生物化学概述实用13篇

生物化学概述
生物化学概述篇1

1 化学成分

泡桐属植物的化学成分研究始于20世纪30年代初。日本学者最先对泡桐属植物的化学成分进行了研究,1931年Masco Kazi等从泡桐叶的树皮和树叶中分离得到糖苷类化合物[2,3] 。1959年,Kazutoru Yoneichi研究了桐木中的木脂素成分,分离得到了丁香苷。随着科学技术的发展,各种色谱分离方法和现代波谱技术应用于天然产物的研究,从泡桐属植物中不断发现新化合物。该属植物中所含化学成分类型主要有环烯醚萜苷、苯丙素、木脂素苷、黄酮、倍半萜、三萜等。其中许多化合物被证明具有一定的生物活性。

1.1 苯丙素类化合物 苯丙素类化合物在泡桐属植物中分布较为广泛。主要有:(1)木脂素(四氢呋喃骈四氢呋喃类):细辛素(d-Asarinin)[4],芝麻素(d-Sesamin)[5],泡桐素(Paulownin)[6],异泡桐素(Isopaulownin)、(+)-Piperitol[7]等。(2)苯丙素酚类:Verbascoside[8],Isoverbascoside[9]。

1.2 环烯醚萜类 富含环烯醚萜类成分是泡桐属植物的一大特征,在该属植物中多以成苷的形式出现,广泛分布于桐木、桐皮、桐叶中,花中还未见文献报道。泡桐属中的环烯醚萜成分具有九碳骨架(即C-4去甲基)的环戊烷型、环戊烯型和7,8环氧戊烷型,显示了其在植物分类学上的意义。其取代基位置比较固定,一般1位羟基与1分子葡萄糖成苷,8位为甲基或羟甲基。另外,Soern等从成年毛泡桐的叶部获得两个5,6位为双键的环烯醚萜苷,同时,他还发现成年和幼年的毛泡桐中环烯醚萜苷成分有所不同[10~14]。

1.3 倍半萜类 李志刚等[15]从毛泡桐的花中分到7个落叶酸型的倍半萜,为首次从该属植物中分到倍半萜类化合物,可能与该类激素促进开花,抑制种子发芽有关, 其他部分未发现。

1.4 甘油酯类 杜欣等[16]从毛泡桐的花中还分到了甘油酯类的化合物及其苷。

1.5 其他成分 从该属植物中还分离出黄酮类、二氢黄酮类、三萜(主要为熊果酸及其苷[17])、生物碱、多酚、单糖、鞣酸、脂肪酸等多种成分。另外,栗原滕三郎和宋永芳等[18]对泡桐花的精油成分作了色谱、质谱分析,研究了其中的蛋白质、氨基酸、微量元素等营养成分,利用GC/MS技术鉴定出许多长链及芳香族化合物。

1.6 植物激素 王文芝等[19]对河南兰考泡桐的根、茎、叶中的植物激素进行了研究,利用HPLC技术分离鉴定出了激动素、反式玉米素、激动素核酸等8种激素。

2 生物活性

2.1 抗菌作用 芝麻素对结核杆菌有抑制作用[20],而泡桐花及其果实的注射液(醇提取后用醋酸铅沉淀去杂质制成),体外实验时对金黄色葡萄球菌及伤寒杆菌、痢疾杆菌、大肠杆菌、绿脓杆菌、布氏杆菌、革兰菌、酵母菌等均有一定的抑制作用[4]。从泡桐属植物中分到的紫葳新苷Ⅰ对金黄色葡萄球菌和乳链球菌均有抑制作用,最小浓度为150μg/ml,并认为其角甲基是抗菌必要基团[21]。魏希颖等将泡桐花的黄酮提取物作了体外抑菌实验,发现其对金黄色葡萄球菌作用最强,而对黑曲霉、啤酒酵母、产黄青霉无明显的抑制作用[22]。

2.2 治疗气管炎 泡桐果及花治疗慢性气管炎有一定疗效,临床治疗1341例,有效率为81%,其中临床控制率7%,显效25%[23]。

2.3 消炎作用 泡桐花可用于治疗炎症感染,临床报道用其治疗16种疾病计244例,均有一定疗效,其中对上感、支气管肺炎、急性扁桃体炎、菌痢、急性肠炎、急性结膜炎的疗效较好,治疗中未发现不良反应和副作用[4]。实验中通过观察泡桐花浸膏对哮喘豚鼠肺病理组织学的影响发现泡桐花浸膏能明显延长豚鼠诱喘潜伏期,优于地塞米松(P<0.001);对肺组织炎性细胞浸润有明显的抑制作用。能减轻炎症反应对哮喘豚鼠肺组织结构的破坏[24]。李寅超等通过实验发现泡桐果总黄酮及挥发油可通过抑制支气管肺泡灌洗液(BALF) 中的血嗜酸粒细胞( EOS) 聚集而具有一定的抗哮喘气道变应性炎症的作用[25]。

2.4 止血作用 泡桐属植物中所含丁香苷有明显止血作用。本品注射液用于手术70例,良效(明显止血)30例,占42.9%,有效(出血减少)26例,占37.1%,无效14例[26]。

2.5 毒性研究 小鼠口服泡桐果乙醇提取物半数致死量为21.4g生药/kg。大鼠口服2g/(kg·d),共21天,一般情况及体重均无异常,内脏病理检查未见中毒性病理形态改变。家兔急性、亚急性毒理实验中,泡桐果煎剂对心、肝、肾、脾、胃均无毒性病理改变。家兔灌服泡桐花浸膏或静脉注射,一般情况及食欲、体重、白细胞等均无明显变化,成人口服上述浸膏或肌肉注射,自觉症状、体温、脉搏及白细胞数等均无明显改变,但有轻度血压下降[4]。已有报道苯丙素苷具有抗菌、抗病毒、抗肿瘤、清除自由基、延缓骨骼肌疲劳、DNA碱基修复、抗凝血、抗血小板凝聚等多种生理活性。从泡桐属植物的树皮和茎部分离得到一个新的呋喃醌酮(methyl-5-hydroxy-dinaphtho[1,2-2′,3′]furan-7,12- dione-6-carboxylate),对hela癌细胞有抑制作用,对polio病毒的brunhildeⅠ型EC50为0.1μg/ml对leonⅢ型EC50为0.1μg/ml[27]。另外,咖啡酸的糖酯类化合物被认为与该植物的颜色改变有关[28]。

2.6 杀虫作用 泡桐素、芝麻素可增强杀虫剂除虫菊酯的杀虫作用,可有效杀灭蚊蝇及其幼体[29]。

2.7 其他作用 泡桐属植物还具有止咳、平喘、祛痰、治手足癣与烧伤、消肿、生发等功效[4]。

从以上可知,泡桐属植物化学成分疗效显着且具多样化,但对该属植物的成分研究多集

中于毛泡桐种,其他种涉及较少,而对部位的研究则多为桐叶,皮、根,茎次之,花研究的最少。对生物活性的研究则不够深入,其有效部位及有效成分有待进一步确定。

【参考文献】

1 中国科学院.中国植物志.北京:科学出版社,1979,67(2):28.

2 Masao Kazi,Tokiti Simabayasi.A glucoside from Paulownia. Japan, 1931, 93;735;27.

3 Koiti Iwadare. Lignin.Ⅱ.Ligin of Paulownia imperialis. J Chem Soc Japan, 1941,62:186-189.

4 江苏新医学院编.中药大词典.上海:上海科学技术出版社,1977.

5 Kijjoa A,Kitirattrakarn T,Anantachoke C. Preliminary study of chemical constituents of Paulownia Taiwaniana. Kasetsart J,1991,25(4):430-433.

6 Kotaro Takagawa.Constituents of medical plants Ⅳ structure of paulownin,a component of wood of Paulownia tomentosa.Yakugaku Zasshi, 1963, 83: 1101-1105.

7 Hiroji,Mayumi O,Yutaka S, et al.(+)-Piperitol from Paulownia tomentosa. Planta Medica,1987,53(5):504.

8 Schilling G,Hugel M,Mayer W. Verbascoside and isoverbascoside from Paulownia tomentosa Steud. Z.,Naturforsch ,B:Anorg Chem Org. Chem,1982,37B(12):1633-1635.

9 Sticher I,Lahloub MF.Phenolic glycosides of Paulownia tomentosa bark. Planta Medica,1987,46(3):145-148.

10 Damtoft Soren. Biosyntheses of catalpol. Phytochemistry, 1994, 35(5): 1187-1189.

11 Hegnauer R, Kooiman P. The taxonomic significance of iridoids of tubiflorae sensu wettstein.Planta Medica, 1978,33(1):1-33.

12 Adriani C,Bonini C,Iavarone C,et al. Isolation and characterization of paulownioside,a new highly oxygenated iridoid glucoside from Paulownia tomentosa.J Nat Prod, 1981,44(6):739-744.

13 Soren D,Soren RJ. Tomentoside and 7-hydroxytomentoside, two iridoid glucosides from Paulownia tomentosa. Phytochemistry, 1993, 34(6): 1636-1638.

14 Soeren D.Biosynthesis of catalpol. Phytochemistry, 1994, 35(5): 1187 -1189.

15 李志刚.毛泡桐花化学成分.兰州大学硕士学位论文. 2001.

16 杜欣.毛泡桐花的化学成分研究.兰州大学硕士学位论文,2003.

17 Yoshihisa T,Sadao K,Kotaro T,et al. Constituents of medical plants Ⅲ Constituents of leaves of Paulownia tomentosa and Rhododendron kaempferi. Kauazwa Daigaku Yakugakubu Keukgu Nempo,1962,12:7-14.

18 宋永芳,罗嘉梁,倪善庆,等. 泡桐花的化学成分研究.林产化学与工业, 1990,10(4):269.

19 王文芝.反向高效液相色谱分离泡桐中的植物激素.分析化学,1984, 12(6): 531.

20 国家医药管理局中草药情报中心.植物药有效成分分离手册.北京:人民卫生出版社,1980.

21 White PJ.Separation of K+- and Cl-- selective ion channels from rye roots on a continuous sucrose density gradient.J Exp Bot,1995,46(285):361-376.

22 魏希颖,何悦,蒋立锋,等.泡桐花体外抑菌作用及黄酮含量的测定. 天然产物研究与开发,2006,18:401-404.

23 河南医学院,等.泡桐果及花治疗慢性气管炎的临床疗效和实验研究.河南医学院学报,1975,1:26-28.

24 张永辉,刘宗花,杜红丽,等.中药泡桐花浸膏对哮喘豚鼠肺组织作用的病理学研究.新乡医学院学报,2002,19(6):473-475.

25 李寅超,赵宜红,李寅丽,等. 泡桐花总黄酮抗BALB / c小鼠哮喘气道炎症的实验研究. 中原医刊,2006,33(19):16-17.

26 谢培山,杨赞熹. 救必应化学成分的研究—止血成分救必应乙素的分离、鉴定. 药学学报,1980,15 (5): 3-7.

