欢迎来到杂志之家!发表咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

天然气节能技术实用13篇

天然气节能技术
天然气节能技术篇1

输气管道的优化设计主要包括管径、壁厚、管材、输气压力、压气站布置与压缩机组的配置、储气库位置、类别和容量以及各种情况下的调峰方案等内容。天然气输配工程建设过程包括项目决策、项目设计和项目实施三大阶段。进行投资控制的关键在于决策和设计阶段,而在项目作出投资决策后,其关键就在于设计。据研究分析,设计费一般只相当于建设工程全寿命费用的1%以下,但正是这少于1%的费用对投资的影响却高达75%以上。优化设计不仅影响项目建设的一次性投资,而且还影响使用阶段的经常性费用。

天然气长输管道通信系统在长输管道的建设、维护与管理中具有重要的作用。任何一种通信方案的确立都需综合考虑当地的自然条件、设备技术性能、初期建设费用、长期维护管理等诸多因素。天然气长输气管道通信的基本特点是:一是大部分管道途经山川、丘陵、河流、农田或是戈壁沙漠等复杂地形,且沿线气候多变,风、霜、雨、雪、交替显现,人为或是自然的突发事件较多。二是每条管道一般均有一个调度控制中心,沿线还有必要的输气管理部门。通信点一般设在沿线各站场。每个站需与调度控制中心建立通信联络,并与有关的输气管理部门保持通信能力。三是大部分RTU阀室为无人值守站,工作环境较恶劣。使用简化供电系统,通信设备耗电量要小是一个重要的考虑因素。四是在故障发生时,抢修速度一定要快,时效性非常强。根据天然气长输管道的实际情况,综合考虑技术、经济、运行维护、故障抢修及今后发展等各种因素,应优先选择专用卫星通信为主、公网通信为辅的通信方案来作为天然气长输管道的主用通信方案[1]。

2、管道输送中采取节能技术

2.1管道输送中采用最优输量[2]

长距离输气管道的输量受输送压力、管径及壁厚、沿途所设压缩机站数等工艺参数的制约,当输送压力、管径确定后,可通过增设管道压缩机站的方法提高管道输量,而要增加的管输量越多,管道中间增设的压缩机站越多,工程项目的投资和营运成本越高。当超过一定界限后,管输量的增量效益就会低于相应的投入增量,导致整个管道工程的经济效益下降。因此,长距离输气管道存在一个使管道的经济效益最大的最优输量。体现长距离输气管道工程经济效益的主要经济指标是财务内部收益率(IRR),通过计算该值,可以找到最优输量,从而很好的利用管道和设备来进行天然气的输送。

2.2 采用高钢级管材[3],选择合适的输气温度,提高输气压力

通过高钢级管材的开发和应用可以减小壁厚,减轻钢管的自重,并缩短焊接时间,从而大大降低钢材耗量和管道建设成本。此外,采用复合材料增强管道强度的技术也正在开发,即在高钢级钢管外部包敷一层玻璃钢和合成树脂。采用这种管材,可以进一步提高管道的输送压力,降低建设成本,同时可增加管输量以及提高钢管抵抗各种破坏的能力和安全性。天然气沿管道流动时,因要克服流体阻力,压力会逐渐降低。压力降低会使气体密度下降,线速度也要变化。此外,由于天然气与土壤的热交换,天然气的温度也会降低。输气温度对系统能耗关系很大,除向土壤散热损耗外,压气机组的效率与输气温度密切相关。输气管道向更高压的方向发展是一个趋势,也在一定程度上反映了一个国家输气管道的整体技术水平。输气时气流与管壁的磨擦,造成压力损耗,靠沿线压气站连续升压实现长距离输气。所以,摩擦损耗是能耗的基本构成。从物理意义上讲,提高压力使管内天然气的密度加大,降低了管内天然气的实际速度以及压力降。所以,作为主要线路损耗形式的磨损减少了。另外,天然气的密度越大,压缩机的效率也越高,同样功率的压缩机所产生的压头也越高。系统的最大工作压力,因受输气机组能力及管材机械性能所限,各国采用管道钢材都有一个发展过程。总之,不断提高输气压力,是今后管道工业发展的方向。

2.3 采用内涂层和减阻剂减阻技术,提高输送能力

天然气管道内壁敷设内涂层后,可以有效地改善和提高天然气在管道中的流动特性;可以减少管道沿线压缩机站的数量;可以降低输送的动力成本和泵输成本;在一定程度上可以提高管输量;可以延长清管周期;可以降低输送动力消耗和泵输成本。因此,管道内涂层技术[4]具有良好的经济效益,在国外天然气管道已经普遍采用此技术,并且取得较好效益。国内也应该尽快掌握和发展天然气管道的内涂层技术,这将有利于天然气管道事业的发展。

纵观现有减阻剂[5]的成分及化合物结构,现有减阻剂基本都是基于以下减阻机理,具有表面活性剂类似结构特点的聚合物,其极性端牢固地粘附在管道内表面上,而非极性长链顺流向悬浮在管壁附近气流中,或者将聚合物充分溶解在某种溶剂中,调节聚合物含量,使溶液具有一定的粘性和弹性,涂在壁面上形成弹性膜,将“气固”界面变为“气液”界面。因液体表面的粗糙度比固体表面小得多,形成的涡流区也小得多,从而能够大大减小天然气和管道内壁之间的摩擦阻力,降低天然气输送过程中的压降和能量损耗,提高管道输气量。

2.4 根据具体情况,选择最合适的管道干燥方法[6]

如果天然气管道中含有水,则液态的水就有可能与天然气中的少量酸性气体生成酸性物质,腐蚀管道内壁,影响管道系统使用寿命及其可靠性;同时,可能形成天然气水合物或造成冰堵,使管道堵塞,影响管道安全运行。因此,为了避免这些问题的产生,在投产前必须对管道进行干燥,脱除管道中游离的水和大部分的水蒸气,使其露点处于-16~5℃。天然气长输管道常用的干燥方法有干燥剂法、流动气体蒸发法(包括干空气干燥法、氮气干燥法、天然气干燥法)、真空法等。

以下两种干燥方法效果好,成本低,节能效果明显。真空干燥法在20世纪80年代初开始应用。该方法适合于海底、江底、河底等区域管道的干燥,特别适合于小口径、短距离、明水少的管道干燥,空气可以任意排放,无毒无味,不燃不爆,无安全隐患;对地层温度较高的管道有特殊的效果;既适用于陆地管道,也适用于海底管道;受管径、管道长度的影响相对较小;干燥成本低;易与管道建设和水压试验相衔接。目前,在国内广泛使用的是干空气干燥法。干空气干燥是采用经过除油、过滤和脱水的干燥纯净压缩空气吹扫管线,由于其低露点的特点使管道内壁附着的水分蒸发,并利用后继干空气将管道内的湿空气排出管外,达到干燥管道的目的。

3、减少天然气在输送过程中的损失

避免超压放空,应建立上、下游协调制度及生产通报制度,防止输气管网局部超压。当供气量大于用气量,造成输气管网压力过高时,需要天然气调度人员必须全面了解和掌握天然气管网的运行动态,平衡各站点用气压力和流量,加强气量调配灵活度,及时地将富余的天然气调往其他用户,使生产运行更加安全、经济、平衡,并应积极发展用户,增加用气量。

针对低压放空采取的措施一是选用经济、可靠、方便的增压设备,把低压气增压后输进管网系统。二是建立低压输配气管网,将低压天然气在不进高压输气管网的情况下,直接供给用户。

对于自用气损耗,此现象发生在供气单位内部,如增压站的压缩机和自用水套炉用气。采取措施是:提高压缩机有效利用率,在满足设备安全运行的条件下,使设备尽可能满负荷运行,此举也可延长压缩机的有效寿命。对其他用气应选用热效率高的加热炉及节能型燃烧器。

对管线泄漏情况应采取措施,认真抓好管理工作,防止跑、冒、滴、漏。认真巡线,及时发现泄漏点并上报处理;做好阴极防腐工作,延长管道的使用寿命,减少管道腐蚀泄漏的发生;做好各阀门的维修保养工作,杜绝排污阀和放空阀的管道内泄漏[7]。

4、气压力能回收利用技术

目前国内外回收利用天然气管网压力能的方式主要有发电和制冷两大类[8]。利用压力能发电,产生的电能可进入城市电网,或用于发电站自身生活、生产使用,或用于分布式制氢;在制冷方面,目前主要是将膨胀后低温天然气的冷量,用于燃气调峰、冷库、冷水空调、橡胶深冷粉碎以及轻烃回收等。

将高压管网天然气压力能回收并用于发电主要是以膨胀机代替传统的调压阀来回收高压天然气降压过程中的压力能,并将其用于发电,具体说有3种方式:(1)利用天然气膨胀机输出功驱动同轴发电机发电。这类工艺一般在天然气膨胀前先将其预热,以保证天然气膨胀后的温度在0℃以上,从而可防止天然气中的水汽凝结。(2)利用天然气膨胀所做功,将膨胀后的低温天然气冷量用于燃气轮机进气冷却。该方式可增加进入压气机和燃气透平的空气质量,从而在压比不变的情况下减少所需的压缩功,省去了发电厂传统的燃气轮机机组冷却设备。(3)上述两种方式结合,在利用膨胀机做功的同时也利用膨胀后天然气的冷量。

高压管网天然气压力能制冷用于燃气调峰、轻烃回收以及天然气脱水。城市燃气用量随时段、昼夜、季节等波动非常大,因此,投资建设天然气调峰设施显得非常必要。高压管网天然气压力能制冷用于橡胶深冷粉碎工业上深冷粉碎橡胶一般需要将原料胶冷却至-70℃以下,以增强粉碎效果。

5、对管道进行完整性管理[9]

现代化的管道控制室,都配备了计算机系统来监视管道的流量、压力和温度数据,系统每天都在获取大量的监测数据,这就涉及到管道完整性管理计划(IMP)中的数据管理的问题。当投入的管道完整性维护费用越少,管道安全的收益越大,但管道安全的风险也就越大;投入越多,虽然管道运行风险降低,但管道的收益也就会大大减小。管道完整性维护的效益不仅与完整性维护的费用和收益紧密相连,且与管道的风险也息息相关。对管道进行完整性维护的目的是降低风险成本,使管道的运行效益最好,此目的达到的程度就是管道运行的效用。因此盲目地减少或增加管道完整性维护费用以获取高的收益或确保管道安全是不科学、不可行的,管道经营者需要对管道的完整性维护决策进行优化,以降低管道运行风险,最好地分配维护资金,从而获得最大的效益。

6、总结

我国天然气资源总量列世界第五位、亚洲第一位。天然气与煤炭、石油相比,具有清洁、无污染的优点,在油价持续高涨的情况下,天然气的优势得以显

现。在我国一次能源消费结构中,目前天然气只占有5.3%(2010年数据)的份额,而全球天然气在一次能源中的平均比重达到近1/4。随着我国天然气探明储量及产量的稳步增长,天然气在我国一次能源中的比重将稳步提升。因此,天然气输配节能技术将有很大的发展前景。目前,一些天然气输配工程已经在使用以上的这些技术,但由于我国的天然气输配节能技术发展较晚,在对管道进行完整性管理技术等方面还不是很成熟,这就要求我们在该方面继续努力,使天然气输配节能技术充分发挥它在节约能源,提高经济效益方面的重大作用。

参考文献:

天然气节能技术篇2

在世界能源资源不断减少的环境背景下,人们越来越重视新能源开发,以保证人类社会的可持续发展。天然气以其高热值、低污染、大储量,成为了能源商品的主流,因而其相关技术研究得到了世界各国的广泛关注和重视。天然气储运技术是天然气得以推广利用的基础,如何保证其高效性、稳定性以及安全性成为了业界热议的焦点,对解决社会经济可持续发展问题具有重要的作用和意义。本文主要利用技术经济静态分析法中的计算费用法,对各项天然气储运技术经济进行了分析。

1 天然气储运技术发展现状

在我们生存的自然环境中,存有大量的天然气,在一系列的开采、工艺处理之后,可供给终端用户用作燃料、化工原料等。经过长期的发展,天然气工业体系已逐步形成,主要分为开采净化、输送储存以及分配应用三个环节。目前,天然气已在世界范围内得到广泛的应用,为缓解能源危机、促进经济发展做出了巨大贡献。由于天然气长期深埋地壳中,在经过一系列的地壳运动之后,形成了多样化的沉淀物特征和环境,因而表现出了纷乱繁杂的形态。天然气需要前期加工处理,并利用特殊的储运技术,才能为用户所用。经过较长时间的研究发展,天然气储运技术日渐成熟和多样,满足了人们的日常使用需求。现阶段,常见的天然气储运技术包括液化储运技术、管道储运技术、吸附储运技术以及压缩储运技术等,而且每种技术的优势特性存在差异。在这个环境保护与经济发展同步进行的时代,天然气储运技术得到了世界各国的重视,因其广阔的发展空间,有关方面的研究成为了世界性的课题。从经济的角度对各项天然气储运技术进行分析,有助于我们更加清晰地掌握各类技术的特性,进而制订合理的储气方案。

