个钢筋混凝土结构的整体质量,而混凝土原材料的质量直接影响着混凝土工程的质量。因此,确保钢筋混凝土结构质量其中一个重要的因素是要从混凝土原材料的质量控制做起。原材料选用不符合标准将导致混凝土工程产生质量缺陷或裂缝,直接影响着整个建筑工程结构的内在及外观质量。混凝土因材料选用不当产生质量缺陷或裂缝,主要是因为混凝土材料变形受约束所引起的内应力大于材料抗拉强度的缘故。合理调配配合比可以减少内应力。商品混凝土广泛应用于建筑、交通、水利、铁路等工程建设中,是工程结构的重要组成部分,其质量直接影响到整个工程主体结构的质量;因此对混凝土有直接影Ⅱ向的原材料质量是我们必需控制的。

(2)商品混凝土应采用高质量的原材料;原材料是组成商品混凝土的基础,原材料品质的优劣直接影响到商品混凝土质量的好坏,因此首壳要把好原材料质量关。水泥的强度和体积安定性直接影响混凝土的质量。水泥的强度上下波动,商品混凝土的强度就会发生相应的变化;水泥的体积安定性差,就会使混凝土产生膨胀性裂缝。因此,要选择好水泥品种,大型水泥厂生产的水泥质量比较稳定可靠。砂最关键的是细度模数和含泥量,砂子太细或含泥过多,会增加混凝土的干缩裂缝。另外,砂石中合泥量高,不仅影响商品混凝土的强度,而且影响抗冻性、抗渗性和耐久性。因此,混凝土最好采用中粗砂,且含泥量和有机质的含量必须满足规范要求。石子主要控制好级配、针片状含量和压碎值。目前,许多混凝土厂家的石子级配都不尽合理,因此,如何确保证石子级配连续,并且在生产中可控,还需要进一步工作。现在鞍山地区主要使用商品混凝土,选择商品混凝土厂家也是一件很重要的事情。根据经验,一定要选择信誉好的,设备较先进的商品混凝土厂家,例如中冶集团的商品混凝土搅拌站。同时必须对原材料进行定期或不定期的抽查。

(3)根据混凝土工程要求设计试配商品混凝土的配合比;商品混凝土配合比是指单位体积的混凝土中各组成材料的重量比例,水灰比、单位用水量和砂率是混凝土配合比设计的三个基本参数。确定其基本参数的原则是:在满足混凝土强度和耐久性的基础上,确定混凝土水灰比,在满足商品混凝土施工要求的和易性基础上,根据粗骨料的规格确定混凝土单位用水量,砂在骨料中的数量应以填充石子空隙后略有富余的原则来确定。一般我们鞍山市建设工程质量检测中心每年都要做上千个配和比用于工程施工,配和比设计我们尽量做到既经济又能满足使用要求。

(4)商品混凝土中的原材料备组成部分对混凝土质量的影响;水泥的影响;硅酸盐水泥主要的组威矿物有四种,它们的水化性质不同,在水泥中所占比例不同时,对水泥的影响性质也不同。C3S对水泥早期强度影响较大,其含量高硬化快强度高,但水化热是其他矿物水化热的几倍。因此C3S含量较大的早强水泥容易因早期的温度收缩、自收缩和干燥收缩而使混凝土开裂。目前商品混凝土尤其是C50以上强度等级的混凝土普遍使用高效减水剂和其他外加剂以及硅酸盐水泥,由于水化速度快,而立即以胶体微粒析出并渐渐凝聚而成为凝胶。对减水剂的吸附量也最大。因而C3S含量高的硅酸盐水泥水泥一般与外加剂的适应性稍差。水泥细度对混凝土的影响;在目前生产的硅酸盐水泥磨得很细,其中的细颗粒过多,增加了水泥的比表面积加快了水泥的水化速率,畏高了早期强度,因此硅酸盐水泥早期的水化热使混凝土的自收缩和干燥收缩发展船陕。水化快的水泥颖粒水化热释放得早且集中;因水化快消耗混凝土内部的水分也快,引起混凝土的自应力干燥收缩。粗颗粒的减少,减少了稳定体积的未水化颗粒,因而影响到混凝土的后期强度。而且混凝土中水泥用量过度的增加,影响混凝土的耐久性,还会影响混凝土的抗冻性、抗裂性。建议在施工中尽量选用水化热低的普

通硅酸盐水泥或矿渣硅酸盐水泥。

商品混凝土中的骨料的品种、质量与数量。设计试配商品混凝土配合比时,要求骨料的强度大于混凝土的强度。因此一般情况下,干净的骨料质量对混凝土强度没有什么影响。影响混凝土强度的主要是骨料中的有害物质;如淤泥、有机物、硫化物和硫酸盐等。它影响骨料于胶结料的粘结,局部损失混凝土的强度,硫酸盐和硫化物对水泥有腐蚀作用,它与水泥的水化物反应生成钙矾石,使水泥石体积膨胀。它除了能降低混凝土的强度外,还降低混凝土的抗冻性能。当骨料含有较多的软弱颗粒或杂质时,也会使混凝土强度下降。表面棱角多的碎石笔表面光滑的卵石与水泥石的粘结力要强。混凝土中骨料的用量与水泥之间的比例关系,也直接影响混凝土的强度,特别对于水泥用量比较大的高强混凝土。掺加粉煤灰和外加剂对混凝土强度的影响;在目前使用的高强度等级混凝土中,为了改善混凝土的物理力学性