生物化学概述篇2

对国内出版的多种版本高中生物和高校生物学相关专业的教材以及美国高中生物主流教材《科学发现者》中,有关“减数分裂”概念的表述进行了比较,发现不同教材中对“减数分裂”概念的表述存在较大的差异(表1)。 

从整体上看,以上的国内外生物学教材中,均从发生的位置、时期、染色体与细胞数目的变化,对减数分裂的概念进行表述,均体现了减数分裂的主要特征及实质。即染色体复制一次,细胞经过两次连续的分裂,最终产生的子细胞的染色体数目减半。然而不同教材在对减数分裂的名称及减数分裂概念表述存在着一定的差异。 

1.1 “减数分裂”的概念名称 

从表1可见,从整体上看,国内高中所使用的各版本生物教材中,将减数分裂过程中的2个连续的阶段按次序进行命名,将其概念名称表述为减数第一(二)次分裂;而国外高中或国内外高校所使用的各版本生物学教材中则是使用了罗马数字(Ⅰ和Ⅱ)对减数分裂的两个连续的阶段进行划分,即减数分裂Ⅰ或减数分裂Ⅱ期对减数分裂的名称进行表述。 

1.2 “减数分裂”的概念表述 

由表1可知,国内高中生物学教材着重在细胞中染色体复制、细胞分裂的次数上,对减数分裂的概念进行表述。国外高中及国内大学生物学教材则是在此基础上,着重强调了减数分裂中染色体在两次连续的阶段发生的变化。在高中生物学教材中,由于教材的编写者考虑到高中生对生物知识掌握的有限性,因此在对减数分裂概念的表述上相对与高校教材来说较为精简与浅显,以便于学生理解与记忆。与国内高中生物学教材相比,国外高中生物学教材中呈现单倍体、二倍体知识的顺序先于减数分裂,因此使用其来对减数分裂的概念进行阐述。而高校生物学教材中涉及减数分裂概念时,面向的是大学二年级及以上的学生,该阶段的学生已对高中生物学知识有了一定的了解,因此教材中在对表述减数分裂概念时,采用了大量的生物专业术语,如同源染色体、单倍体及联会等,对其分裂过程进行较为详尽的阐述。 

2 生物教学中减数分裂概念表述的适切性辨析 

2.1 概念表述的适切性辨析 

概念是人脑反映客观事物的本质特性的思维形式。概念通常包含三个要素:概念名词(或概念术语)、概念的内涵及概念的外延。其中概念的内涵揭示了概念的本质属性和特点,可以较为准确地反映概念的本质;概念名词或术语是对概念的指代。所谓概念表述的适切性是指概念表述与概念内涵、事实本质等各种相关因素的协调统一程度,并具备合适性与共知性。在实际的生物教学中,教师习惯于用生物学术语向学生传递生物学知识,然而学生对生物学基本概念的习得来源于教材,因此教材在对生物学概念的表述中应注重概念内涵的阐述。因此,认为一个合理的概念表述应该具备有科学性。只有科学的生物学概念才能准确地反映出生物学事实、本质规律及特征,从而引导学生建构正确的生物学概念结构体系。 

《英汉细胞与分子生物词典》将“分裂”一词定义为:细胞通过生化合成和代谢变化而增大体积并分裂成两个子细胞的过程。细胞分裂是细胞增殖的前提和基础。可见,“减数分裂”的命名是符合这一定义的。同时,减数分裂具有分裂的特征:经过了染色体的复制、分离、胞质的分裂最终形成了子细胞的一系列过程。 

在减数分裂中,染色体的复制与分离保持了生物体前后代染色体数目恒定,维持了遗传稳定性;同源非姐妹染色单体互换、非同源染色体自由组合增强了生物遗传的变异性,由此可以看出染色体的行为是减数分裂过程中最本质的特征。《普通高中生物课程标准(实验)》在遗传的细胞基础部分的要求是:阐明细胞的减数分裂,并模拟减数分裂过程中染色体的变化,观察细胞的减数分裂。因此,笔者认为,在表述减数分裂这一概念时,应该把重点放于减数分裂中的染色体行为以及其分裂的结果上,如表1中《细胞和分子生物学(概念和实验)》中对减数分裂的表述。 

另外从语义学角度考虑,使用“减数分裂Ⅰ”和“减数分裂Ⅱ”对减数分裂进行表述,能很明确地表明减数分裂所经历的为两个阶段。而在国内高中的生物学教材中,用名词(减数分裂)与序数词(第一次或第二次)组合来表述减数分裂,由于名词与序数词的语序存在不同组合,则对学生学习减数分裂概念产生了干扰,人为“制造”了学习难度。同时,由于不同组合的语义存在一定的差异,无论是“减数分裂第一(二)次”,还是“第一(二)次减数分裂”都容易产生歧义:既可以认为是一个完整的减数分裂中相继发生的两个阶段,也可以理解为两次独立的减数分裂过程的相继发生。 

2.2 概念表述与学生认知水平的适切性辨析  考虑到学生的感性认识、思维加工方式、学科知识的前概念等因素的影响。教材中生物学概念的表述是否合理取决于其是否有利于学生对概念的认知与运用。高中阶段的学生虽已具备了一定的认知与辨析的能力,分析思维的目的性、连续性、逻辑性已初步建立,但并不完善。同时,生物学中的概念较为抽象,概念之间的相关性强,关系复杂。学生在学习新概念前或正学习新概念时,已经学习的相关概念或是从字面上理解概念的表述就有可能造成认知差异,形成错误的前概念。因此,在尊重高中阶段学生的认知发展水平的前提下,高中生物学教材在能够清晰、准确地表述概念内涵时,其表述应注重与其他相关概念相区分,即具有区分性。与此同时,在概念的表述中,应该尽量突出该概念内涵中的特有性质,弱化其他属性,以增强生物学概念的可读性。 

由表1可见,国内中学生物学教材侧重在细胞中染色体复制、细胞分裂的次数上对减数分裂的概念进行阐释,其实质是在逆向思维上,从减数分裂的结果——染色体数目“减半”上,引导学生反推出减数分裂的过程。而国外中学及国内大学的生物学教材对其表述则是从正向思维上先描述减数分裂的过程,进而推导出其分裂的结果,并着重强调了减数分裂中染色体在两次连续的阶段中发生的变化,同时运用“二倍体”与“单倍体”对染色体在经历两次连续分裂前后的数目变化进行阐述。国内现行高中生物学教材对减数分裂概念的表述并没有凸显出染色体分别在两次连续的分裂阶段中的行为变化,从而使得学生在理解其概念时难以分辨减数分裂的主要特征。除此之外,从逆向思维上引导学生理解减数分裂的过程,一定程度上加大了学生对减数分裂概念学习的难度。高校教材虽然在对减数分裂概念表述时较为具体、详尽,但文字较多,并具有一定的深度,因此不适用于高中教学。 

3 结语 

综上所述,现有国内高中生物学教材中对减数分裂的名称和表述并不准确,并容易导致学生记忆和理解的混乱,人为增加教学难度。笔者认为,应当废除易于混淆的用名称与序数词组合表述减数分裂的概念名称,如:减数分裂第一次、减数分裂第二次、第一次减数分裂、第二次减数分裂等;并且将减数分裂的过程概括为“一次减数分裂经历一次复制,两个阶段,两次分离”,即“在减数分裂过程中,DNA只复制一次,在两个连续的阶段(减数分裂Ⅰ和减数分裂Ⅱ)中,分别发生二次分离(同源染色体间和姊妹染色单体间),从而形成含有单倍染色体的生殖细胞”。 

参考文献: 

[1] 中华人民共和国教育部.普通高中生物课程标准(实验)[S].北京:人民教育出版社,2003.   本文由wWW.dyLw.NeT提供,第一论 文 网专业教育教学论文和以及发表论文服务,欢迎光临dYLw.nET

生物化学概述篇3

中图分类号:G633.8

文献标识码:B

doi:10.3969/j.issn.1008-0546.2012.07.006

笔者在一次调研时发现这样一道选择题令许多学生颇感棘手。原题是这样的:

请在下列四个选项中选择一个属于化学变化的实例( )

A.夏天室外自行车轮胎爆炸

B.手榴弹的爆炸

C.热水瓶的爆炸

D.原子弹的爆炸

这是一道典型的概念运用题,主要考察的是学生对概念的理解、掌握及运用情况。根据人教版九年级化学教材中化学变化的定义:有新物质生成的变化叫化学变化,学生能很容易的排除AC两个选项。问题的焦点在选项D,学生根据化学变化的定义知道,原子弹爆炸时会产生大量的烟、蘑菇云等,也即会有新物质生成,进而认为D也是化学变化,而实则不然,原子弹的爆炸不属化学变化。由此笔者就考虑到化学教师在进行化学概念教学时要注意些什么?下面笔者就自己的教研教学经历谈一谈在化学概念教学中如何进行概念的构建与引入,以及如何将概念进行深入剖析,使之内化为学生自己的知识,并得到巩固,从而能灵活运用化学概念解题。

一、概念的构建与引入

概念是一类事物的共同本质特征,概念学习意味着掌握一类事物的共同本质特征。按概念的抽象水平可将概念分为具体概念和定义性概念,具体概念的教学相对较易,在这里我们主要讨论定义性概念的教学。概念既然是一类事物的共同本质特征,大多比较枯燥,如果直接呈现给学生,则学生不感兴趣,不易理解,也不易接受。

首先,要分析学生现状,从学生原有知识结构出发进行概念的构建。

案例一:溶液质量分数的引入

教师可以设计这样的问题来进行概念的构建和引入:教师提问:现有两杯白开水(水的体积相等),一杯加入一勺白糖,另一杯加入两勺白糖,哪杯更甜?学生:加两勺糖的水更甜。教师:为什么?学生:…(交流、讨论),进而引出溶液质量分数的概念。通过学生熟知的生活经验,利用认知的矛盾,可激发学生学习的兴趣,有利于学生对概念的理解与记忆。

其次,利用实验,从对实验现象和结论的分析与解读中对概念进行构建。

化学是一门以实验为基础的自然科学,有趣的化学实验可以调动学生的好奇心,激发学生学习化学的兴趣,同时化学实验也是学生获取化学知识、培养科学态度、提高科学素养的基本途径。所以从实验出发来引出和构建化学概念,有利于学生对概念的记忆与理解。

案例二:化学变化、物理变化的引入

教师可设计如下实验:①将食盐溶于水中,②将鸡蛋壳溶于稀盐酸中。教师:请大家观察上述两个实验的实验现象;学生:①无明显现象,②有气泡产生,试管温度升高。教师:很好!同学们观察的很仔细,但你们知道为什么会出现不同现象呢?从而引出化学变化和物理变化的概念,如①没有新物质生成;②有新物质生成。通过实验可使学生对概念的理解和记忆更加深刻。

再次,利用实例、模型,从对生活中实例、模型的分析比较处理,进行概念的引入和构建。

案例三:过滤概念的引入

教师在教授粗盐提纯实验时会涉及到过滤这个概念,教师在演示实验的同时会引出和讲解过滤的概念,此时教师可从生活中筛子的原理出发进行类比,或从炸油条用的工具——笊篱的功能出发。从模型与实例出发不仅有利于学生对概念的记忆与理解,更有利于激发学生的求知欲望,培养学生的科学态度和科学素养。

二、概念的剖析、内化、巩固与拓展

化学中的概念一般都是用言简意赅的文字进行表达的。教师在教学时首先要对概念中的关键的字、词进行深入的解读,对概念的内涵与外延进行深入的剖析。

案例四:固体溶解度的概念

教材上是这样表述固体溶解度的:在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量。对此概念教师可作如下分析:①温度一定;②溶剂的量一定(100g);③状态一定(饱和状态);④单位:克(g)。这样一分析学生便能一目了然地看到固体溶解度概念的四要素,便于学生对概念的记忆和理解。

案例五:催化剂的概念

在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫催化剂。这样的表述不利学生记忆与理解,教师可作如下分析:“一变”:化学反应的速率改变(加快或减缓);“二不变”:①自身质量,②化学性质,在反应前后均未改变;“一强调”:是反应前后,而非整个反应过程,在反应过程中可能改变。

新获得的知识或概念若不与学生原有的知识结构进行整合,内化成学生自己知识的一部分,则不易理解而且很容易遗忘,只有将新获得的概念进行内化才能记得牢、理解的透、运用的活。如何将概念内化为学生自己的知识?