2 天然气储运技术经济分析

在先进科技的支持下,天然气储运技术得到了有效的发展。笔者基于对天然气储运技术发展现状的认识,重点就几种常见的天然气储运技术经济进行了分析,其具体表述如下。

2.1 液化储运技术

液化储运技术是指将大量的天然气进行液化工艺处理之后储存于低温储罐中,并通过管道、船舶或槽车等工具运输的技术。相较于常用的高压球罐初期、高压管束储气、长输管道末端储气等储气调峰方式,天然气液化调峰具有储藏量大、调节灵活等特点,能够满足季节调峰的要求,而且因其气化站建造成本低、维修方便等优势,未来必然成为城市燃气调峰主流手段之一。一般情况下,液化天然气的最佳储运压力为0.2Mpa,其单位体积的气体储运成本主要产生在起始站、运输以及终点站等几个环节。其中,起始站费用是站点建设费用、调压费用以及槽车费用的总和,槽车费用主要是车辆折旧、维修与保养产生的费用。运输费用则是指运输途中的燃油费。而终点站成本包括建设折旧成本和运营管理成本两个部分。按照当前的市场价格,通过数学公式粗略地计算可以得出:液化技术储运天然气同时可以实现陆地运输和海上运输,而且海上油耗低廉,采用的装置也较为简便灵活、高效低耗,因而具有非常好的经济性能。另外,天然气液化储运技术的关键是压力调节,其在起始站的耗费成本较高,而在终点站的耗费成本较低,两者形成了一种互补。综合来看,天然气液化储运技术创造的经济价值比较高,值得推广和使用。

2.2 管道储运技术

目前,管道储运是陆上天然气运输、贸易的主要方式,世界上有大约65%的天然气输送通过管道实现。天然气具有密度低、易挥散等特性,利用管道储运能够有效保证其产品质量,同时还可以减少环境污染。随着科学技术的发展,天然气管道储运逐步实现了大口径、长运距、网络化,大型供气系统建设拓展到了极地和海洋领域,为天然气的高效、高质输送创造了有利条件。天然气管道储运技术构建的生产、储运、销售一体化系统,具有调峰功能,可实现长距离、高压力以及大流量运输,而且由于管道深藏地底,可以减少泄露、噪声等对生态环境的污染。单位体积的天然气储运成本主要包括起始站成本、运输成本以及终点站成本。其中,由于起始站需要对天然气进行大量的除杂、脱硫、脱碳、调压甚至脱二氧化碳等工艺处理,加上设备折旧,因而耗费的成本较高。而在天然气运输阶段,主要成本来源于管道建设折旧,不涉及燃油费用。终点站因为需要对天然气进行减压处理,所以成本为减压站维护、折旧费用。相比于高压球罐等储运方式,天然气管道储运的操作简便,能够有效解决城市用户日、小时调峰技术问题,且更为安全,但是其前期投资成本较高,随着输送距离的延长,经济优势逐渐显现。虽然时下天然气管道储运技术日渐成熟,但是由于受制于气源、距离以及投资等因素,所产生的日常运行、维护等成本较高。

2.3 吸附储运技术

天然气吸附储运技术是一项利用高比表面积富微孔吸附剂材料,在3.5~5.0Mpa压力下吸附储存天然气的新技术。由于天然气吸附储运的储气压力低,因此在投资成本、运输使用和安全性能等方面表现出了较大优势。这种技术指导下的天然气储运主要包括制备吸附剂、制造储藏罐、储气车载以及净化天然气气质等几个环节。通过对这几个环节成本的粗略计算发现,天然气吸附储运站点建设所需的设备简单,操作方便,整体需要的投资额度低,适用于产气输送不定的偏远地区。但是,车辆折旧所产生的费用在天然气吸附储成本中占有较大比例,因此其技术攻克难点应该放置在高效、价格低的储运车研发上。影响天然气吸附性能的因素有很多,例如,天然气中除了主要的甲烷成分外,还含有C2、水、氮气、二氧化碳等杂质,在经过多次吸附工艺循环处理之后,天然气中的极性化合物杂质在吸附剂上不断积累,从而导致天然气吸附性能下降。因此,在具体的天然气吸附储运技术应用实践中,应该重点解决含硫量等杂质问题。天然气吸附储运技术的经济价值显而易见,未来的发展空间较大,值得加大研发和推广力度。

2.4 压缩储运技术

天然气压缩储运技术的英文简称为CNG,它是将天然气进行压缩工艺处理之后,放置到特殊的容器中,通过公路、海路或铁路间接输送到城市管网的技术。CNG因其高成熟度的技术,满足了零散用户以及车用燃气的需求,在我国得到了一定程度的应用。但是,由于这种储运技术将天然气压缩到了20Mpa以上,对容器的性能要求极高,运输途中有着一定的危险性,因此,很难实现大规模发展应用。一般认为,天然气压缩储运技术适用于地区而非全球,它更多的是作为天然气管道储运的有效补充手段被应用,能够满足管道覆盖不到的中小城镇的天然气需求。综合考虑输送范围、工程投资、运营成本以及销售价格等因素,压缩天然气的储运范围应控制在500km以内。压缩天然气储运成本同样产生在起始站、运输以及终点站三个环节。其中,起始站压缩天然气所需要的基础设备包括压缩机组、加压站、汽化器、储气装置以及换热系统等。除了采购硬件设备,起始站费用还包括调压运行费用。运输成本则由槽车购置、维护、折旧费用组成。为了保证用户直接使用,需要在终点站配套一座调压站。终点站成本绝大部分来源于调压站,包括工艺管道、调压计量设备、自控仪表、运行管理等费用。经过粗略的技术经济分析发现,天然气压缩储运的工艺简便、工期较短、见效迅速,但是受供气规模、用气性质、气源位置、原料价格等诸多因素的影响,需要制订合理的方案。

3 天然气储运技术节能建议

自然与人类之间存在着一种平等互存的关系,保护生态环境人人有责。而且天然气储量有限,为保证其可持续发展,采用必要的天然气储运节能措施十分重要。根据上文的论述与分析,我们不难发现,天然气需要经过不同程度的压缩工艺处理才能进行储运。具体而言,可以充分利用终点站的压力能减少运输成本、环境破坏和噪声污染。同时,还可以通过天然气压力能制冷系统、冷能利用系统,实现压力能利用,如此不可以扩大冷能利用系统的操作弹性,一定程度上稳压、稳流,还能降低电力消耗成本。除此之外,液化天然气常常需要通过气化器汽化处理转变其储藏形态后,才能被使用。在液化天然气形态转化的过程中,将会释放出大量的冷能,假如直接舍弃势必会造成极大的资源浪费。为此,我们可以通过特殊的工艺技术将这部分冷能直接或间接地应用到海水淡化、低温发电、空气分离、污水处理等领域,实现资源的循环利用,拓宽天然气液化储运产业链条的同时,保护生态环境,实现经济的可持续发展。

4 结 论

总之,能源是人类生存与发展的物质基础。天然气作为世界储量丰富的能源之一,其应用应该得到推广。而储运技术作为天然气推广利用的关键,需要加大研发力度。由于个人能力有限,本文有关天然气储运技术经济分析可能存在不足,因此,笔者希望业界更多学者关注天然气储运技术发展,并结合实际情况,有针对性地提出有建设性的建议,从而支持天然气储运工业的可持续发展,使其在低碳经济发展中创造更大的价值。

参考文献:

[1]胡建民,罗琼,雷红琴,等.天然气组分检测中阀切换应用技术的探讨[J].广州化工,2013(2).

[2]杜.天然气水合物储运技术综述[J].中国石油和化工标准与质量,2013(4).

天然气节能技术篇3

能耗问题在工业生产中受到的重视逐渐加强。考虑到各国政府对环境保护的要求越来越严格,而且降低能耗能够为企业带来巨大的经济回报,因此节能降耗有着越来越多的现实意义[1]。

天然气集输系统是由气田集输管网、气体净化与加工装置、输气管线以及各种站场组成的一个统一的水动力系统。其中,天然气井口、增压站、处理厂构成了主要的能耗单元[2]。具体的能耗包括:井口节流带来的压力损失、对天然气进行加热带来的能量损失、对天然气进行增压带来的动力损失、处理厂中各种处理工艺中能量损失、物流流经各管道阀门、设备时的水力损失以及由于泄露造成的漏失。

气田集输系统的节能降耗是一项系统性工程,应针对产生能耗的各个环节,从节能管理、节能技术改造等方面同时进行研究[3]。本文主要从节能技术改造方面,对单井站节流、增压设备、加热炉以及部分处理工艺提出节能降耗措施。

1. 单井站节能措施

天然气在井口需要进行节流降压,并且加热以防止水合物生成。而新井和老井由于压力不同,因此其节能措施不同[2]。

(1)新气田的单井站

通常新井的井口压力较高,节流压差较大,形成水合物的风险较大。为了避1免生成水合物,通常需要在井口设置加热炉。此时能耗的具体表现形式为用于消耗的天然气量。除了合理设置加热炉加热温度能降低能耗外,还可以通过井下节流技术来有效这一过程的能量消耗。该技术是将节流器安装在油管中的某一位置,其节流压差可以根据生产井的具体情况进行调节。经井下节流的天然气,其压力等级已经满足地面集输的需要,因此地面不需再设置节流装置。而利用地热对天然气进行加热,节流后的天然气温度高于所处压力下的水合物形成温度,地面的加热装置亦可取消。

(2)老气田的单井站

老气田气井的压力降低,井口节流压差较小,气体温降较小。此时可以取消加热装置,而改用加注抑制剂的方式来防止天然气水合物的形成。当气田开采进入中后期后,压力进一步减小,需要进行增压开采。此时集输系统中的压力能耗成为主要方面,原先的水套式加热炉、调节阀等成为了主要的地面阻力元件。为了减小压力能耗,就需要对这些阻力元件适时拆除。

2. 增压设备节能降耗措施

目前,世界上在天然气气田增压设备采用的原动机有电动机、燃气发动机和燃气轮机。而燃气轮机在原动机中所占的比重越来越大。以电驱动的增压机,其能耗为驱动压缩机的电动机的电力消耗;以燃气驱动的增压机,其能耗为驱动增压机的燃气发动机的天然气消耗。

2.1 电动机驱动

对于使用电动机驱动的增压机组,可以考虑根据生产情况加装变频器来减小电力的消耗。

改变电动机频率f即可改变电动机的转速N[4]。而由泵的相似性可知:泵的排量Q与电动机转速N的一次方成正比,出口压力H与电动机转速N的二次方成正比,功率P与电动机转速N的三次方成正比。即:

在实际生产过程中,当流量发生变化时,为了使增压设备的功率保持在较高水平,即可以通过变频器,按比例调节电动机转速来节约电能。

实际上,利用变频技术调节电动机转速达到而节能降耗的做法已经成功应用于油气田生产的各个环节。靖边气田第一采气厂采用变频技术调节MDEA及TEA循环泵的排量,在节约电能的同时减少了溶液循环损耗和加热炉的能耗[5]。

对于已经进入开发中后期的油田,产量减小,外输增压设备经常出现“大马拉小车”的现象。这种情况下,结合自动控制技术,可利用缓冲罐的液位信号实现外输泵的实时变频控制,保证泵的高效运行,节约大量电能。

变频技术还可以用来调节加热炉风机的进气量,控制好加热炉的空燃比,改善其运行参数,从而提高燃料利用效率[6]。

2.2 燃气发动机驱动

可以通过下面途径降低燃气发动机能耗[7]:

(1)通过调节空燃比降低燃气发动机能耗。

(2)通过调节混合气体的均匀性降低发动机能耗。

(3)当压缩机负荷降低时,气缸内残余气量相对增加,致使燃料和氧气接触的几率减小。此时可以通过提高混合气体浓度来加快燃烧。

(4)通过调节冷却系统温度来降低发动机能耗。适当提高发动机冷却液温度可以减少能耗。

由于燃气发动机具有以下几方面缺点[8]:

(1)结构复杂,内部运动和易损部件多;

(2)外型尺寸和整体重量大;

(3)运转过程中有振动,而且噪声大;

(4)机器维护、保养、零件更换频繁。

因此,燃气发动机在天然气长输管道的压缩机站中应用并不多。

2.3 燃气轮机驱动

燃气轮机因其变速范围大、安全可靠、自动化程度高、技术先进、装置轻巧、建设周期短、维修方便等优点,在油气田中的应用越来越广泛[8]。尤其是在天然气长输管道中,由于燃气轮机可以直接采用所输天然气作为燃料,而不需要进行处理和增压,既方便快捷又成本低。近年来在我国大型天然气长输管道中依靠燃气轮机进行增压越来越多。

对于燃气轮机的改进和降低能耗的方法,主要是通过逐步提高其热效率来实现的。采用燃气轮机回热循环、联合循环、复合循环(及带有中间冷却和热量回收)、蒸汽循环等工艺均可以提高燃气轮机的热效率。同时,提高循环参数(温度和压力)、应用以陶瓷为基础的新型材料、完善燃气轮机的冷却系统以及提高尾气余热利用等都是提高燃气轮机热效率的有效方法[1]。