能,提高混凝土的强度和耐久性,一般采用外加剂和超细粉煤灰双掺的办法,粉煤灰作为活性材料,主要含有大量的三氧化铝和SiO2,与水拌合后,本身不硬化,而是与气硬性的氢氧化钙相结合,在水的作用下继续硬化,由于矿物颗粒比较细,具有填充效应相加速流化效应,增加混凝土强度。通过大量的工程实践充分证明了在提高混凝土强度的同时,也带来了混凝土的早期强度略微偏低的现象,所以在配制高强混凝土时,要注意掺加量的比例要掌握准确,适应性如何等等,必需试配后掺加超细粉煤灰,否则影响混凝土强度。当然也可以掺加超细活性矿粉调整混凝土的配合比。

2结束语

商品混凝土中的原材料备组成部分对混凝土的质量影响是不容忽视的,要创建优质工程必须有优质的原材料生产的商品混凝土作为基础,我们检测行业也是控制混凝土的质量的重要一环。

参考文献:

混凝土材料篇13

1 商品混凝土概述

商品混凝土指的是以集中搅拌、远距离输送的方式向建筑工地供应一定要求的混凝土。混凝土作为当今土木工程建设领域用量最大的建筑材料之一,其未来的发展方向一直受到相关人士的关注,普遍认为商品混凝土将是现代混凝土的主要发展方向,因为商品混凝土与现代的施工工艺相结合,属于高科技的建材产品,主要包括大流动性混凝土、泵送混凝土、防渗抗裂大体积混凝土以及高强高性能混凝土等,而且商品混凝土的普及程度将会代表一个国家或者地区的混凝土施工水平以及现代化的建设程度。

商品混凝土的工艺流程主要包括原材料的选择、混合物的搅拌、运输、泵送和浇筑。其中原材料的选择以及搅拌时配合比的合理性将会影响到混凝土的质量及混凝土的生产成本。商品混凝土作为现代混凝土的主要发展方向,其特点主要有:(1)因为它是集中搅拌,所以能够严格的控制好原材料的质量及配合比;(2)要求拌合物具有高流动性、塌落度损失小、可泵性好、不离析、不泌水;(3)保证质量的前提下成本低、性价比高。

2 影响混凝土质量的主要因素

商品混凝土质量的好坏会直接影响到整个钢筋混凝土结构工程的质量,但是影响商品混凝土质量好坏的因素很多,主要包括有混凝土原材料的质量、混凝土拌合工艺、混凝土运输、混凝土浇筑施工、混凝土养护等。其中混凝土原材料质量的好坏对混凝土凝结之后质量的影响是非常大的,所以想要确保混凝土结构工程的质量首先要从原材料这个源头抓起,然后再从搅拌、运输、浇筑及养护等工序入手去加强混凝土凝结后的质量,这样才能给人们带来居住安全感。原材料的选择会直接影响到混凝土的质量,如果选用不恰当的话就会影响到整个工程结构的质量。混凝土主要由胶结性材料、粗细集料、水、掺合料及外加剂等按照一定的比例配合,经过搅拌、成型、养护所形成的具有一定强度的结构构件。混凝土作为建筑界普遍使用且用量最大的建筑材料,它的质量好坏必须引起我们足够重视,业界普遍认为混凝土原材料质量所造成的工程质量缺陷主要是因为混凝土材料在凝结时的变形受到了约束,约束力所造成的内应力大于材料本身的抗拉强度,从而造成凝结后的质量缺陷。

虽然钢结构在工程领域的应用范围越来越广,但是混凝土在工程界的霸主地位丝毫不受动摇,以其丰富的原材料、低廉的价格、简单的生产工艺、抗压强度高、耐久性好、强度等级范围宽等优点广泛的被应用于建筑工程、道路桥梁工程、隧道工程、水利工程、港口工程等领域的建设。正因为混凝土应用如此广泛,所以必须保证好混凝土结构工程的质量,严格的控制好原材料质量、搅拌、运输、浇筑、养护等各个环节的质量是保证工程结构质量的基本要求,特别是混凝土原材料的控制要引起我们的足够重视。

3 原材料本身的质量控制

原材料本身的质量控制是混凝土质量能否保证的基础,原材料品质的好坏将直接影响到混凝土质量的优劣,所以原材料质量把关环节一定要做到位。原材料本身的质量控制主要包括水泥的质量控制、掺合料的质量控制、混凝土粗、细骨料的质量控制、混凝土外加剂的质量控制、和混凝土拌合用水的质量控制。