1.从学生已有知识水平出发,对概念进行内化

案例六:物质的量的浓度

在讲解剖析这个概念时,教师可先引导学生回忆溶质质量分数的定义,然后在引导学生将两个概念进行类比,使新知识在原有知识的基础上进行整合内化。

2.从正反两面进行比较,将所学概念进行内化

案例七:氧化物

氧化物是含氧化合物,含氧化合物是否为氧化物呢?通过正反两面比较,将氧化物的概念进行内化。

3.归纳演绎,使概念形成系统进行内化

案例八:原子、分子、离子、单质、化合物和元素等概念

在学生学完上述概念之后,教师要正确引导学生对上述概念进行分析归纳,以元素为桥梁和纽带,把其他概念紧密地联系在一起,形成系统的知识链,进行概念的内化。

内化为学生自己的知识的化学概念还要以适当的习题进行训练,使新学的知识概念得以巩固。熟能生巧,才能使概念的应用更加灵活。

中学教材中有些概念具有阶段性特征,往往不是一步阐述到位的。如氧化还原反应的概念,刚开始是这样呈现的:物质与氧气发生的反应,这是描述性的定义,虽然后文又重新给予了阐述,但教师在教学时不进行必要的补充,则学生很难对此概念进行准确把握。再如化学变化的概念:有新物质生成的变化,而后续讲到化学反应的实质时则明确说明化学反应的实质是分子的分裂、原子的重组。从这段叙述中可以看出化学反应时原子核或者说元素本身没有改变,如果原子核或者元素本身改变了则不属化学变化的范畴。所以教师在进行概念教学时一定要进行必要的补充,这样学生对知识把握才能更加准确,对知识的运用更加灵活。

概念尤其是化学概念在教材中的呈现一般都是以言简意赅的文字出现的,化学教师在进行教学时要运用适当的方法加以分析,引导学生对概念进行理解、内化、运用和拓展,这有利于学生科学态度、科学素养的养成,对教学可起到事半功倍的作用。

参考文献

[1] 杨少波.化学教学中概念教学策略初探[J].南昌高专学报,2011,(2)

[2] 杜玲.化学概念教学的点滴体会[J].化工职业技术教育,2005,(1)

生物化学概述篇4

关键词 物理概念 建立理想模型 多做练习 注意共性

物理概念大体分为两类,一类是物性概念,这是直接反应事物,物质特性的概念,如质点、绝缘体、电场等,对于它们,大凡是通过定性语言表述,阐述它是什么。另一类是理性概念,是用以反映事物(含过程、现象)原理和事物本质属性的概念,如力、能、电场强度、电容等。这中间有定性、定量两种。对于定性的,只需定性说明它是什么,如惯性、干涉等,对于定量的就既要说明它是什么,又要说明它等于什么,如功、电势等。

中学生常常觉得物理概念抽象、难学,这主要是对物理概念没有真正理解的缘故。因而在解决问题时对物理概念常常是死记硬背,出现张冠李戴的错误。针对上述问题,学生在理解物理概念时应在以下几点下工夫。

1.建立理想模型能形象地描述物理现象,有利于建立并理解概念

所谓“理想模型”,就是为了便于抓住事物本质,解决问题,而对事物取于干、去其蔓叶后建立的抽象模型。任何物理现象的过程大都是复杂的,要描述它们是比较困难的。但是在某种情况下,排除次要因素,抓住问题的主要方面,把具体的事物抽象化,用理想化的物理模型来代替实际研究对象,并简化有关的过程,以便从理论上去研究它,就能形象的描述物理现象,建立概念。例如:对于物体下落的运动,最初在人们头脑中只是一副零乱的画面:大雨倾盆、砂石飞落……再认真地观察有关的现象或作实验,头脑中的画面就更加简洁,雨滴、沙石都是一个式样地越来越快地垂直下落,他们都成了没有个性的“物体”,在此种情况下可把这些物体看作只有质量而无形状、大小的几何点。这种物体模型称为“质点”。进而,我们略去空气阻力对“物体”下落运动的阻碍作用,统一认定它们运动的初速度皆为零,这样头脑就建立了自由落体运动的物理模型。物理模型是在实验或观察事物的基础上建立的,它对物理事实是一种近似的然而又是突出本质的描写。这样,重视物理模型的建立和理解可为学生接受知识提供较好的手段和方法。

1.1学习教学大纲深入钻研教材

大纲中明确指出:教学中要重视引导学生学习基本概念和基本规律的广泛应用。知识,是人类对客观事物的现象、事实及规律性的认识成果,是增进智慧和力量的源泉。基础知识则是构成各门学科的基本事实及其相应的基本概念、原理和公式。对于物理概念,一般都应使学生理解它的含义,了解概念之间的区别和联系。物理基础知识教学必须分清主次,突出重点,抓住关键。大纲中这些关于物理概念的精辟论述,应作为搞好物理概念教学的指南。切实掌握“双基”,就是要特别重视对基础知识和基本技能准确理解的基础上而牢固地掌握。如果学习者对“双基”的理解是不确切的,那么在迁移的过程也会产生错误。如果学习者只是把“双基”死背下来,即使是背得烂熟,但并没有理解,那么对于产生正迁移来讲也不会有多大意义。切实掌握“双基”,还要特别重视对知识结构的掌握。所谓知识结构,是基本概念与概念、概念与原理、原理与原理之间形成的各种联系,它概括化的程度更高,比个别的、孤立存在的知识和技能更具有普遍意义,因而实现学习正迁移的可能性更大。

根据大纲的要求,进行针对性分析教材中出现概念的目的性和科学性。必须明确:物理学中为什么要提出这一概念?概念是怎样被科学的表述出来的?它在物理学中的地位和作用如何?具体的说应认真钻研以下几个方面:第一,弄清与物理概念有关的物理事实(包括实验事实),即弄清物理概念的依据。第二,要明确这些物理事实提出了哪些问题需要进一步研究,即明确引入概念的必要性。第三,研究中采用什么手段和方法。第四,对概念的意义要逐字逐句的推敲,从而全面准确的弄清它的物理意义,特别要明确概念的适用条件。对其中物理量的定义式、单位等也要有所掌握。第五,弄清关系密切的概念之间的区别和联系,明确教材中的地位,它是否为重点、难点或关键。

通过钻研教材要明确某个物理概念在整个教材中的地位,做到主次分明、突出重点,抓住关键、处理好重点。这样,物理概念教学就有了坚实的基础。

1.2生动直观地引入概念

概念引入是概念教学中的一个重要环节。引入工作做得好,一开始就能激发学生学习概念的积极性,使他们的思路纳入正轨,对正确理解和掌握要领有着直接影响。物理概念是物理现象的本质抽象,它是在感知大量材料的基础上,经过分析、综合、抽象、概括等思维活动中形成的。引入概念时也应依据这一特点从直观到抽象。例如:在讲述力的概念时,应首先举一些学生日常生活中熟悉的实例。如:①手提水桶;②马拉车;③脚踢足球;④磁铁吸引铁块等。然后对这些例子进行分析、比较、概括和总结,得出力的定义为“力是物体对物体的作用”。使学生明确:力是两个物体之间的相互作用。如手和水桶;马和车;脚和足球;磁铁和铁块。更应清楚两个孤立的物体之间并非一定有力存在,这两个物体之间必须发生相互作用。

2.注重创设情境,在体验中理解概念

爱因斯坦说过,“兴趣是最好的老师”。教师应该在生活中做一个有心人,精心设计,让学生在生活中去体验物理,体验物理的乐趣。对于偏好独自学习、不善交际的学生,教师应鼓励其积极投入小组学习活动,多开展与他人的合作、交流及表达训练。如果这样做到,学生对物理真正产生兴趣,他会自发的去学,去理解。例如:在帮助学生理解超重、失重,这两个概念时提前准备磅秤,在上课时首先提出:人站在磅秤上,在下蹲过程中,磅秤的示数是否有变化,如果变化结果如何?反之,结果又将如何?先让学生猜想,然后亲自去实践,从事实中得出超重和失重的概念。构成课程与教学的基本要素中,教师(或教师的活动)和学生(或学生的活动)是最基本和必不可少的。教学活动就是为学生组织的,没有学生,教学活动就没有存在的必要和可能;有了教师指导的教学活动才称得上真正意义上的“教学活动”,不然就只能算一种“自学”。在教学这一系统中,教师凭借环境提供的条件与资源,以教材为文化媒介,与学生进行着最广泛的社会性相互作用,促使学生健康成长,教师也实现了自身的发展。所以教师在授课时应努力创设情景让学生主动地去探索、去体验,尽可能地通过自身的活动去汲取知识,理解概念。

2.1揭示概念的本质理解概念

物理教学实践表明,学生只有理解了概念,才能牢固的掌握概念。而要使学生理解概念,就必须使学生掌握概念的本质。直观材料是形成概念的基础,但概念不能从直观材料中直接得出。必须通过学生的思维才能把感性认识升华到理性认识,这是认识的飞跃,是使学生形成概念的关键一步。为实现这一飞跃,就必须启动学生的思维。在概念教学中,常用的思维方法有比较、分析、综合、抽象、概括、判断、归纳等多种,只有引导学生的正确思维,才能揭示概念的本质,使学生全面的掌握概念。

2.2抓区别找联系深化概念

为了使学生更深刻地理解概念的本质,必须注重要领之间的区别和联系。对一些类似的有关概念进行同中求异,异中见同,反复深化概念。

例如:“速度”和“加速度”是力学中的两个重要概念,要求学生必须有深刻的理解,在教学中就要对两个概念进行全面比较,找出区别和联系。使学生知道,速度是描述物体运动快慢的物理量,或者说是描述位置变化快慢的物理量,速度越大,表示物体运动的越快,或者说位置变化的越快。加速度是描述速度变化快慢的物理量,加速度越大,表示速度变化的越快。速度等于位移和时间的比值,而加速度等于速度的变化和时间的比值。速度的大小决定于位移和发生变化所用的时间,位移大速度不一定大。而加速度决定于速度的变化的大小和发生变化所用的时间,而不决定于速度的大小和速度变化的大小。速度和加速度都是矢量。在直线运动中,速度的方向就是位移的方向,而加速度的方向可能跟速度方向相同,也可能跟速度方向相反。速度增大时,加速度方向跟速度方向相同;速度减小时加速度方向跟速度方向相反。通过上述比较,就可以使学生对“速度”和“加速度”这两个概念有比较深刻理解。

生物化学概述篇5

前科学概念是指学习者在接受正式的科学教育之前,在现实生活中通过长期的经验积累与辨别式学习而获得的一些感性印象或积累的一些缺乏概括性和科学性的经验,是一些与科学知识相悖或不尽一致的观念和规则。从其负面作用来看,前科学概念会影响科学概念的形成,进而影响正确观点的形成。因此,教学应当首先了解学生有什么样的前科学概念,并且把通过纠正学生错误的前科学概念建立科学概念作为一节课最为核心的任务。正如美国教育心理学家奥苏伯尔所说:“如果我不得不把所有教育学心理学原理还原为一句话,我将会说,影响学习的最重要因素是学生已经知道了什么,要根据学生原有的知识状况进行教学。”从这节课来看,学生已有的前科学概念是“用进废退”。在课的一开始,学生尝试解释原鸡怎样进化成蛋鸡时,一个学生说:“一些鸡总是用来下蛋,就变得适合下蛋了。”在接下来解释工业化以后,英国曼彻斯特地区的桦尺镬为什么由浅色占多数变为深色占多数时,另一个学生说:“环境改变,浅色的桦尺蟆为了躲避天敌,就把自己的身体变成了深色。”这些认识都是“用进废退”的观点。用进废退学说是法国博物学家拉马克提出的生物进化学说,其中心论:环境变化是物种变化的原因;经常使用的器官会越来越发达,不经常使用的器官则会退化;获得性可以遗传。虽然现在已经有越来越多的证据证明获得性是可以遗传的,但并不能认为获得性遗传是生物进化的主要方式。要避免在非主流知识基础上建立起非主流的生物进化观点,仅仅了解用进废退学说是不够的,学生更需要知道的是生物进化的主要原因,而不是少数的特例。因此,需要在学生的前科学概念基础上予以引导,使学生看到生物进化更主要的原因。否则,前科学概念就会成为学生接受自然选择学说的障碍,学生就很难形成主流的生物进化观点。