3. 加热炉节能降耗措施

油气田用的加热炉主要消耗的是热能,其来源主要为气田自身所产的天然气。采用各种有效的方法提高加热炉的加热效率,可以降低加热炉能耗。对于提高加热炉效率,可以通过以下几种途径:

(1)合理控制空气量[9]。

提高加热炉的主要途径是控制合理的空气量,保证加热炉内燃料能够完全燃烧,减少燃料损失。实验证明,最佳燃烧区域的过剩空气系数范围为1.2~1.3,过大或过小都会影响加热炉热效率。

(2)开展加热炉的清防垢工作[10]。

加热炉中的污垢,既有由于水质问题引起的无机垢,还有因设备腐蚀产生的硫化物,同时也会存在油垢。污垢的存在不仅会降低加热炉的效率,增加能耗,更严重时可能导致设备局部过热,引发安全问题。因此,加注防垢剂、安装除垢器、定时除垢,可以减轻加热炉结垢情况,提高加热炉炉效。

(3)进行真空加热炉更新改造。

真空加热炉利用真空相变换热技术提高换热效率。所谓真空相变换热,是指通过利用热媒在汽、液相变过程中放出的潜热进行换热。真空相变加热炉热效率高,节能效果明显。

(4)应用热管对老式加热炉进行改造。

热管是一种新型的高效传热元件。热管具有传热速度快、效率高的特性,可快速将高温烟气的热量传至水中,降低烟气温度,提高加热炉效率。

(5)进行负压蒸汽换热技术改造。

对于水套式加热炉,可以将作为传热介质的水换为气化潜热为水的2~3倍的传热合成剂。改造后的水套式加热炉实际变成了以新型传热合成剂为热媒的负压蒸汽换热器,其换热原理与相变换热相同。因此将大幅度提高了加热炉效率,节能效果明显。

(6)采用带有自控系统的高效节能燃烧器

高效节能燃烧器具有自动检测和控制功能,能够实时检测加热炉的炉膛温度、进/出口温度,以此调节燃料和空气的混合比例,保证燃料的充分燃烧,较大程度地提高了加热炉的效率。

除此之外,定期烟道清灰、烟管清焦,保持烟管干净,搞好炉体保温工作,减少不必要的热损失等,均是减少加热炉能耗的有效措施。

4. 天然气处理系统的节能降耗措施

天然气处理净化过程中的能量损失主要包含以下5个方面[11]:

(1)流体的流动阻力造成的能量损失;

(2)天然气节流膨胀造成的能量损失;

(3)热交换过程中温差造成的能量损失;

(4)非平衡的两相物流在设备中混合以及接触传质过程中造成的能量损失;

(5)因设备泄漏或者外排气体携带而造成的漏失。

4.1 脱水系统节能措施

对于常用的TEG脱水工艺,经过长期使用及反复实践,认为采取以下途径可以提高脱水效果,减小TEG消耗,降低脱水能耗。

(1)严格控制工艺温度及压力[12~14]。

(2)改善进入吸收塔的湿天然气分离状态。

(3)吸收塔内部设置补雾器。

(4)加注消泡剂。

(5)增强贫富甘醇换热[2]。

对于采用分子筛脱水的装置来说,可以通过再生气换热技术降低能耗。

分子筛脱水工艺包括分子筛脱水、吸附塔再生和吸附塔冷却三个阶段。一般情况下,吸附塔再生采用加热后的高温天然气反吹再生塔,吸附分子筛中的饱和水。吸附了水的再生气需要冷却之后进入下一步骤。为了降低再生气加热炉以及冷却器的负荷,可以将高温再生气同未加热的再生气进行换热,以这种方式回收高温再生气中的热量。

4.2 轻烃回收装置节能措施

轻烃回收是指采用特定的工艺分离和回收天然气液烃中的乙烷、丙烷、丁烷、丙烷/丁烷混合物、天然汽油和凝析液等组分的过程。轻烃回收过程中可采用下列方法节能降耗[15]:

(1)天然气增压单元使用循环水冷却器两用换热技术

天然气进入轻烃回收装置前,在压缩的过程中温度升高。所谓循环水两用换热,是指充分利用天然气压缩后温度的升高,在夏季循环冷却水用于降低天然气温度,而冬季吸收了热量的循环水可用于为生产或伴热管线提供热源。

(2)进料与塔底产品换热节能技术

以脱丁烷塔为例。为了减小脱丁烷塔的重沸器的负荷,可以在进料处增加一个换热器,使进料与塔底产品进行换热,利用稳定轻烃的热量加热进料。大港油田实际生产表明,此举可以将脱丁烷塔的进料提高约20℃,塔底产物降低约10℃。

4.3 低温SCOT工艺进行尾气处理

天然气处理厂的尾气只有经过尾气回收后才能达到相应环保标准外排。SCOT法或者类似的加氢还原方法是应用较为普遍的方法。而低温SCOT工艺,使用低温催化剂,将克劳斯装置后的尾气经再热器预热后进入加氢反应器还原,而后经急冷却塔冷却,进入吸收塔脱硫,其最大特点在于省去了加氢段前的预热设备[16]。

低温SCOT工艺具有以下节能降耗特点:

(1)由于使用低温催化剂,降低了加氢反应器的入口温度(与传统工艺相比大约可降低60℃),采用再热器取代了价格昂贵的在线燃烧炉和锅炉,因而在降低成本、节约能耗的同时,简化了处理工艺流程;

(2)低温SCOT工艺的采用可节约装置投资费用约7%,操作费用约20%,使整个尾气处理工艺的总操作费用降低14%左右。

5. 总结

5.1气田集输系统的节能降耗工作是一项系统性工程,应针对产生能耗的各个环节,从节能管理、节能技术改造等方面同时进行研究。

5.2对于井口节流来说,不同的压力等级对应不同的节能方法。对于节流压差大的新井,可采用井下节流装置;对于压差小的老井,需要适时拆除部分阻力元件。

5.3气田增压设备采用的原动机有电动机、燃气发动机和燃气轮机。利用变频技术可以大幅度提高电动机增压设备功率。燃气轮机由于其卓越的性能在长输天然气管道增压设备中所占比重越来越大。

5.4对于降低加热炉的能耗,提高其燃烧效率,可以通过调节空气量、加强清防垢以及进行设备改造等方面实现。

5.5天然气处理系统既是实现天然气价值的单元,也是集输过程中的能耗大户。在运行过程中,既采用新技术,又要合理控制温度、压力等工艺参数,还要注意充分利用换热器,加大热量的回收利用,达到节能降耗的目的。

参考文献:

[1]闫光灿, 刘建民. 气田节能降耗技术[J]. 天然气与石油, 2001, 19(2): 58-64.

[2]张德元, 熊钢, 戴忠, 等. 气田内部集输系统能耗及节能技术[J]. 天然气技术, 2010, 4(3).

[3]范家僖. 气田集输系统节能措施及潜力分析[J]. 中国石油和化工标准与质量, 2011, 11: 101.

[4]雷巧英. 变频器在长庆气田净化装置上的应用与节电效果分析[J]. 石油石化节能, 2008, 19(6): 34-36.

[5]马思平, 魏萍, 柳洁, 等. 变频节能技术在靖边气田的应用分析[J]. 节能, 2009, 12: 015.

[6]袁海洋. 变频技术在油田生产中的应用[J]. 油气田地面工程, 2003, 22(1): 27-27.

[7]张勇. 往复式天然气压缩机节能降耗浅析[J]. 通用机械, 2009, 8: 33-36.

[8]徐铁军. 天然气管道压缩机组及其在国内的应用与发展[J]. 油气储运, 2011, 30(5): 321-326.

[9]苗华春. 浅论油气集输泵站的节能降耗措施[J]. 内蒙古石油化工, 2012 (12): 67-68.

[10]陈夕洲. 油田加热炉节能技术应用[J]. 油气田地面工程, 2008, 27(4): 12-13.

[11]张凤波, 卢仁文, 王博, 等. 天然气处理装置节能降耗研究[J]. 油气田环境保护, 2012, 22(4): 1-3.

[12]袁宗明, 王勇, 贺三, 等. 三甘醇脱水的计算机模拟分析[J]. 天然气与石油, 2012, 30(3): 21-26.

[13]诸林. 天然气加工工程[M]. 北京:石油工业出版社,2008. 163-166.

[14]郝蕴. 三甘醇脱水工艺探讨[J]. 中国海上油气(工程),2001,13(6):22-29.

[15]王玮. 轻烃回收装置节能技术综述[J]. 天然气技术, 2009, 3(5): 55-58.

天然气节能技术篇4

一、天然气开发企业节能减排现状

利用重庆科技学院大学生科技创新训练计划项目《天然气开发企业节能减排现状调查与对策研究》团队综合运用“头脑风暴法”等科学手段,自主设计和制作的《天然气开发企业节能减排调查表格》,充分借助现代网络手段和平台,针对川渝地区天然气开发企业,从人员意识、制度建设、设备管理等方面完成天然气开发企业节能减排现状调查,其基本情况概况如下:

1.员工节能减排意识有待提高

操作岗、技术岗等基层岗位员工对国家节能减排政策和企业节能减排相关措施的了解程度普遍不高,对节能减排的内容、意义和作用认识不够到位。此外,新员工(工作年限在4年以内的员工)和工作年龄较大的员工(40岁以上的员工)表现的节能减排意识相对较差。

2.规章制度不够完善,执行不到位

制度建设作为节能减排工作的基础环节。相对于生产、安全等,对于节能减排工作的重视程度有待进一步提高,直接导致天然气开发企业节能减排规章制度建设明显滞后,相应的考核制度缺位影响企业和员工开展节能的积极性。此外,尽管部分企业制定了节能减排的相关制度,但执行不到位,导致规章制度无法发挥作用。

3.设备管理、操作不规范,影响节能减排效果

部分企业的计量仪表安装的规范性欠佳、设备未定期维修、排污系统不完善等设备管理、操作不规范,造成设备未能按照最佳参数运行、能耗使用量无法控制和不必要的污染物排放,影响节能减排效果。

4.节能成本偏高

由于政府相关节能减排政策导向和力度原因,加之改进优化工艺或购买节能减排系统成本高,而收益较低,天然气开发企业节能减排动力不足。

二、天然气开发企业节能减排对策

结合天然气开发企业节能减排现状调查,在广泛征求相关方面建议和意见的基础上,重庆科技学院大学生科技创新训练计划项目《天然气开发企业节能减排现状调查与对策研究》团队提出以下对策措施:

1.通过节能减排宣贯,全面提升员工节能减排意识

针对基层岗位员工,尤其是新员工(工作年限在4年以内的员工)和工作年龄较大的员工(40岁以上的员工),通过海报、通讯、班组会等形式和途径对节能减排进行宣贯,帮助员工了解国家节能减排政策和企业节能减排制度,增强节能减排意识。

2.完善规章制度,提升执行力

积极响应国家节能减排政策,通过广泛调动员工参与,不断完善节能减排规章制度,全面推进节能减排各项工作,并认真落实相应考核措施。从而建立天然气开发企业节能减排管理机制,制定行之有效节能减排管理制度文件,奠定制度保障基础。通过能耗、减排指标的下达、分解、落实,全面提升天然气开发企业节能减排执行力。

3.依靠科技,规范设备管理和操作

依靠技术创新,不断促进节能技术改造。在淘汰落后设备的同时,规范设备管理和操作,力争做到计量仪表安装规范、设备定期维修,并完善排污系统,从而全面提升天然气开发企业节能减排效力。

4.积极争取政府和上级单位的支持

积极争取政府和上级单位在政策、资金等方面的有力支持,加快节能减排先进技术研发推广和重点项目实施,促进天然气开发企业节能减排创新。

三、结论与建议

1.所调查的川渝地区天然气开发企业节能减排现状总体而言是向着好的方向发展的,尽管存在不尽如人意的地方,但应该充分认识到这只是发展的必然过程和阶段。

2.所提出的天然气开发企业节能减排对策有待通过实践完善。

参考文献

天然气节能技术篇5

一、天然气井钻井特点

(一)天然气的密度低,与钻井液有强烈的置换性。与地层水、钻井液、原油相比,天然气密度很低,大约是是清水密度的千分之一。在天然气钻井过程中,当发生溢流关井,整个井筒形成密闭空间,由于天然气密度较低,与钻井液发生强烈置换,混在钻井液中的天然气气泡不断向井口运移,导致井口压力过高,与井内溢流压力共同作用,容易造成地下井喷以及井口刺漏、管线、井口套管憋爆等问题。因此,需要对井涌、井喷后关井压力进行监测和控制,最大关井压力不得超过井控装备规定工作压力、套管抗内压强度的80%和地层破裂压力所允许压力三者中的最小值。一旦井口压力超过了以上压力值,在关井时就要适当泄压,但要补充所放出的钻井液量,在压井时要降低排量,控制井口施工压力。