水泥作为混凝土当中的主要无机胶凝材料,其强度的选择和体积安定性会直接影响到混凝土凝结后的质量。混凝土强度会随着水泥强度上下波动而变化,而混凝土凝结之后产生膨胀性裂缝的主要因素是水泥的体积安定性太差,所以选择良好的水泥品种、水泥强度等级及体积安定性能够有效的保证混凝土凝结后的质量要求。一般来说,大型的水泥生产厂商所生产的水泥质量是有保证的,尽量不要选择那种小型的水泥生产单位,因为这种生产单位为了能够保证水泥的销量,所以会采取价格战的策略,一般水泥价格都低于大型的水泥生产商,但是为了能够保证赢利,所以生产的成本投入低,进而水泥的质量得不到有效的保证。

掺合料最好采用磨细矿渣粉、粉煤灰等,掺合料的质量控制包括两方面,一方面是严格的控制好掺合料的物理性能检测,另一方面是协同控制好掺合料质量和混凝土耐久性。

在混凝土原材料当中砂是作为细集料,砂对于混凝土质量的影响主要和砂的细度模数和含泥量有关,砂子如果太细的话会增加混凝土的干缩裂缝,砂当中的含泥量如果太多的话也会造成混凝土干缩裂缝的扩张,影响混凝土的耐久性、抗渗性和抗冻性,进而影响到混凝土的强度和质量。一般情况下混凝土原材料当中对于砂的要求一般是选择中粗砂为宜,而且砂的有机质含量以及含泥量必须满足规范的要求。对于混凝土当中粗集料(石子)的控制主要是控制好其级配、压碎值和针片状含量。据有关部门调查研究,目前市场上很多混凝土生产厂家所用到的石子级配都不是很好,所以如何保证混凝土当中石子级配的连续性还需要引起混凝土生产商的足够重视。由于商品混凝土是现代混凝土发展的主要方向,所以商品混凝土的市场份额非常的大,选择好的商品混凝土生产商也是值得我们重视。一般情况下信誉好、设备先进的厂家是首选的原则,但是并不是说选择了这些受信任的生产商之后就什么都不用管了,定期或者不定期的到现场检查原材料的质量是很有必要的。

4 合理设计原材料的配合比

混凝土配合比的设计原则是首先要满足结构设计的强度要求,满足施工和易性的要求,满足混凝土耐久性的要求,满足经济性的要求。现在我国指导配合比的设计规范为JGJ55-2011《普通混凝土配合比设计规程》,这是混凝土生产商在进行配合比设计的时候必须严格执行的规范。单位体积混凝土当中各个组成材料的重量比例的确定要随着气候条件的变化进行调配,尤其是对用水量的调整。混凝土配合比设计当中的三个基本参数为水灰比、单位用水量和含砂率,这三个参数与混凝土的各项性能之间有着非常大的关系。这三个参数的确定原则主要是,首先在能够满足混凝土强度以及耐久性的基础上确定好混凝土的水灰比,然后再根据施工要求和混凝土和易性要求以及粗骨料的规格来确定单位用水量,砂的确定要以其能够填充石子空隙且略有盈余为原则。

5 混凝土各组分对混凝土质量的影响

5.1 水泥

水泥的矿物组成及细度会影响混凝土的质量。水泥比表面积的增加能够提高水泥的水化速率,而且还能提高水泥的早期强度,1um以下的水泥颗粒不到一天就可以完全水化,对早期的水化热、混凝土的自收缩及干燥收缩有影响,但是对后期的强度几乎没有影响。现在的水泥由于超细颗粒含量比较多,所以对混凝土的长期性能的影响比较大,据有关部门研究统计,混凝土构件在50年后其强度只能达到设计强度的50%左右。由于高效减水剂的适应性差,所以为了能够有效地减少混凝土的流动度,必须掺入更多的高效减水剂,这样不但增加了施工的费用,还导致了混凝土当中水泥用量的增加,从而影响了混凝土的耐久性。

5.2 骨料

在一般的混凝土配合比设计当中要求骨料的强度要大于混凝土的强度,所以骨料本身的抗压强度对混凝土强度一般没有不良的影响。但是骨料当中所含有的有机物、硫酸盐、硫化物及泥块等有害物质会影响到混凝土的强度,骨料当中的这些有害物质会影响到水泥和骨料的粘结,有些物质甚至会腐蚀水泥,从而影响了混凝土的强度和抗冻性。表面多棱角的碎石比表面圆滑的鹅卵石更能粘结水泥石,还有就是骨料的相对用量大小也会影响混凝土的强度。

5.3 粉煤灰和外加剂

在现代高强混凝土当中为了能够提高混凝土的强度以及改善其物理性能,一般会采用添加外加剂及掺入粉煤灰相互结合的方法。根据工程实践证明,粉煤灰和外加剂的适当掺入能够改善早期混凝土强度偏低的现象,还能提高混凝土的和易性和耐久性,降低水化热,但是掺入之前要准确计算出掺入量的合理配合比,不能盲目的参和,不然会适得其反。

6 结束语

总而言之,混凝土强度是否达到要求直接决定着所建造工程的结构强度是否达到标准,因此在工程施工过程中必须要进一步加强混凝土强度的控制,而控制好原材料的质量是保证混凝土强度的基础,因此要重点加强混凝土原材料的事前控制,保证强混凝土原材料的质量,进而保证商品混凝土的质量。

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读