2.观点需要事实性知识作为实证支持

前文提到,观点具有主观性,是自主选择的结果。影响选择结果的因素除了亲身体验之外,间接了解到的事实(即事实性知识)也非常重要。生物进化论之所以为大多数人所接受,是因为它是建立在从自然界搜集得到的大量证据的基础之上,因而才能经受住一个多世纪成千上万科学家的广泛检验。课堂教学中,在呈现事实性知识的同时,最好能够告知学生这些知识为什么是事实。本节课就较好地做到了这一点。对于英国曼彻斯特地区桦尺镬体色的变化,教师首先采用科学史再现的方法陈述事实:1850年,一些生物学家来这里考察,发现大多数桦尺镬的体色是浅色的,只有少数是深色的。100年以后,也就是1950年,曼彻斯特已经变成了一个工业城市。这时候,又有一些生物学家到这里考察,使他们惊讶的是,这里的深色桦尺蟾变成了常见类型,而浅色的桦尺蟾却成了少数。像这样通过科学史的方式告知事实,显然要比直接告知事实本身使学生感觉可信度要高。而越是值得相信的事实,对于学生形成正确的观点帮助越大。

3.观点常常与概念性知识相伴而生

生物化学概述篇6

在实际教学中,有些化学概念学生容易学习,有些则非常难学,教师使用相同或相似的方法进行不同的化学概念教学时,取得的效果相差甚远。如“物质的量”及其单位“摩尔”的学习,教师觉得难教、学生觉得非常难学。化学概念的建立应该具有一般的基本过程,我们试图从化学概念的基本特征和建立概念的心理过程中寻找化学概念有效教学的策略,使得学生能够有效地学习化学概念,从而促进化学的有效学习。

1概念学习的特征

概念的学习过程是“反映事物本质属性的共同观念”在人的大脑中从无到有的过程,因此,有必要全面认识概念及其建立的过程,即概念的特征和概念建立的心理过程。

1.1概念的特征

1.1.1内涵和外延

任何一个概念都有它明确的内涵和外延。

内涵是指概念所反映的事物的本质属性,通常是通过下定义的方法来表示的,如“物质的量”的定义是“含有一定数目粒子的集体”,给概念下定义是对事物的本质属性的认识在一定阶段上的总结。概念不仅对所反映的事物的本质属性有质的规定性,有些概念还具有量的规定性。因此,一般来说,概念既可以用文字或语言的形式来表述,有些概念还可以用数学公式予以定量阐述,如“物质的量”又可定义为“n=N/NA”。

外延是指概念所涉及的范围和条件。如“物质的量”的外延是“含有一定数目粒子”这一本质属性的粒子集体的类型,如分子、原子、离子(或原子团)、电子、质子、中子等。

1.1.2客观和可测

概念是从客观事物中概括和抽象出来的,它反映了客观事物的本质属性和内在联系,因此,具有客观性。如“物质的量”是客观存在的不同类型的粒子的集体。

同时具有质和量两个规定性的概念叫物理量。一切物理量都能被测量,用仪器进行直接的测量,用公式进行间接的计算,还可以通过测量其他物理量进行间接的测量。如“物质的量”的测量,可以通过间接测量质量、气体体积等方法进行。

1.1.3抽象和精细

一个概念能够反映出大量形形的物质的共同属性,因而具有高度的概括性和抽象性,它超脱了具体的现象而说明了事物的本质。一个被抽象的概念,还可派生出新的概念,称为概念的多重抽象性。如“物质的量”可派生出“摩尔质量”、“气体摩尔体积”和“物质的量浓度”等。

客观事物的方方面面的属性,表面上看来有些属性是相似或相近的,但用不同的概念能够把这些属性精确地区分开。例如,“量”是人们生活中经常使用的一个含混概念,人们说“量”的多少,可能是质量、体积、纯度、质量分数等等。然而,概念却能准确地区分它们。

1.1.4发展和变化

概念是在科学实践中逐步形成和发展起来的,一个概念的内涵是否正确,外延是否恰当都要用实践来检验,并随着科学实践的深入发展而不断得到补充、修正和重构。原子的概念从德谟克里特提出,经历了“实心球模型—布丁模型—行星模型—卢瑟福模型—分层模型—原子核模型—电子云模型”。由此可见,科学发展的历史,也是概念产生和发展的历史,同时也应该成为概念学习发展的过程。

1.1.5联系和结构

概念和概念之间虽然可以进行精确的区分,但它们之间并不是孤立的,它们之间存在着直接的或间接的联系,其主要形式是从属和并列。在从属关系中,下位概念从属于上位概念,如氧化还原反应与氧化反应的关系,氧化还原反应属于上位概念,而氧化反应属于下位概念。氧化还原反应的学习是在氧化反应和还原反应学习之后进行的,称为上位学习;反之,在具有上位概念的情况下学习下位概念称为下位学习。并列关系指的是概念与概念间既不产生从属关系,也不产生总括关系,但相互之间具有潜在的联系,如质量与物质的量等。

1.2概念学习的过程

关于人的认识的发展过程,列宁曾做过这样的概括:“从生动的直观到抽象的思维,并从抽象的思维到实践,这就是认识真理、认识客观存在的辩证的途径”。认知心理学认为,形成概念是人在认识事物的过程中积极主动地进行概括、推理、提出假设,并将这一假设应用于日后遇到的事例中加以检验。由此可知,概念的形成是以感觉、直觉和表象为基础的,以分析、综合、抽象、概括、系统化和具体化为主要思维活动,从个别到一般、从具体到抽象、从现象到本质的认识过程。因此,可以将学生概念学习的过程划分为:

1.2.1感知现象

感知是由于环境对感官的刺激引起的事物的整体属性在人脑中的反映,属于认知过程中的感性阶段,概念学习的感知来自于客观环境(对客观事物的生活经验)和教育环境(教材、图片、模型、录像和实验等)。但要注意的是:人的知觉系统摄取和加工外部环境信息的能力是有限的,应该对刺激进行选择和过滤;同时感知受到人的需要、愿望、兴趣、以往经验(前概念)的影响。

1.2.2思维加工

思维是人脑对客观事物的间接的和概括的反映,主要包含抽象和概括两个过程:抽象就是在思想上区别某种事物的本质属性和非本质属性,从而抽取本质属性;概括则是将某种事物的本质属性推广到同类事物中去。这一过程依赖于各种思维方法的综合运用。不同概念的形成,其思维方法不尽相同,最基本的有:①分析概括一类事物的共同属性和本质特征,如化学反应、糖类、蛋白质;②抽取物质的某一属性,得出表征物质某种性质的量,如相对分子质量、相对原子质量、摩尔质量、气体摩尔体积;③用理想化的方法进行科学抽象,如理想气体、分子模型、原子模型;④概念的组合及发展,如摩尔质量(质量和物质的量)、气体摩尔体积(物质的量和气体体积)、物质的量浓度(物质的量和溶液体积);此外,还有运用演绎、类比及等效的方法等。

1.2.3形成概念

形成定义是形成概念的认知活动的最高境界,也是进一步理解概念的基本依据。

概念的定义方法一般有:①属加种差,如酸性氧化物是在其属概念——氧化物的基础上进行的;②操作定义,如摩尔质量是将物质的质量与物质的量的比值这一数学操作进行定义的;③外延定义,对于外延边界清楚的集合概念,若能举出他的全部外延,就可以下肯定外延的定义,如不饱和溶液,就是指没有达到饱和状态的溶液。

理解概念主要从以下三个方面考察:①明确引入概念的原因;②明确概念的内涵和外延;③了解概念与相关概念之间的区别和联系。

1.2.4重构认知

新概念形成后,如果不能与原有认知结构建立起意义联系,在一定程度上意味着概念没有真正建立。认知结构的重构,主要是使头脑中散乱的现象和事实、概念、理论形成秩序,使头脑中的化学知识得以扩展、更新或重构,这一过程是由同化和顺应使认知结构达到新的平衡的过程。

2概念学习的障碍

中学生的逻辑思维正处在由经验型向理论型发展的阶段,思维的品质不够健全,使得他们在学习概念时存在着一定的困难,可能形成各种学习障碍。我们认为,中学生概念学习的障碍主要表现为与概念学习四个心理过程相对应的四个方面:

2.1感性认识不足

感性材料是形成和掌握概念的前提和必要条件,感性认识不足是概念学习的主要障碍之一。例如,如果没有观察过化学反应,就不能掌握化学变化。用以表征物质特殊性质的概念,如“物质的量”是对含有6.02×1023个粒子的集合体的抽象,远离人们的日常生活经验,不能找到直接的感性材料,从而导致了学习障碍。

2.2思维方法不当

概念的学习是在获得足够多的感性材料后,利用各种思维方法形成科学的概念。没有掌握建立科学概念的正确思维方法和思维过程,是概念学习的又一障碍。如果在建立概念过程中不能运用分析、综合、比较、分类、类比、抽象、概括、推理判断以及理想化等思维方法和思维过程,就很难使感性认识上升到理性认识,即形成的概念只能处于浅表的感性层次。

2.3定势思维影响

长期的思维实践中,每个人都形成了自己惯用的、格式化的思考模式,当面临现实问题时,我们能不假思索地把它纳入特定的思维框架,并沿着特定的思路对它们进行思考和处理,即思维定势。思维定势的益处是用来处理日常事务和一般性问题,能驾轻就熟,得心应手。然而,思维定势的弊端在面临新情况、新问题而需要开拓创新时,就会变成“思维枷锁”,阻碍新观念、新点子的构想,同时也阻碍了对新知识的吸收。正如法国生物学家贝尔纳所说的:“妨碍人们学习的最大障碍,并不是未知的东西,而是已知的东西。”学习“物质的量”时,按照汉语习惯,“物质的量”相对于“物质的质”而言,通常理解为“物质(宏观或微观)的多少”,这与科学的含义有很大的差别。

2.4相关概念干扰

概念之间既有联系、又有区别,学生常常不能区分相邻、相近的概念,这是相关概念干扰的表现之一。如物质的量与质量、物质的量与它的单位摩尔、摩尔质量与相对分子质量、物质的量浓度与溶质的质量分数等概念间的关系是学生概念学习中常见的混淆点。

相关概念干扰的表现之二是前概念的干扰。学习科学概念前,学生已经从日常生活或以前的学习中积累了不少与概念有关的感性经验,对客观事物有了一定的认识,形成了一定的概念,其中有些是片面的、错误的,从而干扰了科学概念的形成。

3教学模型的构建

根据奥苏贝尔的同化说,知识的获得过程是以文字或其它符号表征的意义同学习者认知结构中原有相关的观念(包括表象、概念或命题)相联系并发生相互作用后,转化为个体的意义的过程,即知识掌握过程是材料的逻辑意义与学生的原有认知结构中的原有观念相互作用,从而产生个体心理意义的过程。结合概念学习的心理过程,从更普遍的意义上构建化学概念教学的过程模型(表1):

由上述的全新概念“摩尔”和导出概念“摩尔质量”的教学实例中可以反映出,在具体概念的教学中均可以采用概念教学的基本过程模型进行教学。

4概念教学的策略

根据上述关于概念建立的心理过程和概念教学的过程模型的讨论,我们可以得出与概念教学过程相适应的解决策略。

4.1形象直观演示,获得感性知识

通过运用生动的直观形象,如观察实验(演示实验或学生实验)、图表和模型、计算机模拟动画等,让学生从中了解有关某概念的部分信息,获得有关概念的感性认识,为认知结构中接纳和理解这一概念奠定基础。在获得感性认识的基础上,指导学生自觉地将观察到的宏观现象与物质的微观变化联系起来思考,进而从微观角度加深对概念的理解。