(二)天然气的易燃易爆性。天然气最为直观、最易理解的特点就是易燃易爆性,容易造成天然气井钻井过程中井喷失控时的失火问题。但是天然气与空气的混合物在一定的浓度范围内遇到火源才能发生爆炸,这个火源才引发爆炸的浓度范围(体积比)称为爆炸浓度极限。天然气在空气中的混合浓度、爆炸范围在5%-15%之间,低于5%既不爆炸也不燃烧,高于15%,不会爆炸,但会燃烧。根据已有资料分析,天然气井井喷失控时失火现象发生几率较高,不是人为或地面设施所能控制的。而当井喷失控瞬间未着火,其后着火可能性较小。因此,钻井队伍应严密作好井场及周围消防工作,防止着火。

(三)天然气的压缩与膨胀性。地层天然气在地层孔隙中,其体积受地层孔隙压力控制,呈密集压缩状态。在钻进过程中,一旦地层天然气进入井筒,将随钻井液到达井口,在到达井口过程中,其体积会随上部液柱压力减少而增大,如果未对进入井筒的天然气进行控制,地层天然气将连续进入井筒,表现出井口溢流现象,发生井涌,随即井喷。在起钻过程中,由于抽吸作用会使钻井液柱作用于地层天然气的压力减少,再加上未按要求及时将井筒灌满,地层天然气也会进入井筒,其体积也会随上部液柱压力减少而迅速膨胀,造成起钻过程中井口的溢流。而下钻过程中出现的井口溢流的原因则是起钻或起下钻时间太长。从实际发生井喷过程的观察,溢流到井涌之间时间较长,而井涌到井喷时间较短,一旦发现溢流,需要迅速按“四、七”动作控制井口。

二、天然气井钻井井控技术的优化措施

(一)完善井控理论,开发配套软件。随着井下传感器的开发和计算机技术的发展,人们对井筒内动态环境有了更深刻的认识和理解,给井控理论基础的更新创造了条件,以便准确计算井筒压力,提高钻井压力控制水平。新的井控理论应该考虑不同井底压力下油气层的流人和流出,结合井筒瞬态的压力和温度场,采用气液多相流理论计算井筒剖面压力,并利用井筒压力实测值修正计算压力。利用新的井控理论编制井筒压力计算软件,便于计算不同压井方法在井筒各关键点的井筒压力,并优选出合理的压井方法和压井施工参数,以指导压井施工作业。当然,这种软件不仅应用负压钻井的设计,而且为压力控制钻井提供压力计算的依据。此外还应研究水平井、多底井等特殊情况下天然气的侵入和气液两相流动规律,确定合理的钻井液附加密度和安全作业时间。

(二)增强井控装备配套水平。为适应高压、高产气田开发的需要,井控装备需要开展以下技术攻关研究工作:对105MPa压力等级井控设备进行配套,并研制适合于酸性气田的井控装备;对分离器进行优化和完善,提高脱气能力,例如选用“U”形管分离器;研制和开发智能井控系统,通过自动实时调节液动节流阀的开度来控制井口回压,使井内压力按照预定压力变化,完成井控施工作业。除此之外,还要提高节流阀和压井管汇的节流和抗冲蚀能力,其方法包括:一是改善节流阀的结构和材质,提高精确控制能力、抗冲蚀能力;二是研制多级节流系统,合理分配节流压降,改善节流阀件的工作条件,防止单一路径失效影响压井施工;三是完善压井管汇结构,降低高速流体对管汇的冲蚀作用,提高其完整性;四是实行智能控制,提高控制精度,防止误操作。钻井单位还需要研制和引进先进的探伤检测仪,对井控的防喷器等厚壁设备进行无损伤探测和评价,以保证井控设备的完整性。

(三)加强井控技术队伍建设。各天然气钻井公司应建立一支全面掌握现场钻井技术和井控操作技术,实践经验丰富、责任心强、组织能力高的人才队伍。首先,聘请具有井控工程师或井控高级工程师职称的专家,主要负责处理现场井控技术问题,并实时对井控作业进行监督,做好排除溢流压井的现场指挥工作;其次,提高钻井井控操作人员的基本素质,特别是加强钻井队骨干对因天然气特性所带来的井控技术特点的认识、理解,并通过认真反复实践,使其确实掌握天然气井钻井井控操作技术。此外,钻井队、钻井公司还应加强对操作人员现场技能培训,按井控技术规定、标准、操作规程进行日常职业化训练,从根本上解决低水平重复作业和反复犯低级错误的问题。

三、结束语

总而言之,天然气是一种重要的环保能源,但是其密度较低、易燃易爆、压缩性和膨胀性等特点,使得天然藏钻井工作面临多种困难。随着科技的发展,井控技术逐步向自动化方向迈进,通过完善井控理论、增强配套设备等措施,对井控技术进行研究与创新,同时钻井单位还要加强技术队伍的建设,从而提高开采的安全性、可靠性,为石油天然气勘探做出新的贡献。

参考文献:

天然气节能技术篇6

1 传统建筑电气技术在应用中的问题

传统的建筑电气技术在当前的建筑体系中应用较为广泛,而且产品的种类也很丰富,从某一个产品而言,技术发展成熟,总体上讲传统的建筑电气技术在应用中相对独立,特别是末端电器产品,缺乏相互联结,随着产品本身功能发展的复杂化,人们对于办公和生活环境的要求也逐渐提高,所以传统的电气技术存在诸多不足,主要方面包括:使用的繁琐性,建筑电气技术非节能性,管理效率地下,安全性低。

2 主要的建筑电气节能技术

2.1 风力发电技术

风力发电机的运行方式包括独立运行方式,风力发电与其他发电形式结合,或是在一处风力较强的地点,安装数十个风力发电机,其发电并入常规电网使用。在传统建筑电气节能技术的应用过程中,我国主要开发研制小型的风力发电机,并将其作为农村独门独户使用。由于电网不能实现为偏远地区供电,所以近六十万居民正在使用风力发电机进行发电。但目前的发展趋势表明,我国的风力发电机制造由小功率向大功率发展,为满足彩电冰箱等家用电器的用电需求。其次不再实行独门独户的风力发电形式,而是采取联网供电,由村庄集体供电等形式。从长远角度看,风力发电技术的应用范围进一步扩大,不仅单纯用用与家庭,更扩大到众多公共设施及政府部门。

2.2 太阳光伏发电技术

在北欧的部分国家正推广一种“零能”住宅的理念,这种住宅是由“太阳能屋顶”提供该建筑的全部能量的。而这就应用到了太阳光伏发电技术,在屋顶安装太阳光伏电池,当阳光充足时太阳光伏电池可以适应某一家庭的全部用电需求,并将剩余电量反存于电网,供用电不足时使用。目前由于太阳光伏电池的价格过高,我国仍没有大范围的推广计划。据专家预测,这种光伏发电技术通过技术革新与大规模生产,可于2030年后在市场上大规模出现,并对传统的建筑电气节能技术产生冲击力和竞争力。

3 建筑电气节能技术发展中应该遵循的原则

建筑电气节能技术在建筑工程中不能盲目使用,不能以节能为目标损害了建筑的原本功能,更不能为了节能而忽略其成本的规划。所以在建筑电气的节能技术发展过程中必须要遵循以下原则。

首先,适用性。满足建筑物照明的亮度、色温,满足空间的舒适性或满足某些建筑的特殊要求。这是对于满足建筑物内的人工环境完整而提出的条件。建筑电气的技术应用必须要满足建筑物创造的环境要求,为建筑设计中的设备提供能源供应。

其次,实际性。节能问题本身应从国情和经济条件角度考虑,不能盲目为追求节能效果忽视其经济效益的考虑,要对合适的节能设备与节能材料进行性价比比较,使节能所增加的时间效益和经济效益在未来的建筑物使用过程中得到回报。

最后,节能性。作为建筑电气节能技术的必要条件就是其节能性的考量。必须要采用必要的措施,来减少甚至消除建筑物中不必须的消耗,在未来的发展过程中,应着眼于建筑电气设备自身电能消耗,传输线路上的电能消耗等问题。

4 建筑电气节能技术发展方向

4.1 利用天然光源

作为节能工作中最为主要的一项内容就是对照明工程的节能应用。而照明节能工程最为主要的内容就是对天然光源的利用。随着人们对能源的重视,建筑物中充分利用天然光源来节约照明用电已经广泛应用在各建筑电气技术中。天然光源作为一种无限再生资源,在照明节能的实施过程中必须要扩大应用。制定一系列建筑物的采光标准和采光方式,并推广于日常生活中。

4.2 太阳能照明技术

太阳能和天然光源一样,属于取之不尽用之不竭的无限能源。太阳能照明技术可以减少温室气体的排放,同时节省资源,保护地球环境。科学合理地利用太阳能照明节能技术,可以将建筑电气节能技术的发展推向更高的台阶,这可以将其最为本质的原则和内涵得以展现。

4.3 能源综合利用

控制能源问题的主要方式并不单纯依靠电力使用上的细节,此外还包括对风能等自然的,可再生的能源的综合运用。这就需要技术的革新发展,也是我国建筑电气节能技术发展的主要方向。

5 建筑电气节能技术的发展前景

我国的节能体系目前仍处于初级阶段,相比一些发达国家已经建立起的各具特色的建筑节能体系稍有不足。如英国、美国、加拿大、日本等国家先后建立起了节能评估体系,在各国的建筑节能技术实施过程中都依靠该体系的规范和准则,采用定性定量的方法,对电气节能的效果和电气节能技术进行评估。

相比之下,我国的建筑电气节能技术评估体系并没有建立,显示出了相对的不足性。因此需要我国尽快学习先进国家的经验并分析自身的不足之处,扬长避短,这将有利于我国在短时期内取得建筑电气节能技术发展的巨大进步。我国现在实行的建筑节能标准和规定对电气节能内容没有做出具体的规定,加大了操作的难度。所以,国家建筑行业的相关部门有必要对电气节能和建筑节能测评体系的建立采取硬性措施和实施内容的规定。

天然气节能技术篇7

(一)发电机余热回收

1、发电机基本参数:4台发电机是胜利动力机械有限公司生产的400GF1-PI型燃气发电机组。发电机基本参数:额定功率400KW、转速:1000R/MIN、功率因数:0.8。日发电量约1.2万度,发电机排气烟道实测温度在520-550℃。

2、烟气余热回收技术分析:烟气回收的核心是烟气换热器,对比热管换热器与其他热交换器,热管换热器优点明显:传热系数高;具有较大的传热温差;结构紧凑占地面积和金属消耗量大为减少;热管元件具有很好的可拆换性,便于维护和维修,有些热管空气预热器甚至在工作状态下,不用停机就能进行热管元件的更换和检修;抗露点腐蚀:热管换热器加热端和冷却端的面积可以人为地调节,管壁温度也就可以相应得到调节,因而具有较强的抗露点腐蚀的能力。此外,即使有热管腐蚀泄漏了,也不会造成冷热流体的掺混。因此采用热管式烟道换热器将烟气与水进行换热回收烟气余热比较合适。

3、烟气回收方案探究:计算燃气发电机烟道流通面积,保证安装后烟气流通量不变。对每一台燃气发电机烟道进行改造:增加一个副烟道,在副烟道安装余热回收换热器,主副烟道安装烟道挡板。改造热水循环管路:循环泵出口接一条管线引至发电机余热换热器水路入口,出口新建管线引至热水用户。发电机开时采用发电机烟气余热为用户提供热量,当发电机不开时,走老流程采用燃气真空炉为用户提供热量。通过烟道挡板控制进入余热换热器的高温烟气量,从而控制换热后水温。当循环水发生故障时,主烟道挡板全开、副烟道挡板关闭,副烟道关闭,烟气从主烟道排出(见图1)。

(二)应用节能流量调节技术降低流体机械能耗

流体机械以输运气体和液体、水、油等,为对象介质。这些介质的流量常因需要而必须进行调节。我们比较调节流量的两种方法,第一种方法:流量的调节靠机组出口阀门(或回流阀门)来实现,电动机处于恒速转动,流量减少而耗能没变。第二种方法:即采用电动机调速的方法,让转速降低流量也降低,与老办法有同样的调节效果,但是电机的耗电量减少。对比交流电动机的各种调速方法,变频调速适用于同步机和异步机,具有自身能耗最小,现场使用灵活方便,调速范围广、平滑、工作相对稳定性好、操作方便等优点。因此将流量调节频繁的地方:原油稳定进料、出料泵用变频技术调节流量。

(三)轻烃回收装置尾气回收

1、常见尾气回收方法:(1)油气平衡技术。通过管网将油田的湿气管网连通,整合油田的天然气资源,将气量大的厂站的气输送至气量少的厂站。(2)气柜回收。将放空油气收入气柜储存,然后回收利用。(3)CNG技术。该技术通过将天然气脱水后压缩到20MPA充装到CNG拖车中,用拖车将天然气运输到城市加气站给汽车作燃料。方案比较:CNG技术适应性强,但是需要资金量大,成本回收周期长。气柜回收,占地大,资金量大。只有油气平衡技术最经济。考虑到附近有的联合站气量波动大,冬季有时甚至断气的情况。采用油气平衡技术将本站放空气引至附近站使两站油气资源共享这一方案比较合理。

2、具体方案探究:如在考虑安全地情况下将本联合站干气管网压力提升至250-290kPa,然后利用一条不用的输油管线利用压力差就能将剩余干气输至中间输油站。最后通过一条新建管线将气从中间输油站引入下游联合站三项分离器气相出口。成功实现两联合站天然气共享,既减少了该联合站天然气的浪费,又提高了下游联合站的气量,一举两得。

三、方案效果预估

天然气节能技术篇8

随着我国经济的快速发展,我国面临着巨大的挑战和许多现实的问题,人口、信息化、环境、交通、城乡发展不平衡、能源等问题是制约我国经济发展的主要瓶颈问题。虽然我国是能源大国,但是我国在解决能源与环境的协调问题和可持续发展问题上面仍然存在着很大的不足和缺陷,如果无法解决我国的能源问题,那么我国的经济发展将受到严重的制约和阻碍。为了解决这个问题,我们必须改变我国的能源结构,提高我国天然气储运技术,推动我国能源利用科学化和可持续发展。

1.我国能源利用现状

(1)虽然我国是能源消费大国,但是我国能源消费主要以煤为主,天然气所占比重较小,煤的污染比天然气大很多,带来很多的环境问题。(2)虽然我国自改革开放以来非常重视节能减排的工作,致力于改善我国的环境现状,但是我国的能源利用率仍然比较低,特别是与发达国家相比单位产品耗能与国际先进水平差距仍然是比较大的,这也是因为技术方面的落后不成熟。(3)节能工作遇到许多问题,如相关法律法规不健全、相关部门对节能工作认识不足或存在偏差,导致工作的开展遇到许多的问题。这是导致我国能源利用效率低下的另一原因。

2.天然气储运技术现状

(1)目前天然气储运方法主要有五种。一是管道天然气,即PNG。这是目前最为便利和常见的天然气储存运输方法。它主要运用于陆地上天然气的储运和贸易,但是由于海上安装的难度过大和维修费用过高,海上的天然气管道并不常见。除此之外,管道天然气储运法还存在著灵活性差、费用过高、修建不易等弊端。

(2)是液化天然气,即LNG。液态天然气储运法也是很常见的一种储运方式,它利用天然气脱水降温液化以后体积减小的原理将天然气从气态变为液态的一种方法。经过多年的技术改进及创新,天然气液化的费用减少了很多,但是它只适用于规模较大、距离较远的大型储运,并不针对小型的天然气田和用户。

(3)是天然气水合物,即NGH。天然气水合物储运法由于其稳定性能高,不需低温冷冻也不需高温压缩,使得天然气处理成本降低,形式机动灵活,安全性能高,灵活性好,是天然气储运的绝佳选择。特别是对于我国很多分布于近海的小型分散天然气田而言,它的优越性更是无可比拟,在很大程度上可以提高我国的天然气使用效率,扩大我国天然气储备预算。但是该方法对于技术的要求较高,我国仍需要在天然气水合物储运技术方面投入很大的研究力度。

(4)是压缩天然气,即CNG。压缩天然气储运法是利用高压将天然气压缩在容器内以便储运的一种方法。虽然它在一定程度上降低了天然气储运的价格,但是它由于体积笨重、配套设施繁多且价格高昂、受外力影响大等因素的限制只适用于小型气田或用户。为了改变压缩天然气的现状,CNG船运应运而生。CNG船运用保温管束容器代替压缩天然气法的压力容器,使得普通运输船也可以作为天然气的运输工具,大大降低了天然气储运的成本,而且扩大了压缩天然气法的适用范围,扩大了天然气的开采和利用前景。

(5)是吸附天然气,即ANG。吸附天然气储运法是利用吸附剂将天然气进行吸附以便存储于容器之内。目前吸附天然气储运法主要运用于汽车行业,它在提高汽车安全性能、节省生产成本、降低能耗、扩大天然气适用范围等方面起着重要的作用。但是我们在吸附剂的寿命及吸附、脱附周期等方面仍需较多的研究以保证该方法的效果质量。

3.天然气储运应用发展前景

近些年来,天然气水合物储运技术受到各国极大的重视,很多国家都在研究这项新型天然气储运技术的运作方法以提高本国天然气利用效率,节约能源,推动国家能源可持续发展。笔者认为这也是我国能源发展方面遇到的挑战和机遇,我国应当把握住这样的机遇,注重天然气水合物储运技术的开发和研究,将该技术作为改善我国能源现状和结构的重点,提高我国的能源利用效率。也就是说,天然气储运应用的发展前景主要是天然气水合物储运技术的研究和发展。

3.1 陆地及海洋天然气水合物储运技术的应用

在陆地上,如果将天然气在气田固化成固体水合物以后再运送到使用单位附近集中气化将会耗费大量的水资源,这样在水资源稀缺的一些地区该技术就没有用武之地了。那么我们该如何改进天然气储运技术使得干旱地区也能有合适的储运方式呢?这个时候天然气水合物储运技术就显示出了它的强大优越性。首先,它对于存储容器的要求不高;其次,它不需高压或低温,需水量小;最后,它的安全性能高,受到周围环境的影响小。

在海洋上,由于管道运输和液化天然气运输显现出来的弊端也就显示出了天然气水合物储运技术的优越性,它也成为海上天然气运输的主要方式。它的优越性主要从四个方面可以看出来。一是降低建造设施和生产的成本;二是由于天然气水合物是固体,可以忽视水压对容器的影响,保证天然气储运的安全性;三是其灵活性和稳定性强,可操作性高且污染性低,保护开采地、运输路线及使用地的环境;四是它分解以后对天然气的损耗低,提高天然气的使用效率及储存规模。

3.2 汽车及石油化工中天然气水合物储运方式的应用

随着时代的变迁与发展,汽车的发展也朝着节能减排低碳方向发展,这就要求解决汽车燃料供需矛盾以及对环境的破坏污染等问题,以推动汽车行业的转型,推动汽车行业低碳发展。一方面,我们要采用清洁燃料或污染小的燃料,如天然气、太阳能,来代替汽油、柴油、煤油等常规的但是污染大的汽车燃料。另一方面,我们要改进天然气汽车的燃料储存及使用技术。目前很多国家采用压缩天然气和吸附天然气储运方式作为天然气汽车的燃料储运方式,这样的方式由于存储压力高等限制性因素制约着天然气汽车的快速发展。在汽车行业引进天然气水合物储运方式显得极其重要。它的稳定性和灵活性是其最大的优势。

在石油化工中天然气水合物储运方式主要运用于水合物三相混输方面,这样可以节约大量的天然气生产基础设施建设及运输的费用,还能提高能源的使用效率减少环境污染。

3.3 调节天然气使用的不平衡

由于天然气利用市场的需求变化较大,受到季度、温差等方面的影响大,这就可以利用天然气水合物储运方式来调节天然气使用的不平衡。在夏季,天然气供应量大于市场需求量时,我们可以将多余的天然气运用天然气水合物储运方式储存起来。到了冬季,天然气供应量小于市场需求量的时候我们可以根据实际情况将水合物分解成天然气调节市场的供需不平衡,提高天然气的使用效率,减少突发事件带来的经济损失,降低成本。

4.结论与认识

当前来看,我国能源利用现状并不乐观,特别是在二十一世纪这样一个挑战和机遇并存的时代,改善我国能源利用现状刻不容缓。天然气作为清洁能源,在我国未来的发展规划中,必然会担起重要的能源消耗任务,相信在更加安全可靠的天然气储运技术保证下,我国的能源结构将进一步优化。

参考文献

天然气节能技术篇9

(二)协调发展天然气业务,低碳能源供应作用突出

四川是中国乃至世界上最早发现、开采和利用天然气的地区。川渝地区的天然气主要由中国石油西南油气田分公司、中国石化西南分公司和地方浅层天然气公司供应。中国石油占有绝对的市场份额,在川渝地区有天然气供应的116个市(区、县)中,完全由中国石油供气的达108个。从2001年到2011年,公司的天然气产量从84亿立方米增至144亿立方米,增加了71%;向川渝地区供应的商品天然气从78.6亿立方米增至145.9亿立方米,增加85.6%。11年来共向川渝地区供应商品天然气1291亿立方米,为低碳能源供应作出了重大贡献。

(三)加强节能减排工作,能效管理成效显著

加强组织领导,明确工作职责。明确了HSE管理委员会行使节能减排工作领导职责,全面负责公司节能减排工作。公司制定并完善了《节能节水管理实施细则》,《节能节水型企业考核评比办法》等节能管理制度。下发了《能效水平对标指标调查表》,建立了油气田业务能效对标指标数据库,确定了能效水平对标标杆,了《能效标杆现状报告》,编制《能效对标改进方案》,落实了能效对标改进措施。“十一五”期间实施节能技措项目276个,节水技措项目96个,实现年节气1586.22万立方米、节电655.18万千瓦时。在143余口采气井应用井下节流技术,减少燃料天然气的消耗,缩短地面建设周期,节约地面建设投资。通过高低压分输工艺采出低压气近50亿立方米,年减少燃料气消耗0.5亿立方米以上。公司推广采用MDEA溶剂吸收法和配方型溶剂吸收法脱硫、采用原料气过滤2级串联流程等先进技术和设备,提高了天然气净化厂的生产效率,新建净化厂的设计能效水平达到国内领先水平。“十一五”期间共实现节能8.53万吨标煤,超额完成国家发改委下达的节能6.88万吨标煤任务,兑现了国家“千家企业”节能承诺。公司先后获得“集团公司环境保护先进单位”、“四川省工业节能先进企业”等荣誉称号。

(四)大力发展低碳技术,增强公司核心竞争力

结合公司的业务重点,积极开展低碳发展关键技术的科技攻关。在天然气勘探开发方面,加强高含硫天然气、致密气、页岩气等的勘探开发技术攻关。在节能减排方面,以油气田开发、净化、输送等专业板块为重点,突破一批节能减排关键技术。在新能源开发以及CO2利用与储存方面,积极推进生物柴油、乙醇汽油等新能源生产关键核心技术的研发,适当开展碳封存和碳利用技术的相关研究开发、试验与示范工作,为公司的节能降耗提供技术支撑。

(五)培育低碳文化,建设低碳矿区

树立低碳发展理念,培育员工的“低碳生产”、“低碳办公”珍爱人类生存环境的意识及其敬业、奉献精神,在广大员工中树立节能减排意识,建设以“减少碳排放、节约能源、可持续发展”为核心的公司低碳文化。引导矿区推进低碳发展,将低碳理念引入设计规范,提高能源利用效率,建设具有西南油气田特色的低碳文化品牌。将低碳发展内容纳入公司社会责任体系,主要包括提供持续稳定的清洁能源供应,努力创建环境友好型、资源节约型和低碳型企业,促进低碳城市发展,倡导低碳消费方式,积极参加碳汇造林等内容。

实施效果

(一)有力支撑了川渝地区国民经济平稳较快发展

据国家统计局中国经济景气监测中心测算,西南油气田天然气产业链创造的增加值占川渝地区GDP的比重从2005年的1.87%上升到2011年的3.63%,上升了1.76个百分点;2005年天然气产业链在川渝地区经济增长的12.31个点中贡献了0.16个点,2011年在川渝地区经济增长的15.4个点中贡献了2.11个点;天然气产业链对川渝地区财政收入的贡献直线上升,由2004年的2.19%上升至2011年的10.41%。

(二)推进了川渝地区能源消费结构的升级

川渝地区天然气加快发展速度,对于地区能源消费结构的调整做出了重要贡献。2011年川渝地区天然气消费占一次能源消费的比重为12.05%,远高于4.8%的全国平均水平。川渝地区城市气化率由2004年的43.3%逐年上升至2011年的54.2%,川渝地区车用CNG占汽车燃料消费量比重由2004年的4.8%上升至2011年的6.0%。

(三)形成了以天然气为原料或燃料的产业集群

目前,川化、泸天化、赤天化等国内知名的7大天然气化肥厂的合成氨总产能为200×104t/a,大型合成氨装置产能(年产合成氨30×104t以上)分别占全国大型合成氨产能和天然气制合成氨产能的20%和50%。还有38家全国重要的中、小型天然气化肥生产基地。四川维尼纶厂、重庆扬子江乙酰化工公司和建滔天然气化工有限公司为代表的天然气化工业,生产甲醇、醋酸、乙炔、合成纤维等天然气化工产品。在四川夹江地区,丰富的天然气供应促进了当地建陶业的蓬勃发展,建立与形成了建陶业集群。

(四)降低了川渝地区综合减排量

据国家统计局中国经济景气监测中心测算,川渝地区天然气的减排量2010年综合减排量为2365.72万吨,是2005年(1028.88万吨)的2.3倍。其中,二氧化碳2010年的减排量为1488.01万吨,是2005年(744.22万吨)的2.0倍。2010年人均二氧化碳减排量为135.45千克/人,是2005年(67.99千克/人)的1.99倍;2010年单位土地面积二氧化碳减排量为26.23吨/平方公里,是2005年(13.12吨/平方公里)的2.0倍。#p#分页标题#e#