然而,由于人的感知系统的容量有限,教学中应精选直观教学的内容,尽可能采用最常见、最易得、最经济和最形象的直观内容,从而确保学生对感性知识的有效获取。

4.2分析特征信息,抽象相关信息

在教学情境中,有意提供一系列与概念相关的信息,进行辨别、提取和概括。然后从部分事例中已确认的特征信息入手分析各类事例,逐步舍弃干扰信息,使特征信息的精度和准度提高,在此基础上,将有关特征以一定的方式联系组合起来,构成概念的抽象定义。在这一过程中,关键要指导学生的思维方法和思维过程。

对特征信息进行抽象,有助于用语言清晰准确地表述和有序地记忆这些特征,这就成为学生掌握概念的前提和关键。

4.3准确表述内涵,清晰界定外延

引导学生将与某概念有关的本质特征组合起来,用语言或文字形式加以概括和提炼,即表述,可分为具体性表述和定义性表述,具体性的表述“口语化”特征明显,所反映的信息一目了然,把握比较容易;而定义性表述则更能反映概念的丰富内涵,文字简练、表达精确、逻辑性强。如化学键是相邻原子间强烈的相互作用。

概念的外延常常通过定义中反映特征信息的关键词来限制。如化学键概念定义中的“相邻”、“强烈”。

4.4深化发展概念,形成概念系统

人的思想是由现象到本质、由肤浅到深刻不断深化、以至无穷的过程。人的认识不断深化,必然促使概念不断发展。如氧化还原反应概念学习经历“氧的得失—化合价升降—电子转移”的过程,从而使概念及其相关概念的定义趋于完善。这说明概念是发展和变化的,因此,在具体教学中,应尊重学生的认知水平,恰如其分地描述和表达不同阶段的概念。

学习心理学认为,一个重要概念,是在概念的系统中形成和发展的。引导学生利用认知结构中原有的、适当的概念系统来接纳和学习新概念是十分必要的。其主要方法是:将新概念与认知结构中的适当概念相联系,并促进对新概念的关键属性或定义的理解;将新概念与原有概念进行精确分化,找出它们之间的相同、相似和相异之处;将相关的概念融会贯通,组成整体结构,便于记忆和运用。

通过以上论述,可以认为在概念教学中均可以采用上述构建的概念教学的过程模型来设计并组织教学,但教学的原则是因材施教,教学的标准是有效教学。我们认为,应从学习内容、学习者和教育者三方面思考和探讨“因材施教”中的“材”:具体概念的教学过程模型不是唯一的、固定的,它应随着教学体系、教学内容的变化而变化,它应随着学生年龄、学习能力的变化而变化,它还应随着教师的教学风格与教学资源的变化而变化。但不管选择何种教学过程,概念教学都应具有某些共同特征和基本过程,都应遵循有效教学的目标。

参考文献

林海斌1梁凌志21.温岭市温中双语学校,浙江台州3175002.温岭市新河中学,浙江台州317502

[1]胡卫平.中学科学教学心理学,北京:北京教育出版社,1999

生物化学概述篇7

初中学生虽然具备一定的思考能力,但对于一些日常生活中没有接触过的或比较抽象的概念知识,还是不易理解和掌握,因此教师教授这些概念时要注意形象、直观和生动,学生才容易掌握。生理和认知规律告诉人们:视、听觉等直观感觉容易引起人的注意和帮助人们记忆和理解。初中生物中许多概念是无法通过实验进行重现,而这些概念的理解却又需要呈现其反映的现象和过程。这时教师可以利用多媒体技术,使概念教学形象化、生动化,有效帮助学生理解和掌握。例如初中生物的血循环中“体循环”和“肺循环”的概念,如果教师光凭口头讲授,学生是不容易理解的。此时教师可利用多媒体Flas技术,制作“体循环”和“肺循环”的Flas,就能形象而生动地展现这两个循环过程,使学生一目了然,很快就弄懂和基本掌握这两个概念。

又如在讲述“肺泡与血液的气体交换”时,教师也是无法只用文字叙述就能讲清楚的,而且这个概念也无法通过实验呈现,所以教师也可以应用多媒体Flas技术,制作出“肺泡与血液的气体交换”的动画,较好地解决了这个概念的教授难题。

再如,讲授“肾小球的对血液滤过作用”概念时,当然教师是无法再现实际情形,也难以进行实验,那么教师可以制作并运用“肾小球的对血液滤过作用”Flas,生动形象地讲授该概念,学生也能清晰地理解并掌握该知识。

多媒体技术在运用于很多难以通过实验和纯粹文字讲授的概念时是比较有效的方法,课堂上可以多加以应用。

2 利用演示实验和探究性实验,使概念教学直观化和真实化

2.1 探究性实验

初中的概念有相当一部分是对现象和客观规律的描述和再现。要让学生理解和掌握这些概念,最好的办法就是重复实验过程、现象,从而使学生弄懂和掌握概念。一个人如果亲自做过或看过的东西,通常记忆牢固,容易理解并掌握。教师可以利用演示实验和探究性实验,使概念教学直观化。例如:在初中讲授“食物的消化”一节时,教师会安排“馒头在口腔中的变化”这个实验。通过学生亲自实验,让学生知道淀粉在口腔内能被初步消化为麦芽糖,并记住“淀粉遇碘变蓝”这个现象。如果只是教师口头的讲述,学生不会有深刻的印象,多数停留在对知识的死记硬背上。

又如:在初中讲述“种子萌发的条件”一节时,如果教师照本宣科,知识的传授只是文字的表述,学生不理解也记不牢。所以教师都会安排学生在家里预先进行探究实验,教师指导学生按照课文的实验要求,分别对种子提供不同的外界条件,探究种子萌发的外部条件。最终教师引导学生通过分析实验结果,得出种子萌发所需要的“适合的温度”、“足够的水分”和“一定的空气”三个条件。由于是亲自动手进行实验探究,因此学生对这部分知识容易理解并记得牢,教学效果明显。

2.2 演示性实验

如果学生不易操作或需要耗费一定时间的实验,可以用演示实验进行教学。例如在讲述“人类对细菌和真菌的利用”一节中“发酵现象”时,因为该实验需要一定的时间,不可能在堂上完成,所以教师需要预先做好实验装置,在上课前按实验要求完成实验,并拍摄下来,上课时把实验过程播放出来,相当于演示实验。同时在课堂上,教师可设计一套实验装置,把发酵时产生的气体通入石灰水中,通过观察石灰水是否变混浊来判断发酵产生的气体是不是二氧化碳(图1)。

教师运用探究性实验和演示性实验进行概念教学,可使学生主动参与和乐于探究,既有利于学生掌握生物学概念,又有利于倡导培养学生的探究学习能力,可谓一举两得。

3 巧用比喻和诗词,使概念教学鲜明化、生动化

“比喻”是指用某些有类似点的事物来描写或说明另一事物,以便表达更加生动鲜明。在教学中,教师借助比喻进行生物学概念会有很好的作用。例如在初中讲述“细胞是生物体结构和功能的基本单位”这一概念时,为使学生能理解这句话,可以做这样一个比喻:如果把生物体比喻为一座房子,那么,细胞就好比是建造这所房子的砖。这样一个比喻,就把细胞与生物体的关系和细胞的作用描述出来,使学生马上理解了细胞在生物体的作用。

又如在讲“眼球的结构和功能”的知识时,如果光是口头讲述其结构和作用,学生会提不起兴趣,教师也不容易把知识概念讲清楚。这时,教师可以先提问照相机的一些知识。由于学生一般都用过照相机,对照相机都有一定的了解,能回答一些关于照相机结构的知识。然后,教师对学生说:其实,眼球就相当于一部照相机,眼球的晶状体相当于照相机的镜头,眼球的脉络膜相当于照相机的暗室,眼球的视网膜相当于照相机的底片。这样的比喻使学生很容易就理解和掌握了眼球的结构和功能的概念。

再如在初中讲述“从种到界”一节中6个常用生物分类单位时,教师可让学生们先制作一个介绍自己国籍、住址的个人名片,名片中包括国家、省、市、区、道路(街道)、家庭门牌号。然后告诉学生6个常用生物分类单位就好比学生制作的个人住址名片中所用到的国家、省、市、区、道路(街道)等单位一样,每个人的住址门牌只有一个,相当于最小的单位――“种”; 道路(街道)相当于上一级单位――“属”;如此类推。这样运用一个比喻,较好地解决了学生们不易理解的分类问题。

此外,很多诗词蕴涵着生物学概念,若教师能适当运用,可加深学生对概念的理解。如诗句“落红不是无情物,化作春泥更护花”比喻生态系统中的物质循环;诗词“螳螂捕蝉,黄雀在后”比喻隐含的食物链;“野火烧不尽,春风吹又生”比喻草原生态系统较强的自我调节能力。

正是借助了类似的事物来比喻,使原本陌生难懂的概念鲜明化、生动化,学习的效果也就不言而喻了。

4 利用实物、标本、模型,让概念教学直观化、具体化

“模型”是人们用物质形式或图形形式再现原型客体的某种本质特征,如结构(整体的或部分的)、功能、属性、关系、过程等。通过构建模型和直接认知模型来把握生物学概念,是当前课堂中的常用教学方法。

4.1 应用仿真模型

教师应用仿真模型教学,一方面能刺激学生感性认识,另一方面让抽象变得具体,让概念教学一目了然。

如在学习“细胞结构”的概念时,由于学生没有见过细胞,教师不能凭空讲述概念。所以让学生先认识细胞的立体结构是非常必要的。这时,教师可使用细胞结构的仿真模型实施教学,让学生能从直观的立体模型中感受一个动物细胞和一个植物细胞的三维结构图,理解细胞是立体的,防止学生从课文的平面图获取细胞的结构信息时误以为细胞是二维结构。然后再让学生根据书本的图片把动植物细胞的主要结构一个一个从模型中找出来,并要求学生明确了各细胞结构的形态、名称及其功能。借助“细胞结构”的立体模型,学生兴趣提高了,也更易理解掌握概念。

又如对于染色体和DNA的结构概念时,学生也是从来没有接触过和可见过,而这两个概念又比较抽象,学生不容易理解。此时,教师应运用模型,对学生进行视觉刺激,强化感性认识,帮助学生了解和弄懂染色体和DNA的结构。运用直观性模型能达到明确生物学概念的目的。

再如在讲授“呼吸运动”原理以及“胸廓”的概念时,学生都觉得很抽象,很不容易理解,教师就必须利用模型进行讲授。教师可以展示胸廓的模型和能模拟胸廓运动的模型(图2),显浅和直观地展示呼吸运动和胸廓的概念。否则,教师光凭文字和口头讲授,无法达到较好的教学效果,学生也很难理解教师教授的内容。

4.2 利用数学模型

“数学模型”主要表现形式有数理逻辑的图表(曲线图、集合图示等)等。通过“数学化构造数学模型”的过程来认识生物学概念的方法,称为数学模型方法。

例如在讲述“细胞核、染色体、DNA、基因”的关系概念时,如果教师光是口头上的文字讲述,很难让学生理解它们之间的关系。但如果运用数学模型图,则简单易行。教师可作出如图3所示的关系数学模型图,这样问题就可以迎刃而解。

另外,概念教学还可采用有“语言分析法”、“类比法”、“概念图法”、“情景创设法”、“肢体演示法”等。总之,教无定法。任何方法都有利弊,教师只有灵活应用,才能体现方法的科学性和教学的有效性。只有根据各自的具体教学实际、具体的教学问题,采用适宜的方法,才能真正提高生物概念教学的效率。

李政道教授说过:“学习中一定要把基本的概念搞清、记牢,最重要的东西往往是最简单的”。一句话说出了教师进行概念教学的重要性。总之,在概念教学过程中,教师针对不同的概念,有不同的教学方法;而同一类概念,也可结合多种方法进行教学。

参考文献:

生物化学概述篇8

1.目的性解释或功能解释的方式是概念自主性的逻辑延伸

如果承认生物学理论具有自主性,那么理论自主性的根本在于概念的自主性,即存在所谓不能用物理——化学术语进行描述和定义的概念。生物学理论自主性的另一表现——理论体系的目的性解释或功能解释方式,是概念自主性的逻辑延伸。另一方面,生物学理论中仅存在自主性概念并不必然导致目的性解释或功能解释,例如,孟德尔遗传学、公里化处理后的群体遗传学和进化论的演绎体系(1),其中所有的概念都没有与物理——化学发生关联,都是自主的,只有在一个体系中,例如,以分子生物学为主体的现代生物学,存在自主性概念的同时,又存在物理——化学的术语和概念,并且,二者都处于解释起点的位置,才必然导致目的性解释或功能解释的理论结构,这种结构成为融合自主性概念与物理——化学概念为一体的方案。就现代分子生物学来说,其中的物理——化学概念所描述的是生命现象中的分子及其行为,而自主性概念所描述和推演的是我们宏观经验的生命现象本身,这二者之间,从概念的构造和体系的建立的过程来说,分属两套逻辑体系,因而它们之间没有逻辑演绎的导出关系(2),同时,由于生命现象的复杂性(即使假定把它描述成所谓的因果反馈网络是可行的方案),难于形成一个由前者到后者的历史演化的因果决定性的理论描述,剩下来将二者结合在一个理论中的唯一方案就是目的性解释或功能性解释的方式。由此形成的体系中,自主性概念(如遗传信息)处于核心地位,物理——化学的术语和概念(如DNA,蛋白质)是附属的。现代还原论(或称分支论,企图将生物学作为物理科学的一个分支)对生物学理论的目的性解释或功能解释方式的一切责难,以及将其变换为演绎解释方式的企图,如果不首先化解概念的自主性问题,将是徒劳的。

从生物学理论的客观构建过程来说,这些“自主性概念”是直接从生命现象中认定的,因而也是无机世界所没有的。在自主论看来,无论站在什么角度或立场上,“自主性概念”是理论中不可再分解的最基本,最原始的元素,是解说其它现象的起点;而在还原论看来,从物理——化学的立场或从无机界与生命界的关系的角度来看,“自主性概念”是复合的,应由物理——化学的术语和概念复合而成,因而它们就不应是理论中最基本的元素。我们顺着还原论的思路思考下去,还原,就是最终由物理学中的概念逻辑地演绎“自主性概念”的内涵。物理学中所有概念都终究归结为可感知、可操作的三个量纲:质量、空间、时间。物理科学内部的还原都是这种归结:对热质的否定并把热现象归结为能、温度归结为分子的平均动能,从化学到量子力学等等,著名的“熵”,则以热量与温度的关系来表示,在申农创立了信息论之后,人们便千方百计地寻找“信息”与物理学的关系,勉强将其与“熵”联系起来。从有限的意义上说,分子生物学还原了经典遗传学,将基因还原为DNA和“遗传信息”,而“遗传信息”如何进一步归结为物理学的量纲呢?“遗传信息”是一系列生命过程的整体赋予DNA等生物大分子行为以生物学意义的概念,也就是说在解释的逻辑次序上整体在先,元素在后,这是“遗传信息”这一概念的自主性的来源。因此,分子生物学的还原仅是有限意义上的还原,甚至不能说是还原,因为它仅仅是以一个自主性概念(遗传信息)解说了另一个自主性概念(基因),而“遗传信息”已成为现代生物学的研究范式或纲领的核心。因此,现代分子生物学并没有给还原论以支持,而且具有反作用,因为,如果说经典遗传学是一个演绎体系因而在这一点符合还原论的要求,那么分子生物学由于“自主性概念”与物理——化学概念的混合而具有了目的性解释和功能解释框架的特征,这成为生物学理论自主性的表现特征之一。

现代自主论正是从分子生物学的这些自主性特征出发,声明了自己的原则和立场。

2.现代自主论的原则及其本体论基础

从活生生的生命现象中直接认定一些概念,从而它们独立于无机界,有别于物理——化学语言,使建立在这样的概念之上的理论具有自主性,最极端的例子是本世纪初的生理学家杜里舒(H·Driesch)将“活力”概念科学化和理论化,使它成为逻辑解释的起点;孟德尔到摩尔根所构造的经典遗传学中的“基因”,也是直接以生命现象以及从中所获得的数据为根据认定的有别于物理——化学的概念。本世纪六十年代,分子遗传学将“基因”用DNA分子片段代替,使人们一度认为生物学的自主性是一种虚幻的认识,迟早会消失的。但是,并非DNA分子片段唯一地代替了基因,而是DNA分子与“遗传信息”二者一起来解释基因。“遗传信息”又是直接来源于生命现象的概念,仅就这一点来说,分子生物学仍然具有自主性。这是现代生物学自主论的根据。

现代自主论的主要论点是生物学完全有根据形成自主的概念,“自主”意味着不能由物理——化学术语来分解或描述或定义。为了区别于分子生物学诞生之前的生机论或活力论,现代自主论提出以下原则:将生物学能否还原为物理科学与能否用物质原因阐释生命现象严格区分为两个问题。(3)这个原则所要强调的是,物理——化学并不是对物质世界的唯一表述方式,关于生命有机体自身的物质原因的表述(生物学理论)则是另一种关于物质世界的理论表述方式,二者之间不存在逻辑蕴涵或逻辑导出关系。生物学还原为物理科学,其严格意义是以物理——化学的概念和定律来解释生命现象,从而推演生物学理论。仅从概念的层次来说,完全用物理——化学的术语描述或定义生物学概念,已经非常苛刻而至今远未做到。现代自主论“用物质的原因阐释生命现象”则宽松得多,实际上,分子生物学就是这样,以生命大分子组成,再加上遗传信息、复制、转录、翻译以及选择、稳定等诸多生物学独有的自主性概念,成功地阐释了从功能到进化的许多生命现象和活动。这是一个非常实际的原则,既可以摆脱科学史上令人厌恶的“活力”纠缠,又没有象还原论那样自套枷锁。

虽然如此,如果深究这一原则,则存在以下问题:

第一,现代自主论所称的具有自主性的生物学概念的认知来源无疑仍是对生命现象的直接认定,因此,在还原论或分支论那里应该是纯粹的解释对象的生命现象,在此成为认知和解释的起点。至少在这一点上与“活力”概念是相同的;

第二,现代自主论的本意是,生命现象中的物质运动方式为无机界所没有,因而对这些运动方式、关系等可形成独立于或自主于描述无机界物质运动方式的物理——化学的术语、概念乃至规律、理论,作为解说生命现象的前提。这种主张或可与当下的生命现象或“功能生物学”(4)相谐调,但与科学界的一个基本承诺(也是一个从未被证实过的预设)相抵触:生命来自于无机界。这意味着生命现象中的运动方式与无机界的运动方式有—个逻辑与历史相统一的关系,描述它们的理论也应有一个统一的逻辑关系,因而自主性不应该是必然的。

第三,在解释上,“物质的原因”中的“物质”是指生命体组成,主要是生物大分子,因此在现代自主论看来,分子生物学在具有了自主性的同时,又具有了物质性。而具体体现这种主张的分子生物学必然是自主性概念与物理——化学的术语和概念相“混合”的理论,其中,直接以生命现象作为实在性基础的自主性概念占有主导地位,是理论的核心。“遗传信息”规定了未来的蓝图,成为生物大分子所有行为的目的性基础与源泉,(5)它以生物大分子自身的逻辑内涵所没有包容的、因而是外在的东西,来赋予生物大分子行为以生物学意义。这就使得DNA等生物大分子成为遗传信息等概念的附庸,导致了目的性解释或功能解释方式(2)。这实际上仅仅一半是物质的,而另一半却仍旧是“生机”的。这样,与其说是解释生命现象,不如说是在阐释生命形式下的分子及行为。这样的理论之所以被人们接受,其原因之一是人们接受了“生命来自于无机界”这个科学界中最基本的承诺之一,它已成为一种指导思想,给人们带来了希望:迟早有一天我们可以使理论上的从无机到生命的逻辑与历史上的从无机到生命的演化过程统一起来。因此,现代自主论的原则尽管与现代生物学相一致,但是,它却与这样一个重大的承诺不谐调。

第四,由此,我们可以做这样的一个回顾:生机论以从生命现象中认定的概念作为解释的起点,可简略称为“以‘生命’解释生命”;还原论则基于近现代科学精神的要求,以描述无机界的概念为起点来解释生命现象(即“以‘物质’解释生命”);而现代自主论的原则和主张,在分子生物学的具体体现中,却付出了这样的代价:以自主性概念为核心规范了物理——化学的术语和概念,以此为解释起点,但所解释的并非是生命现象本身,而是分子的行为(尽管是生命形式之下的)——自主性的那部分所解释的是生物大分子的(物质的)行为(即“以‘生命’解释物质”),“物质原因”那部分所解释的也仍是物质,而非生命。

以上几点,既是现代分子生物学理论体系中存在的哲学疑难,又是现代自主论的主张所存在的问题。现代自主论的原则是以现代生物学为其合理性依据的,它之所以坚持这一原则,一方面是由于现代分子生物学的内容的确如此,另一方面又企图把这一原则固定为今后理论生物学构建的指导性原则。这不由得使人想起了二千多年前亚里士多德的技巧,他不满意柏拉图在灵魂(生命)与肉体(物质)之间设置的鸿沟,企图找出生命过程与物理过程的密切联系,同时又要界说生命过程以表明与物理过程的区别,他构造了“形式因”和“目的因”的概念来解决这一问题:一件东西赖以构成的原料或物质并没有告诉我们它是什么,但赋予它以形式或目的,我们就可以根据它能做什么来说明它。

进一步的问题是本体论问题。现代自主论的优势在于现代生物学理论的形态和内容确以一些自主的概念作为理论根基的,但它的本体论基础却不令人信服:“生物学自主性的本体论根据在于生命有机体这种体系中的因果关系是复杂的,其中,生命整体行为对部分的制约是无机界所没有的。”(3)在此,存在着这样的悖论:因果关系是对现代生物学自主性的否定,而这里却以因果关系(尽管是复杂的,但仍是因果关系)作为自主性的本体论基础——前文分析了“一个理论体系中自主性概念与物理——化学概念同存并列作为解释的最基本元素,必然导致目的性解释或功能解释的方式”,它的逆否命题便是“非目的性解释(演绎的或因果关系的)体系不允许两种概念混合并列为解释的起点”,只能由一方还原另一方。那么,理论出现了“自主性”,到底是由于生命现象太复杂、纯粹以无机界为起点因果地或演绎地解释生命现象太困难而采取的权宜之计;还是由于存在着无机界所没有的“制约”,因而生命现象在本体上具有“自主性”(自主于无机界、确切地说自主于物理——化学的运动机制),使生物学也具有了“自主性”?接下来就发生这样的重大问题:本体上的自主性是什么?它与“活力”“生命力”的本质区别是什么?现代自主论可以争辩:生物学理论的自主性并不等同于生命现象具有自主性。但是,“整体对部分的制约”等诸如此类的现象如果在本体上不是自主的,而是与无机界有演化机制的因果关联,又为何不能为物理——化学(包括未来的物理科学)所描述?除非承认“科学的认识方法是有限的和不完备的”以及进一步承认“人的认知能力是极为有限的”这样令人气馁的命题,这又回到了“太困难而采取的权宜之计”上来。

因此,现代还原论固执地坚持以下两点与现代自主论的原则以及生物学理论现实作对:第一,生命必须纯粹地作为解释对象,而不能在解释之先从生命现象中预设某些概念作为解释的起点,如果生物学理论中有这样的概念,则它应被分解为物理——化学的语言;由此,第二,用演绎的解释方式转换由于存在自主性概念而采用的目的性解释或功能解释方式。坚持以上两点,也即将生命现象作为纯粹的解释对象而从无机界来演绎,就意味着用“物质的原因解释生命”与“生物学还原”是同一个问题。由于这种理想主义的固执,还原论所遭遇的困境甚于现代自主论。