天然气节能技术篇10

Key words: marginal oil wells;gathering and transportation process;energy saving

中图分类号:TE866 文献标识码:A 文章编号:1006-4311(2013)28-0051-03

1 低产低能油井生产现状及存在问题

中原油田采油一厂开发中后期开采难度越来越大,问题越来越多,低产低能的边缘断块离主力区块越来越远,低产低能(边缘)油井产出的原油只能利用罐车拉运至文一联卸油台处理,伴生天然气外排点燃的工艺技术生产,该工艺造成车辆拉运费用、人员看护费用和原油处理费用增加很大,天然气浪费污染严重,已违背了国家的节能减排政策。既要满足当前生产工艺又要符合当前政策是解决两者相互矛盾的关键问题,为了满足生产需要,解决目前天然气资源浪费,空气严重污染等问题,通过深入研究、分析,研究出了四种适应中原油田采油一厂低产低能、高油气比油井的天然气回收利用工艺节能技术,解决了液体单拉、天然气进系统回收利用和小断块油井集中生产的难题,通过近几年来的现场应用,增油节气效果显著。

2 主要工艺节能技术

2.1 低产低能单拉油井液进罐、多余外排伴生气供加热设备使用的集输节能工艺技术

2.1.1 工艺使用条件:①油稠、含水低,无法进站生产,进站回压较高(井口回压>1.3MPa),只能靠进多功能罐降低回压才能满足生产的单拉油井。②天然气量相对较多,多功能罐分离的伴生气自身加温使用不完,又无法进系统外输的单拉油井。③能够满足附近水套炉或其它加热设备使用的天然气气量,一般多功能罐安全阀每天天然气外排在500-1000m3左右单拉油井。

2.1.2 工艺原理:①主要设备:0.3Mpa多功能罐一台及连通管线,多功能罐安装在油井井场附近。②工艺原理:低产低能单拉油井产出液体利用罐车拉运至文一联卸油台处理,分离出伴生气由多功能罐自身加温使用,使用不完的伴生气利用原有的进站管线或附近的回水管线作为连通管线输送到计量站,经分气包和干燥器分离干燥后,直接供水套炉和其他加热设备使用。③工艺流程:生产井口产出气液多功能罐液体单拉。多余的伴生气连通管线计量站水套炉。

2.1.3 节能技术创新点:①多功能罐多余外排气供临近计量站水套炉使用,节约了天然气,减少天然气浪费,降低了环境污染。②解决了计量站外输分气包气液分离不彻底,水套炉天然气供气管线气中带油,造成“油走气路”堵塞水套炉火嘴的问题,杜绝了水套炉炉膛进油熄火外输温度降低油水分离不彻底的现象,消除了水套炉烟道冒油着火事故发生的安全隐患,减轻了计量站工人的劳动强度。

2.1.4 经济效益:

①应用效果:共实施三口油井:文25-侧79井、文15-92井和文215-3井,多余伴生气供三座计量站(7#计量站、9#计量站和14#计量站)的水套炉、两处用气单位和一口单井加热炉使用天然气,该技术降低了单井回压,增油节气效果显著。1)文25-侧79井年节约天然气40.15×104m3;2)文15-92井年节约天然气21.9×104m3;③文215-3井年节约天然气5.48×104m3;合计年节约天然气67.53×104m3。

②投入费用:共实施三口油井,主要工作量:1)文25-侧79井新上多功能罐一台;?椎25×3mm连通管线200米。2)文15-92井新上多功能罐一台,利用原管线作为连通管线。3)文215-3井新上多功能罐一台,?椎76×4.5mm连通管线150米;总计投入费用28.5万元。

③投入产出比:总投入28.5万元,每年的直接经济效益为81.03万元(1m3天然气按1.2元计算),投入产出比为:1:2.85。

④投资回收期:五个月。

2.2 计量站低产低能油井井组利用进罐阀组集中进罐生产,伴生气供计量站水套炉使用的节能工艺技术

2.2.1 工艺使用条件:计量站站内的部分油井因低产低能或间歇出油,造成单井进站回压较高或进站外输系统后生产能力下降幅度较大的油井井组。

①低产低能,进站外输系统影响产量,采用多功能罐生产降低单井回压的计量站井组油井。②井组气量可以满足多功能罐自身加温外输和计量站水套炉使用。

2.2.2 工艺原理:①主要设备:0.3Mpa多功能罐一台;进罐阀组一套;打油泵一台及连通管线,安装地点在计量站附近。②工艺原理:在计量站站内集油阀组后面并联安装一套简易进罐阀组,实现低产低能的油井井组进罐降低单井回压的方式生产,多功能罐分离的液体利用增压泵(离心泵)增压外输,分离出的天然气供计量站水套炉或其它加热设备使用,实现增油节气。③工艺流程(见图1):低产低能油井井组产出气液进罐阀组多功能罐液体打油泵外输系统。多余的天然气连通管线计量站水套炉。

2.2.3 节能技术创新点:①低产低能或间歇出油的油井降低了单井回压,延长了单井管线及井下管柱的使用寿命,增油节气效果显著。②实现了罐与外输系统流程的相互互倒,保障了计量站站内和外输支干线的施工时不用停井作业的集输工艺应急措施。

2.2.4 经济效益:

①应用效果:共实施三座计量站:1#计量站、27#计量站和8#计量站。三座计量站的水套炉都使用多功能罐分离的多余伴生气,该技术降低了计量站低产低能油井井组单井回压,保证了正常生产,增油节气效果显著。

1)1#计量站年增油276吨,年节约天然气12.4×104m3;2)27#计量站年增油117吨,年节约天然气9.5×104m3;3)8#计量站年增油163吨,年节约天然气11.97×104m3。合计年增油556吨,年节约天然气33.87×104m3。

②投入费用:共实施三座计量站,主要工作量:

1)1#计量站新上多功能罐一台;进罐阀组一套;?椎76×4.5mm连通管线300米,合计17.2万元。2)27#计量站新上多功能罐一台费用8.5万元;进罐阀组一套费用5万元;?椎76×4.5mm连通管线200米费用2.4万元,合计16万元。3)8#计量站新上多功能罐一台费用8.5万元;进罐阀组一套费用5万元;?椎76×4.5mm连通管线250米费用3万元,合计16.5万元。 总计投入费用49.7万元。

③投入产出比:总投入49.7万元,年增油556吨,年节约天然气33.87×104m3,每年的直接经济效益为263万元(1吨原油按照4000元,1m3天然气按1.2元计算),投入产出比为:1:5.2。

④投资回收期:三个月。

2.3 边缘高油气比油井液进罐、伴生气利用多功能罐进外输系统的集输节能工艺技术

2.3.1 工艺使用条件:因油稠、含水低、粘度高、物性较差且气量较大,气液混输无法进系统或进系统生产回压较高,天然气外排污染严重的边缘油井。①气液混输进站回压较高(井口回压≥1.3MPa),无法正常生产,只能靠进多功能罐降低回压才能满足生产的边缘油井。②边缘单拉油井天然气量相对较多,多功能罐分离的天然气自身加温使用不完,日外排天然气气量在1000m3以上。③边缘单拉油井具有可以利用进站管线(或单井回收管线),分离的天然气压力高于近邻的外输系统压力。

2.3.2 工艺原理:①主要设备:1.6Mpa多功能罐一台及连通管线,设备安装在油井井场附近。②工艺原理:主要是针对含水低、油稠、气量较大、油气水混输无法进系统的边缘油井,采用特制1.6Mpa多功能罐进行气液分离,分离出液体靠罐车拉运至文一联合站处理,天然气靠自身压力输送到近邻计量站外输系统生产。③工艺流程(见图2):边缘油井产出油气混合液特制1.6Mpa多功能罐液体罐车文一联卸油台。天然气连通管线计量站外输系统,为防止计量站外输倒流,在多功能罐出口安装了单流阀。

2.3.3 节能技术创新点:解决了气量大、原油粘度高、含水低、物性较差,气液混输无法进系统的生产的单井或位置相对比较集中(3-5口)多井生产难题,采用了油井利用特制设备液体进罐单拉,天然气进临近计量站中压系统(0.8MPa-1.4MPa生产系统压力)两种压力等级的生产集输工艺模式,增油节气效果显著。

2.3.4 经济效益:

①应用效果:共实施一个井组和三口单井:文15-110油井井组、文203-42井、濮深18井和文212井。利用该技术实现了边缘油井原油单拉至文一联卸油台处理,天然气靠特制设备自身压力输送到临近计量站外输模式,保障了边缘油井的正常生产,减少了天然气浪费,增油节气效果显著。1)文15-110油井井组至目前为止运行七个月,累计节约天然气22.4×104m3;2)文203-42井至目前为止运行三个月,累计节约天然气8.4×104m3;3)濮深18井至目前为止运行十个月,累计节约天然气14.7×104m3;4)文212井至目前为止运行五个月,累计节约天然气16.8×104m3。合计累计节约天然气62.3×104m3。

②投入费用:共实施一个井组和三口单井,主要工作量:1)文15-110油井井组新上多功能罐一台费用8.5万元;特制分离器一台费用9万元;?椎76×4.5mm连通管线50米费用0.6万元,合计18.1万元。2)文203-42井新上多功能罐一台费用8.5万元;特制分离器一台费用9万元;连通管线为原有管线,合计17.5万元。3)濮深18井新上多功能罐一台费用8.5万元;特制分离器一台费用9万元;连通管线250米费用3万元,合计20.5万元。4)文212井新上特制1.6Mpa多功能罐一台费用17.5万元;?椎76×4.5mm连通管线150米费用1.8万元,合计19.3万元。总计投入费用75.4万元。

③投入产出比:总投入75.4万元,累计节约天然气62.3×104m3,折合年节约天然气129.96×104m3,折合年的直接经济效益为155.95万元(1m3天然气按1.2元计算),投入产出比为:1:2.07。

④投资回收期:六个月。

2.4 边缘区块油井井组油气混输、高温高产携带低温低产油井集中集输节能工艺技术

2.4.1 工艺使用条件:边缘区块的油井井组有一定的生产规模,但地层能量相对较弱,能力下降较快,距相邻计量站又较远,不符合新建计量站条件,如果每口油井铺设管线进站生产造成井口回压偏高,每口油井进罐生产造成天然气浪费严重,建站、铺设单井管线和井口进罐生产存在相互矛盾的油井井组。

①距近邻计量站距离较远,单井新上管线超过1.4km,单井生产回压较高,井口回压≥1.5Mpa,造成建站或铺设管线成本浪费、集输困难的边缘区块油井。②边缘区块油井之间相对集中,具备一定的生产能力,油井数量一定规模(一般有3-7口油井),液量和气量相对较高(日产液量≥80m3,日产气量≥1000m3),不适合上多功能罐单拉油井井组。③边缘区块注采不合理,无法满足合理的配注,底层能力递减速度较快,产量下降迅速,油井可能出现间歇出油甚至不出油现象,不符合建站条件的油井井组。

2.4.2 工艺原理:①主要设备:简易计量阀组一套;计量设备一套;水套炉一台;外输分气包一台及连通管线,设备安装在油井井场附近。②工艺原理:拆除单井井口加热炉,每口单井管线按照“辐射状”铺设到相对中心位置的一个单井井场,实现单井井场计量,油气集中加温外输,利用高温高产油井液体携带低温低产油井液体的生产节能工艺技术,提高单井外输温度,降低单井井口回压,减少天然气浪费,达到增油节气的效果。具体方案为在该区块相对的中心位置的井场上新建简易阀组1套,负责该区块油井来液的汇合、计量流程的切换;在单井和外输管线新上250kw水套炉和计量设备各1台,水套炉负责外输和计量加温,计量设备负责单井的油气计量;利用到相邻计量站单井管线规格为Ф76×4.5mm作为油气混合外输管线,实现在边缘区块油井井组混输、单井井场量油测气的功能。③工作流程(见图3):边缘油井井组产出气液简易阀组水套炉计量装置计量站连通管线。

2.4.3 节能技术创新点:①增油节气效果显著:拆除井口加热炉,利用高温携带低温油井,集中加温外输,减低单井回压,减少天然气使用,达到增油节气的效果。②工艺简单、投资少:仅在井场上新建部分主要设备,就可实现正规计量站加温、量油测气的主要功能。③工艺合理、精度高、误差小:在线监测计量装置为称重法计量,避免了传统的DN800卧式分离器浮球连杆控制液位不稳,造成液走气路、气走油路现象。避免了传统的DN1200立式分离器内有泡沫造成假液位的现象,计量检测、精确度高,误差≤2%。

2.4.4 经济效益:

①应用效果:共实施二个边缘井组:文25-侧96油井井组、文65-113油井井组。利用高温高产油井携带低产低能油井外输,减少单井井口加热设备,降低单井回压,实现了单井计量,保障了边缘油井的正常生产,减少了天然气浪费,增油节气效果显著。1)文25-侧96油井井累计增油237吨,累计节约天然气24.45×104m3。2)文65-113油井井组累计增油271吨,年节约天然气28.83×104m3。合计累计增油508吨,累计节约天然气53.28×104m3。

②投入费用:共实施二个边缘井组,主要工作量:1)文25-侧96油井井组新上简易计量阀组一套费用3万元;计量设备一套16.5万元;加热水套炉一台费用8.5万元,?椎76×4.5mm连通管线利用原管线,合计28万元。2)文65-113油井井组新上简易计量阀组一套费用3万元;计量设备一套16.5万元;?椎76×4.5mm连通管线70米费用0.8万元,合计20.3万元。总计投入费用48.3万元。

③投入产出比:总投入48.3万元,年增油508吨,年节约天然气53.28×104m3,每年的直接经济效益为267.13万元(1吨原油按照4000元,1m3天然气按1.2元计算),投入产出比为:1:5.5。

④投资回收期:三个月。

3 结论

通过目前低产低能(边缘)油井四种集输工艺节能技术的应用,提高了低产低能油井的油气产量,减少天然气外排浪费,降低了环境污染,消除了天然气外排的安全隐患,满足了低产低能(边缘)油井生产需要,确保了油气集输系统安全、平稳、经济、高效下运行,下步逐步对采油一厂低产低能、回压较高、含水低油稠进系统困难的油井或井组,结合该区块生产和管理实际情况,选用合适的集输工艺节能技术,完善系统配套,节能降耗,提高系统效率,实现边缘油井集输工艺“优质、高效、低耗”的高水平。

参考文献:

天然气节能技术篇11

天然气系油气田开采的伴生气和非伴生气。天然气中往往含有饱和水、天然气凝液(NGL)等,要将天然气从油气田用管道输送出去,除了要除去其中所携带的固体杂质和游离液体外,还必须除去在输送条件下会凝结成液体的气相水和天然气液烃组分。

天然气中的气相水是是在一定条件(合适的温度、压力、气体饱和度、水的盐度、pH值等)下由水和天然气组成的类冰的、非化学计量的化合物,该物质的形成与沉淀给输气管道、气井和一些工厂设备带来了很多麻烦。而天然气凝烃的存在增加了管道的运输压力,天然气凝液的回收避免了气液两相的流动,同时具有较大的经济效益。

天然气脱水脱烃即指脱除天然气中会影响其在输送条件下正常流动的那部分气相水和NGL组分,以满足天然气气质指标和深度分离的过程的需要及天然气在管输条件下对水露点和烃露点的要求。

二、天然气脱水方法

1、脱水方法

(1)低温冷凝法

低温冷凝是借助天然气与水汽凝结为液体的温度差异,在一定的压力下降低含水天然气的温度,是其中的水汽与重烃冷凝为液体,使水被脱出。这种方式的效果实显而易见的。但为了达到较深的脱水程度,应该有足够低的温度。如果温度低于常温,则需要有制冷设施,这样会是脱水过程的工程投资、能量消耗增加,并进一步提高天然气处理的生产成本。

(2)化学试剂法

该法使用可以与天然气中的水发生化学反应的化学试剂与天然气充分接触,生成具有很低蒸气压的另一种物质。这样可以使天然气中的水汽完全被脱出,但化学试剂再生很困难。因此,这种方法工业上极少采用。

(3)溶剂吸收脱水法

该法是利用某些液体物质不与天然气中水发生化学反应,只对水有很好的溶解能力,溶水后蒸气压很低,且可再生和循环使用的特点,将天然气中水汽脱出。这样的物质有甲醇、甘醇等。由于吸收剂可以再生和循环使用,故脱水成本低,己在天然气脱水中得到广泛应用。

溶剂吸收脱水法是目前天然气净化中使用较为普遍的一种方法。

(4)固体吸附脱水法

该法是利用某些固体物质比表面高、表面孔隙可以吸附大量水分子的特点进行天然气脱水的。脱水后的天然气含水量可降至1ppm,这样的固体物质有硅胶、活性氧化铝、分子筛等。固体吸附剂一般容易被水饱和,但也容易再生,经过热吹脱附后可多次循环使用。

2、具体脱水工艺技术

(1)三甘醇脱水技术

三甘醇脱水装置由吸收、再生、TEG富液闪蒸、过滤、换热、TEG贫液冷却、加压循环及干气汽提等几部分组成,原料气进入吸收塔底部的分离段分离出液体和杂质后,经升气孔进入塔的中部,在塔盘上与下降的TEG贫液逆流接触,脱除所含水气。脱水后的干气经破沫网自塔顶排出,通过一个分离器分离出可能夹带的TEG液后,进入下游的天然气处理装置或直接出厂。

该技术溶剂吸湿性高,热稳定性好,易于再生,操作温度下溶剂稳定,溶剂蒸气压低,携带损失小,腐蚀性轻微,且工艺成熟、可靠。主要缺点是满足不了深度脱水,不适和循环注气的要求。

2、分子筛脱水技术

分子筛脱水装置由分子筛吸附、再生、冷却,再生气加热、冷却、分离、再生气处理等部分组成。在吸附周期中,经过重力分离器脱除游离液体和可能挟带的固体杂质的天然气自上而下流经分子筛吸附塔,其中的水分被分子筛吸附。由于气流的连续流动,传质区不断向万移动,直至床层最终全部由水饱和。

该技术湿容量大、露点降极大工艺,脱水后干气中含水量可低于lppm,露点低于50℃,且操作简单,占地面积小。主要缺点是热损失较大,不适和大规模建站,操作费用较高。

3、汽提甲醇脱水技术

传统的分步甲醇脱水工艺流程与甘醇脱水流程基本一致,而导致的甲醇消耗量大、再生困难的问题。新的汽提甲醇脱水工艺克服了上述缺点。原料气经气液分离器后被分为两股,一股进入气提塔,在塔内与来自冷却分离器的向下流动的甲醇水溶液逆流接触。另一股未经接触塔的旁路气流与出气提塔的气流汇合,在注入补充甲醇后进入低温加工工段。在低温工段,采用膨胀制冷,回收得NGL和甲醇与水的混合物。

该工艺将天然气脱水与脱轻烃结合起来,技术创新,代表了新世纪气田天然气净化工艺的发展方向。

三、天然气脱烃方法

1、节流制冷分离

节流分离的原理是气体由恒定的高压节流到恒定的低压时,若节流前后气体

的流速变化十分小或不变,则在绝热条件下节流前后的焓值不变。利用含烃原料气中各烃类组分冷凝温度不同的特点,在降温的过程中将不同组分分离出来。

2、吸附分离法

利用吸附剂的平衡吸附量随温度升高而降低的特性,采用常温吸附、升温脱附的操作方法。适于中小规模及杂质含量较低气体的深度处理,处理后的产品气纯度高。

四、天然气脱水脱烃新技术

1、超音速分离技术(3S)

3S(超音速分离器)是一种新型节流膨胀制冷设备,近年来用于天然气脱水脱烃取得很大进展。天然气经3S节流降温泠凝分离出会影响输送的水和NGL组分后,其经喷嘴节流损失的压力会大部分得以恢复,从而大大减少了天然气的压力损失。

2 IFPEX-1技术

IFPEX-1系法国研究开发的脱水脱烃新方法, 经前置分离系统除去同体杂质和游离液体的进料天然气分成两支,其中一支作为气提气进入IFPEX-1塔下部,从下向上流动,与来自低温分离器的含水甲醇液逆流接触,将其中的甲醇全部气提出来并随气提气从塔顶流出, 与另一支进料天然气汇合,进入低温系统冷却;从塔底排出的水量是为满足水露点要求而从进料天然气中脱除的,可以回收利用。塔顶流出的气提气中所含甲醇量足以防止混合后的天然气在其后的管输和低温过程中生成水合物。在低温过程中冷凝下来的烃和醇水混合物,在一个低温三相分离器中进行分离。天然气的冷却温度由外输天然气要求的水露点和烃露点决定,外部致冷常用的制冷工艺和制冷剂都可用于IFPEX-1装置的致冷。

五、结论

随着社会对天然气需求量的不断增加,更需要开发和应用先进的天然气处理工艺方法。天然气脱水脱烃技术趋向于节能、安全、高效的工艺技术。不同油气田与处理装置应根据脱水脱烃的目的、要求和处理规模,结合各种脱水脱烃方法的特点进行经济和技术比较,从而选择出最为合适的脱水方法和脱水工艺。相信新的脱水脱烃技术会被广泛的应用于天然气处理装置当中。

天然气节能技术篇12

对于建筑本体而言,适应机制的丧失直接反映在建筑空间、形体及技术运用上。设计方法与气候适应性的原则相违背,将室内环境完全置于空调的控制之下,导致自然调节机制完全丧失。

1.2建筑节能问题

对于环境而言,建筑气候适应性的丧失导致建筑人工空调使用时间的延长,能耗的居高不下,造成极大的环境负荷。

1.3建筑健康问题

对于人而言,建筑气候适应性的丧失导致内外缺少交互,直接影响建筑环境质量的安全性、舒适性和健康性。考虑到此类建筑往往为高层或大跨度的大型公建,生命周期很长,因此带来的影响将是长期的且难以逆转的。建设得越多,带来的能耗问题就越严重,对于健康的不利影响越大。

2建筑气候适应性的研究内涵

我国幅员辽阔,地跨热带、亚热带、温带、寒带等多个气候带,气候差异大,立足于不同的地域气候,建筑的建造模式与方法也应具有明显的区别。建筑的气候适应性在不同气候条件下的表现迥然不同,应该深入探索不同建筑空间类型的气候适应性方法,通过建筑的气候适应性深入研究——建构正确的规避与调节机制,如此建筑才能适应自然气候,才能达到建筑与气候的协同统一、达到节能与减少环境负荷、并创造健康的人居环境(图3),才能最终实现人居环境的可持续发展。这是实现完整意义上绿色建筑的基础,是绿色建筑亟待解决的基础性课题。

2.1基于气候适应性的建筑与技术的整合

两种适应机制的作用机理及其相互关系直接决定建筑空间、形态及其技术体系的整合方式。在一般观念中,绿色建筑一定是通过各种高科技实现的,其实不然,绿色建筑并非高科技的滥用和技术的堆砌,而是应该根据适应机制的调节目标而进行选择相应的绿色建筑技术,应注重通过被动节能技术的应用加强建筑的自我调节。原则上应以被动技术为主,主动技术为辅。①基于规避机制的建筑模式及技术体系:当自然环境不适宜时,利用规避机制创造封闭的空间环境,并主动技术补偿创造相对宜人环境。主动技术是工业革命后出现的各种环境控制技术和建筑设备工程技术的统称,它们以消耗能源为代价,广泛存在于各种现代建筑中。②基于调节机制的建筑模式及技术体系:当自然环境优良时,需要充分发挥调节机制的作用。这需要调整其形体、空间、界面同被动技术(自然通风、采光等)的结合,为自然能源适宜地流向运动环境作好铺垫,最大程度利用自然能源实现环境自然更新(图4)。被动技术,是指以非机械电气设备干预手段实现建筑能耗降低的节能技术,比如通过对建筑朝向的合理布置、遮阳的设置、自然通风、自然采光的建筑设计等。被动技术强调建筑与自然环境的共存,强调建筑的气候适应性。③建筑的实时应变性——两种适应机制的转换:根据室外气候的变化,两种机制的适时转换需要相应实时应变技术支撑。一年之中不同季节,这两种适应机制应该交替发挥作用。冬季、夏季的严寒与酷热需要启动规避机制;而春、秋两季则需运用调节机制,促进室内环境的更新;同时也适用于一天中不同时段,根据一天中的不同气候条件进行两种模式的转换;而这两种模式又因不同气候区划、地域的不同气候条件而又有不同比例的运用。因此,建筑是否能够积极应对气候,处理好规避、适应两种机制的关系也是绿色建筑需要解决的最为核心的问题之一。正确处理建筑气候适应性——建筑与气候的关系问题是绿色建筑的基础性课题。依据气候特征,适应机制的转换效率越高,建筑气候适应性越强。而这取决于设计的优劣,被动式节能技术手段的适应性调节,而非高科技的滥用、更不是技术的堆砌。

2.2基于气候适应性的建筑节能——实现环境目标

面对能源紧缺,建筑节能诚然十分迫切,但过于单纯强调改善保温隔热等问题,就会以偏概全。绿色建筑强调与自然环境和谐相处,通过遵循气候适应性原则,即强调建筑在不同季节与环境的互动,利用建筑自身的自然调节,来实现人居环境的控制,并形成有效循环,来达到节能的目的。建筑节能包含了两方面的内容。一方面,通过“规避”机制的运用,加强建筑的保温、隔热来实现节能,也就是强化建筑界面的热稳定性,减少建筑内部的能耗损失,从而实现建筑节能;另一方面,是通过“适应”机制的运用,提高建筑设计的方法,提高建筑的气候适应性,顺应建筑所在的气候环境,强化其自然调节的能力,减少对人工空调的依赖,以此来实现节能。前者是立足于在人工调节时减少损失,后者是减少人工调节的使用时间,从节能的角度来理解,对于人工环境的依赖程度越高,则能耗越高;反之建筑的自然调节能力越高,则能耗越低。两者对于降低建筑整体能耗而言同样重要,相辅相成,不可相互替代。但从当前的实际现状来看,显然前者在绿色建筑的实施中,得到更多强调和贯彻;而后者则往往被忽视。如果将这两种节能方式进行形象的比喻的话,前者这种构造、材料节能是节能中的“硬件”;而后者,是建筑节能中的“软件”,是融合在建筑的空间形体之中的。而恰恰这一点是被忽视的。如果只强调前者而忽视后者,就会导致只控制了能耗损失,而没有减少能耗的使用时间。这种节能是片面的,很难从整体上达到降低建筑能耗的目的。因此,我们所应该强调的节能不能仅是建筑材料节能,同时应思考如何减少对空调的依赖,在建筑设计时对节能整体层面上进行把握。

2.3基于气候适应性的人居环境健康——实现人居目标

人的健康不仅源于自身机体,同时健康的人居环境也同样重要。采用空调等机械设备进行通风换气不仅消耗大量能源,同时封闭式的空调环境易形成尘埃、病菌的积聚,造成室内空气的污染和疾病的传播,危害人的健康。长期使用人工照明,亦会导致室内卫生条件下降,同时对人的生理也产生不良影响。自然通风、采光技术是一种以利用可再生、自然清洁的被动能源为特征的技术方式,是一种既可节能又能为环境创造舒适条件的技术手段,亦可满足人们对于自然互动的需求。立足于不同区域的气候条件,我们应该根据室内环境的各项健康标准,塑造建筑健康环境时应注重建筑设计、自然能源、被动技术的有机整合。通过建筑设计方法的调整,实现以被动技术为主、主动技术为辅的环境调节机制,以强化对有利自然能源的有效利用,规避不利气候的影响,从而使室内环境满足健康的热环境、空气质量环境、光环境的要求。

3亚热带气候适应性大空间建筑的创作实践

下面结合两个亚热带气候条件下的体育馆作品设计进一步阐述基于建筑气候适应性原则的应用。亚热带气候的主要特征是高温、高湿。自然通风、遮阳、隔热和适度的自然采光建筑技术是要解决的主要问题,而其中如何实现有效的自然通风可明显改善室内的人体舒适度。

3.1广州大学城广东药学院体育馆——建筑形式与亚热带气候环境的融合

广州大学城广东药学院体育馆全面采用了适宜亚热带气候条件下的自然采光、自然通风、遮阳、隔热等被动技术(图5)。在自然通风方面采用了多种新颖的建筑设计手法以提高大空间的自然通风效能。具体来讲,体育馆的屋顶形态突破传统,采用了非对称的布局,呈南低北高逐级跌落的形态,从而有效增加建筑的南向进风面积,强化正负风压区的对比,加强室内的自然通风(图6~7)。在进出风口的选择上,首先是利用南向叠级桁架形成错落的屋顶,布置竖向天窗,形成屋顶进风口,可用机械控制开启,将风引入室内;南立面的进风口为楼座下的通风百叶窗,可将东南风引入室内;同时东西立面的遮阳板分别向南旋转30°形成风翼形构造,构成侧向进风口(图6)。这种多角度、全方位的进出风口设计,有效强化了体育馆室内的自然通风。在采光方面,则利用跌级状天窗作自然采光,直射的光线照射在桁架上悬挂的折射板上,在室内形成漫射光,改善室内的光环境。体育馆东西立面的竖向遮阳板分别向南旋转30°,竖向遮阳板也扩大了遮阳面积,配合彩釉玻璃可遮挡掉东西向的大部分日光,同时可将适度光线折射到馆内,形成漫射光,加强了体育馆自然照明(图8)。适应性设计同时也表现在训练馆屋顶的景观设计上。屋顶平台上设置了大面积植被绿化,层次丰富。这种设计不仅使体育馆与周边环境融为一体,而且茂密的绿化更能为体育馆形成一层绿色隔热膜,通过夏天连续三天与附近金属屋面大空间的对比实地测量,发现覆土屋面的训练馆能够有效控制室内温度的波动,缓解室外温度升高对馆内的影响,降低能耗(图9~10)。

天然气节能技术篇13

一、油气集输处理技术分析

1、原油集输处理技术

随着我国对原油天然气资源需求的持续增长,油气资源经过长期开采,导致了我国已经步入了高含水油气资源开发阶段,油气资源开发在此阶段对油气集输处理技术的要求更高。由此,如何针对高含水阶段不断完善和提高油气集输处理技术工艺,是当前原油和天然气行业迫切需要解决的问题。在油气开发高含水阶段,原油流变发生了改变,需要油气集输技术针对流变过程及时做出调整。同时,针对不同原油和天然气产区的特征要采取相适应的油气集输处理技术。例如:在含蜡量较高的油气田产区,要采用单管集输的油气集输处理技术,并且添加相应的化学药剂实现热加工处理,在含蜡量较低的油气田产区同样需要采用单管集输的油气集输处理技术,但不需要添加任何化学药剂。

2、油气水多相混输技术

在油气集输技术中,油气水多相混输技术属于比较复杂的技术工艺。二十世纪初期,西方发达国家已经针对油气水多相混输技术展开了研究,目前,该技术发展比较成熟,在我国原油和天然气开发中起着关键作用。油气水多相混输技术在油气集输中的应用与三相分离器密不可分,它是实现油气田高效开发的重要设备,更是对高含水原油加工处理的关键设备。三相分离器在分离油气水混合液体时有着不可替代的作用,不但具有高水平的自动化处理能力,其耗能少、成本低、原理简单易懂,具有良好的实践应用前景和推广意义。我国山东胜利油田、新疆自治区塔里木油田等都采用了油气水多相混输技术,油气开采效果非常良好。

二、油气集输处理技术发展趋势

油气集输过程指的是从油气田产区开采的原油和天然气资源经过一系列收集、存储、运输和加工的过程。目前,面对制约油气田开采的多种因素,以及原油和天然气生产遇到的实际问题,我国不但要积极引进国外先进的开采技术,更要加强自主创新科学研究,进一步提高油气田开采水平。

1、原油稳定

原油稳定指的是在加工处理中将原油和天然气相互分离,并将原油中的水分脱离,尽量压缩原油蒸汽压的整个过程。原油稳定可以采取闪蒸法、分馏法等,将溶解于原油中的天然气成分脱离,这种多级分离的方式能够取得良好的效果,其原理是通过多次减压来实现进一步的油气分离。降低油气开采的损耗是我国原油稳定的最终目的,同时通过降低蒸汽压来满足原油存储、运输的安全性,降低原油中有害物质对人体的伤害程度,从根本上提高原油开采的资金利润。

2、节能简化

油气集输处理系统中的容器存在很多问题,包括占地面积大、工作效率低等,因此,油气集输处理技术必须加强针对化学药剂添加、游离水等技术的研究,不断优化油气集输处理技术工艺流程。良好的油水分离处理技术能够明显提高处理效果。节能简化可以利用自喷井能量来尽量减少转油工作环节,减少动力的消耗,提高一级油水分离的压力;提高处理流程的封闭性,降低油气田开采的自身损耗气量,充分利用开采到的石油和天然气资源,确保油气产品生产的稳定;积极引进先进的技术设备降低油气集输处理的损耗,从根本上提高油气资源的利用效率。在油气资源开采过程中,必然会产生油污等废弃液体,要针对这些废弃液体采取相应的处理措施,否则会对自然环境造成严重破坏。

3、转变生产管理模式

油气集输处理技术发展的重点是转变其生产管理模式,不能将油气集输处理限制于基础生产方面,要积极转变落后的管理模式,利用先进的现代信息技术实现油气集输系统运行的自动化和智能化。但是,新型生产管理模式在油气集输处理系统中的应用必然会存在问题,因此,要尽量避免出现由于工作人员造成的操作错误等现象,实时确保油气井和处理站设施的安全稳定,监测油气资源开采的含水量、温湿度等参数是否符合标准,一旦遇到问题要及时处理,防止出现油气资源开发的重大操作失误。

三、油气集输处理技术的完善对策

1、实施油气处理区域优化、集中处理,缩短处理工艺流程,缩减油气处理规模

坚持油气处理设计能力与实际生产能力相互协调匹配的原则,不断优化油气集输处理区域,针对油气田产区的实际情况采取集中处理的方式,制定科学合理的处理方案,尽量减少油气集输处理的环节和流程,为企业节约更多的资金成本。在制定处理方案时要注重考虑企业生产能力等因素,通过简化优化油气处理工艺,缩短处理工艺流程,缩减油气处理规模,避免俗称的大马拉小车的情况出现,从而减少设备设施、减少能源消耗、降低油气处理成本。对于不同含水量的油气田区块要分别制定油气集输处理方案,尽量简化油气集输处理工艺流程,以确保最大限度的降低能源消耗。

2、运用高效节能设备,节能降耗,提高设备设施运行效率

积极引进国内外先进的油气田开采技术,通过节能设备的高效运行来提高生产效率。油气集输系统中的一系列设备是油气田开采过程中主要消耗能量的装置,包括加热炉、压缩机、泵、锅炉等。只有利用先进的开采技术,结合油气田产区的实际情况,不断优化设备配置,才能从根本上解决油气集输系统的管网、设备相当一部分存在陈旧老化、能耗高、效率低、腐蚀严重等问题。同时,针对锅炉设备的改造方案不但要确保设备实现高效节能,更要确保锅炉运行的安全性和稳定性,保证锅炉运行拥有操作简单、安装方便、适应性强、自控力高等特征。在不影响其他油气集输系统装置正常运行的情况下,来提高整体设备的运行效率。

3、积极推广应用油气混输工艺

油气混输技术是一种将原油产出物进行混合增压直接输送到联合站的新技术,与传统的采油工艺比较,可以减少油、气分离设备,少建一条输气管线,对于海上油田可以降低平台面积。油气混输技术的突破,不仅可以大大降低工程投资,对于实现油田的油气全密闭集输以及延长集输半径有着十分重要的意义,同时能够降低井口回压,增加原油和天然气产量,工程投入及井下维修工作量减少,方便了生产管理。它产生的经济和社会效益十分可观,使能源得到充分利用,环境状况得到改善。加强油气混输泵的引进和使用,不断升级和改造油气输送增压装置来解决离心泵出现气蚀的问题。可以预测,随着油气混输工艺技术的发展成熟,亦将对陆地油气田特别是沙漠油气田的开发产生巨大的推进作用,将极大地简化工艺流程,减少工程量,降低造价,更有利于边际油气田地开发。

4、采用先进的计算机远程监控技术,提高油气采集站、处理站的自动化、智能化管理水平

由于油气集输处理流程中的原油和天然气输送管道和储罐均属于危险设备,必须对其进行实时监控。因此,引进先进的计算机远程监控技术,可以从根本上提高石油和天然气运输的安全性,尽量减少人工操作的复杂环节。同时,利用计算机软件对石油和天然气运输过程中的安全系数进行在线计算分析,能够避免很多危险问题的产生,提高油气集输系统的工作效率。

5、采用新材料,提高管道的抗腐蚀能力,延长管道的使用寿命

结合金属管道承压能力强,抗机械、人为损坏能力强,耐腐蚀能力差;钢骨架复合管和玻璃钢管等非金属管道耐腐蚀、耐磨损能力强,抗机械、人为损坏能力差;内衬玻璃钢管管道具备金属管道和非金属管道的优点,但施工要求高,价格高的特点,灵活选用管道材质。对油气管道周围环境进行仔细勘查,分析管道出现腐蚀的原因,制定符合标准和规范的防腐蚀方案。如果发现腐蚀比较严重、穿孔现象多发、油气损失程度高等问题,必须立即更换该油气管道网络。对于需要设置保温保护措施的油气管道来说,采用经济有效的保温措施,减少管道的散热损失,节能降耗、降低油气集输处理的成本。

四、结论

综上所述,随着国家对原油和天然气能源需求量的持续增大,油气集输处理技术对油气开采生产效率有着直接影响。只有真正提高油气开采技术水平,才能从根本上实现油田优化简化、节能降耗、减少投资,提高油气资源的生产效率,为企业创造更多的经济效益。

参考文献:

[1]冯叔初. 油气集输[M].东营:石油大学出版社.1988.

[2]丁玲. 油气集输工艺技术探讨[J]. 中国高新技术企业,2008,22:112+114.

在线咨询
了解我们
获奖信息
挂牌上市
版权说明
在线咨询
杂志之家服务支持
发表咨询:400-888-7501
订阅咨询:400-888-7502
期刊咨询服务
服务流程
网站特色
常见问题
工作日 8:00-24:00
7x16小时支持
经营许可
出版物经营许可证
企业营业执照
银行开户许可证
增值电信业务经营许可证
其它
公文范文
期刊知识
期刊咨询
杂志订阅
支付方式
手机阅读