3.现代还原论的困境

还原论的致命之处,主要不在于它反对现代自主论的原则,而在于反对现实的生物学理论的形式和内容去追求一种不太切合实际的理想。对生物学理论中的目的性解释和功能解释的诸多责难及演绎还原的要求所依赖的合理性依据——解释预言的检验是经验上可操作的,已随着现代生物学的成功而烟消云散,因为目的性解释或功能解释方式同样在试验上可检验。面对现代生物学的成功,以及还原所难以克服的诸多困难,再加上现代自主论强有力的批判和否定,现代还原论发现,剩下来可依赖的唯一合理性是哲学意义上的依据,即“生命来自于无机界”这一预设性和承诺性命题,我们不应“以‘生命’解释生命”,也不应“以‘生命’解释物质”,合理的“解释矢量”的方向应是“以‘物质’解释生命现象”。在这里,“生命现象”是一个很不具体的抽象概念,实际上可具体为被“约束”或“规范”的物质行为表现和“约束”或“规范”机制本身,这是真正的解释对象,也是理论自主性的实在性基础。因而,对于还原论来说,追究“基因”或“遗传信息”的起源和分子进化机制已成为其最后的坚守阵地,并且,当代自组织理论和超循环理论的盛行,似乎为还原论带来了令人振奋的希望。

迈尔曾将生物学理论划分为功能生物学与进化生物学,(4)在功能生物学中,基因所携带的遗传信息是生物学一切功能和目的的基础和源泉,只要突破这一点,即能够用物理——化学的语言演绎地描述形成遗传信息的分子进化机制,那么,还原论至少在原则上取得了胜利。但是,通过以下分析,这种希望似乎又是水中之月。

前面说过,“自主性概念”之所以“自主”,是由于它直接对应于生命现象或认定“生命的实在”,它反映了生命特有的本质,因此,它作为理论的起点,不必给予也不可能进行物理——化学的描述。还原论否认存在生命的特质,把所谓“自主性概念”或直接来自生命现象的概念看成是“复合性”的,可分解为诸多物理——化学的术语和概念,与此相应的试验上可操作性依据是生物化学对生命有机体的组成还原。但是,组成上的还原虽然可作为生命与无机界密切联系的依据,但也没有否定现代自主论的“用物质的原因解释生命不等于还原”的命题及所坚持的原则。否定“自主性概念”的充分条件不仅仅是把它看成“复合性”的,而且要以物理——化学的术语和概念逻辑地导出它的内涵。如果只满足于组成上的还原,结果只能是以“自主性概念”为核心来赋予生物大分子及其行为以生命意义(2)。与逻辑导出相对应的试验依据不是组成上的分解还原,而是与逻辑导出同向的试验可操作性,说白了,就是由无机要素合成生命,哪怕是最简单的生命现象。例如,对于超循环论来说,就是生物大分子超循环耦合能否在试验条件下发生,这涉及到“生命来自无机界”这一命题由哲学化向具体的科学化的过渡,关系到还原论在科学上能否真正站稳。但是:

第一,由无机到生命,经历了漫长时间,并且,生命的产生和演化是在十分优越的条件下选择了唯一快捷的途径而发生的。以人类的有限生命和历史是否有能力进行这种操作呢?这就象大海里的沙子,原则上是有限的,如果想数清楚有多少粒,则在实践上是一个无限的问题。退一步说,仅理论上的操作,即以物理——化学诸要素,通过在无机背景下取得的参数,进行自组织理论的非线性过程计算,来描述无机与生命之间的逻辑关系,这种非线性理论的计算操作也同样是事实上的无限复杂。这种原则上的有限而实践上的无限,直接冲击还原论的哲学基础:决定论。只有决定论成立,由无机到生命的逻辑演绎方式才是理论上可操作的,才具有进行预测和试验上可操作的价值和意义;决定论的前提又是自然有限论,而无限性就意味着不确定性,也就意味着逻辑演绎的理论之路是不通畅的、实践之路是不可操作的。

第二,自组织理论本身的结论——非线性过程的不可逆性,使这种操作不可能。从无机到生命的历史过程,其中有许多偶然性或随机因素起了决定作用并已作为“信息”储存于生物大分子的结构中。由于偶然性或随机因素的不可重复,使时间不可反演,因而整个过程无法进行重复操作。

第三,自组织理论和超循环论的非线性动力学过程的不确定性,使从无机到生命的演绎过程不可能。在此,应对“因果决定论”与“演绎解释方式”作出区分,一般来说,这二者被合二为一地用来与目的性解释或功能解释方式相对立,但它们之间是有区别的。因果决定论是用来表述定律或原理的方式,而演绎解释的方式是解释体系乃至理论体系的构成框架,即因果决定论形式的定律或原理是作为演绎框架的解释前提而出现的。这就可以提出这样的问题:否定了因果决定论的自组织理论的非线性过程的定律、原理是否可以作为从无机到生命演绎解释框架的解释前提呢?按照还原论解释的要求,如果中间环节有不确定因素,将阻碍这种演绎解释的逻辑通道的畅通。只有解释前提的因果决定论形式才与整体的演绎解释框架相谐调。尽管自组织理论及超循环论这一新物理科学曾经被讨论的热火朝天,由于它在分子自组织领域内就已经在逻辑上不确定了,因而,至今为止它对生物学的影响只限于描述性地说说而已,至多提供一个框架式的思想启示。

4.结语

还原论所遭遇的困境,是由于坚守着理想主义的科学信仰而不顾生物学现实。但是,无论是同情还原论而提出的带有折衷性的整体还原,还是反对还原论的自主论,在其构建生物学理论的建议中,只要还主张保存直接来自于生命现象的术语和概念,并且不可被物理——化学的术语和概念、也即描述无机世界的术语和概念所代替,都是在认识论上允许预先设定生命现象作为解释的起点,从而在本体论上承诺了存在着一种生命特质,也就有违于“从无机到生命的历史走向和逻辑走向相一致”这一基本的科学承诺。

在现代生物学面前,还原论成为固执地坚守理想和信仰的牺牲者而在所不惜,自主论由于切合生物学理论的现实而取得了优势,并以能够指导未来生物学理论的构建为最大的价值所在。但是,笔者认为,一门学科,特别是具有哲学色彩的学科,其意义和价值不应仅仅依赖于其他学科,更不能以其可否“指导”自然科学的发展为其价值标准。逻辑实证主义起始的现代科学哲学的历史已证明这种“指导”是虚妄和徒劳的,科学往往自我发展而不听命于哲学家的“指导”。在这方面,还原论也并不是无可厚非。无论是还原论还是自主论,它们的目的都是企图指导生物学理论按照它们指定的框架来运行,结果使我们处于这样一个悖论之中:如果信守“生命来自无机界”这一命题,则应否定“不能用描述无机界物质运动的概念、规律即物理科学进行还原”;而坚持还原论,则遇到操作上包括不确定性对演绎过程的否定的阻碍。这是否值得我们反思一下过于功利主义倾向的行为,以修正我们对科学的哲学探讨的目的?科学哲学的真正意义和价值在于自身,在于对科学及其与自然的关系的理解,在于它自身体系的建立,这个体系体现了人类的心智对完美的追求和向往。这一点,特别是在一个人欲横流的社会里,是极为可贵和重要的。

【参考文献】

(1)Rosenberg.A.(1985).The Structure of Biological Science.(Cambridge:cambridge University Press).

(2)郭垒:“生物学自主性与物理科学的理论构建”,《自然辩证法研究》,1995年第3期。

生物化学概述篇9

1.传统物理概念教学存在的问题

1.1对概念形成过程的教学重视不够。

受行为主义学习理论的影响,物理概念教学中“重结果”的现象非常严重,很多教师在引入概念时没有让学生获得足够的感性认识而是直接给出物理概念,致使一部分学生只是死记物理概念而没有真正理解物理概念的实质,物理概念在他们的头脑中成为空中楼阁,题海战术成为他们学习物理的“捷径”。这种“熟记型”学习往往比较机械,学生对物理概念的理解没有在感悟中“升华”。

1.2物理概念教学中时间安排错位。

在物理概念教学过程中应如何合理安排各项活动的时间,这在传统的教学过程中存在很大错位。在物理概念的建立和理解上所花的时间很少,而把大部分时间花在了对概念的应用上。这种“短、平、快”的战术缩短了学生的认知过程,虽然加快了教学进度,但与培养学生思维能力的要求相去甚远,思维要建立在“物质”的基础上,而这个“物质”基础就是要让学生充分占有感性材料,经过同化建立属于自己的认知结构。

2.提高物理概念教学效率

一般来说,初中学生已具备了比较完全的物理感知能力,他们能够通过自己的感觉器官对周围世界的物理现象、物理过程形成一个模糊的整体认识,也能对与物理现象相关联的各种条件作肤浅分析,但分析问题的逻辑性和严谨性不足。教师在进行概念教学的过程中必须充分利用学生的特点,以提高教学效率。

2.1从生活中引入概念。

从学生熟悉的生活现象引入概念,因为生活实践留在记忆中的形象容易为学生所理解。尤其是对于初中学生来说,从生产生活中感知到的大量的、丰富的物理现象是他们认识物理概念的必要感性材料。这些感性材料为他们创造了一个良好的物理环境。为了激发学生学习物理概念的强烈欲望,教师必须充分发挥课堂演示实验的作用。现代学习理论认为:人们在整个认知发展过程中,面对新事物、获取新知识和解决新问题时的方式只有两种――同化与顺应,当所接受的知识与学生已有的认知结构产生冲突,通过“演示实验或学生实验”引发原有认知结构的调整或变化,从而建立新的认知结构。直观、真实的物理情境更接近学生的生活体验,更容易激发学生学习的内在动机,促使学生结合已有经验发现、探讨问题,从而同化新知识。对初中学生,尤其要讲究实验形象、鲜明、生动。例如在讲述力的概念时,应首先举一些学生日常生活中熟悉的实例,如:手提水桶,马拉车,脚踢足球,磁铁吸引铁块,等等。然后对这些例子进行分析、比较、概括和总结,得出力的定义为“力是物体对物体的作用”。使学生明确:力是两个物体之间的相互作用。

2.2揭示概念的本质特征。

物理教学实践表明,学生只有理解了概念,才能牢固掌握概念。而要使学生理解概念,就必须使学生掌握概念的本质。直观材料是形成概念的基础,但概念不能从直观材料中直接得出,必须通过学生的思维才能使感性认识升华为理性认识,这是认识的飞跃,是使学生形成概念的关键一步。为实现这一飞跃,就必须启发学生思维。在概念教学中,常用的思维方法有比较、分析、综合、抽象、概括、判断、归纳等许多种,只有引导学生正确思维,才能揭示概念的本质,使学生全面掌握概念。例如:“密度”这一概念的教学,通常用公式ρ=m/v定义,倘若不讲清楚其本质意义,则学生会受数学公式的影响,认为ρ与m成正比,从而形成错误观念。教师只有在学生感知的基础上,引导学生抓住“密度”概念的本质特征,讲清其只与自身的性质有关,才能使学生真正掌握“密度”这一概念。揭示概念的本质,不但要求学生能够了解定义、熟记定义,更为重要的是应以定义为基础,全面地理解概念的内涵和外延,认清概念与其他知识之间的联系。

2.3从不同角度阐述物理概念,深化学生对概念的理解。

物理概念是可以从不同角度定义的,但教科书往往只从正面以单一方式叙述,教师倘若只是机械地照本宣科,则会使学生对概念的理解存在片面性,缺乏立体感。如果教师在讲概念时,能够从正面、反面、侧面等方面多角度地剖析、阐述,则可深化学生对概念的理解。例如,在讲解“压强”这一概念时,可以从以下几个方面进行阐述:压强是描述压力作用效果的物理量;是单位面积上压力的大小;其大小等于压力与受力面积的比值;大小的改变与压力大小和受力面积有关。

2.4进行比较与归纳,深化物理概念。

生物化学概述篇10

例如,“质点”这一概念的教学,我们一般强调的是只有质量,没有大小的概念,学生在学习中,往往拿生活中具体的物质来和“质点”做对比,单纯认为质点就是体积非常小,密度非常大的物体,这当然是极具片面性的。教师在此基础上还要对学生讲清楚,“质点”只是一种理想化的模型,是为了研究问题的方便而假定的一种思考方法,而不存在“大”和“小”之分。太阳和地球之间的距离相比较,地球和太阳的体积是非常大的,但是和它们之间的距离相比较,就显得微不足道了,此时的太阳和地球就可以作为“质点”来考虑了。当然,地球和太阳绝对不是质量非常小,密度非常大的物体,从而使学生对于质点的认识有一个清晰的印象。

二、多角度阐述物理概念,可以深化学生对概念的理解。

物理概念是可以从不同角度定义的,但教科书往往只从正面以单一方式叙述,教师倘若只是机械地照本宣科,会使学生对概念的理解有片面性,缺乏立体感。如果教师在讲概念时,能够从正面、反面、侧面等方面多角度地去剖析、阐述,定可深化学生对概念的理解。

例如,在讲解“加速度”这一概念时,学生对于加速度的理解各式各样,但能够全面理解的并不多,除按教科书的叙述外,针对不同学生的不同状况,还可从这几方面进行阐述:加速度是描述速度变化快慢地物理量,解决了一部分学生对速度和加速度的思路的混淆;是单位时间内速度的变化量;是速度对时间的变化率,进一步从量上给出了加速度的确切表达;其大小等于合外力与物体质量的比值,指出了力与加速度的紧密联系;是物体运动状态发生变化的标志等等。

三、通过对比进行概念辨析

有些物理概念,既有表面上相似的一面,又有本质不同的一面。如果在教学中能够引导学生对概念进行对比分析,就可以深化学生对概念的理解,起到防止混淆的作用。

例如,对“分子间的作用力”的辨析,分子间的斥力和引力是同时增大和减小的,并非在大于平衡位置时只有引力而无斥力,也不是在小于平衡位置时只有斥力而无引力。在教材中提到分子间的作用力和弹簧的相似之处。这有助于学生对于力的总体表现的把握,但是对于引力和斥力的变化,弹簧就不能全面的反映。只有通过既抓住它们之间的相同点,又能够清晰指出它们之间的不同点,才能使学生对于分子间作用力的概念有一个准确的把握,而不是说到分子力,就立刻联想到弹簧一样。

四、引导学生正确区分定义式和导出式

物理概念的定量描述是通过数学公式来实现的,我们常称之为定义式。

例如,电场强度用B=F/IL,电容用C=Q/U,电势用U=ε/q等等。但从这些定义式往往导出另一些公式来,例如,E=KQ/r,C=εs/d等,在教学中,若能引导学生,对这些定义式和导出式进行辨析,弄清它们的适用条件,对概念的理解和掌握是大有好处的。

五、通过解题训练强化物理概念

生物化学概述篇11

一、弄清概念引入的问题情境

物理概念是在大量观察和实验的基础上,运用逻辑思维的方法,把物理现象、物理过程的本质属性加以抽象、概括形成的。物理概念大体可分两种:一种定性地反映了客观事物的本质属性,如机械运动、简谐运动、匀速圆周运动、运动的合成与分解等;另一种则定量地反映了客观事物的本质属性,如速度、加速度等,这种概念就是我们常说的物理量。所以物理概念的学习绝不能满足于背定义、记公式,应真正弄明白概念所反映的事物的本质。例如:为什么要引入“速度”这个概念?物体的位置变化可用位移表示,但不同物体在相同的时间内位移可能不同,即有的物置变化快(如汽车),有的物置变化慢(如自行车),为了区分不同物体的位置变化的快慢,就要引入“速度”这个概念。

引入任何一个概念,都是为了描述一类事物的共同的本质特征,搞清了这个概念描述了什么,就搞清了概念的内涵,应用概念辨析问题时就不会出错。同时明确引入概念的目的,就搞清了前后知识的联系,具有承前启后的作用。也会激发学生学习的兴趣,强化学习动机。

二、突破重难点

课本中的物理概念,文字叙述严谨、简洁,多数同学能够读懂字面意义,但不能把握准确深刻的含义,运用概念解决问题时就容易出现错误。比如讲解磁通量这一概念,教材中的定义是这样叙述的:设在匀强磁场中有一个与磁场方向垂直的平面,磁感应强度为B,平面的面积为S,我们定义磁感应强度B与面积S的乘积叫穿过这个面积的磁通量,简称磁通。粗看这段话就是磁通量等于磁感应强度与面积的乘积,即Φ=BS,深入分析概念,应强调计算磁通量的两个重要条件:一是B与S垂直,不垂直要用投影面积;二是面积S必须是在磁场中的有效面积;三是若平面内有两个或多个磁场且方向不同,则必须用合磁感应强度;四是磁通量的物理意义直观形象地说是指穿过某面积的磁感线条数,故对于穿过线圈截面的磁通量,B越大,截面积S越大,穿过这个线圈截面的磁感线条数就越多,磁通量就越大,与缠绕线圈的匝数无关;五是磁通量是标量,但磁感线穿入同一面积时,却有不同的穿入方向,尤其在讨论磁场不变,平面反转时磁通量变化这一问题,必须弄清磁感线的穿入的方向,有的学生容易把磁通量当成矢量,这时可以用水流、电流的概念去类比。因此只有搞清物理概念的定义,才能有效建立不同量之间的联系。

三、正确理解概念的各种定义方式

1.语言表述。对用物理语言表述的概念,要能准确的复述,体会规范语言的应用,体会物理概念表述时必须具备科学性、准确性及简洁性的特征。对于用数学表达式(公式)表述的概念,必须弄清每个字母所代表的物理意义。

2.定义方法。有一类概念是用相同的方法定义的。例如:速度、加速度、电场强度、电势、电容等都是用比值定义的,用比值定义概念时都有一个共同点。为什么这些概念可用比值定义,值得好好想想。

3.定义式和推导式。注意定义公式与推导公式的区别,适用范围。例如:平均速度的定义公式为v= 。这个公式适用于任何运动。平均速度还有常用的公式v= ,但这个公式不能叫定义式,它只是在特殊情况下(匀变速直线运动)推导出来的,要注意定义式和推导式的区别。

四、巧设问题,灵活运用概念

学习物理概念的目的在于应用。在教学中教师要通过创设问题情境,设计阶梯式问题,让学生思考,引导学生由浅入深,逐步理解,深化提高,同时逐渐培养学生分析问题和解决问题的能力。例如针对“加速度”的概念,可以利用下列问题进行应用:神舟七号载人飞船的返回舱距地面10km时开始启动降落伞装置,速度减至10m/s,并以这个速度在大气层中降落。在距地面1.2km时,返回舱的4台缓冲发动机开始向下喷火,舱体再次减速。设最后减速过程中返回舱做匀减速运动,并且达到地面时恰好速度为0,求最后减速阶段的加速度。学生通过解决实际问题,巩固提高了对物理概念的理解,在解决实际问题的过程中对物理概念运用自如。

生物化学概述篇12

比如进行“单质”、“化合物”这两个概念的教学,老师应该从“纯净物”这一关键词汇入手,一种物质组成的叫纯净物,两种及以上物质组成的,叫混合物。学生理解了纯净物,那么单质和化合物这两个概念就迎刃而解了。

二、从宏观入手向微观深入

化学知识对学生的学习来说,有时是显得很抽象的。概念的理解或者是微观粒子的概念,学生都会感到陌生和不好理解。怎样帮学生建立起这样的概念图式,形成正确的意义建构?教师应该从宏观入手,在这里教师可以充分地利用化学实验,在实验中,让学生对化学现象进行观察,然后通过自己大脑中的再加工,形成较为准确和清晰的概念。学生在观察试验中,通过直观的、形象的视觉印象,他们的思维也在发散,在学生原有的知识基础上,认知水平会有一个飞跃,学生会自己进行知识概念的塑造,从而形成化学概念。原子和分子是化学中最基本的概念,在进行原子概念的教学时,教师可以通过电解水的实验,让学生观察水分子的可分性。学生看到两个电极上有气泡产生。教师继续进行实验操作,用带有火星的木条去接触两个电极的气体,学生将会看到一边带火力的木条复燃,一边是蓝色的火焰。让学生说出自己所见到的现象,并试着自己解释。于是教师在这里恰当地提出原子的概念,学生在一系列的具体现象中已经感受到了分子和原子的模糊概念,所以再由老师进行原子概念的解释,水到渠成。

三、从理解概念的内涵入手

化学概念的学习应该根据不同的内容采取不同的方法,从理解概念的内涵入手,剖析概念,讲解内涵,促进学生对概念的进一步理解。化学概念都通过比较精练的语言,在学生原有认知基础上,进行新的知识意义建构,所以从内涵理解概念,要注意学生的认知基础,要在已经学过的知识基础上进行剖析和理解。比如“溶解度”这个概念,在初中教学中就是一个难点,教学中教师会明显地感觉到学生理解困难,所以老师要想办法把概念的内涵抓住,让学生能在通俗的讲解中理解深奥的化学概念。教师将溶解度概念,分成四部分来理解,第一,要在一定温度下;第二,溶剂为100g;第三,溶液要达到饱和状态;第四,在满足上述条件时,溶质所能溶解的克数。这是溶解度概念的四个主要因素,学生弄懂了这四个要素,对溶解度的理解自然水到渠成。

四、从不同角度入手理解同一个概念

生物化学概述篇13

1原理学习的心理过程分析

原理是对概念之间关系的语言表述。例如这条规则就是对共轭碱、共轭酸与碱、酸之间关系的描述。并不是所有言语表述都是原理,例如,“黄芩遇冷水变绿的原因是由于黄芩中所含酶,能酶解黄芩苷与汉黄芩苷成为黄芩素和汉黄芩素,其中黄芩素是一种邻位三羟基黄酮,本身不稳定,容易氧化而变绿”[2]就不是一条原理,它只是说明对某个特定反应的描述。“不同炮制程度烫浸软化的黄芩片对其主要成分是有影响的,烫浸时间越长,影响越大”[3]则是一条原理,原理说明对某类刺激做出的某类规律性反应,因而原理对科学行为具有规范和控制作用。

原理学习,就是学生对原理的理解过程。这种理解能力使学生不被表面现象迷惑,认清事物之间因果关系,达到分析问题和解决问题的目的。原理学习包括三个环节:首先是对原理所涉及概念的学习,然后是对概念之间关系的描述,最后是将原理内化为控制自己行为反应的内在依据。例如,对“离子交换色谱”原理的学习,“离子交换色谱法是以离子交换树脂作为固定相,用水或水溶剂作为流动相。在流动相中的离子型成分与树脂上的固定离子进行交换而被吸附,再用带有同种电荷的溶剂进行洗脱,来分离离子型化合物的一种色谱方法”。首先要理解基本概念“固定相”和“流动相”,然后理解“固定相”和“流动相”的关系为先“吸附”后“洗脱”得到“离子型化合物”。理解了“离子型化合物”的得到过程,离子交换原理也就内化为学生自身获得的行为依据。

与概念学习—样,课程学习情形中原理学习的基本方式有发现式和接受式之分。接受式的原理学习是从原理正确表述入手,利用典型例证证明原理所反映的概念之间规律性关系;发现式的原理学习是通过对例子分析,找出共同规律,归纳出原理内容,并尝试用准确的语言表述。根据不同学生不同学习要求、学习内容等教学目标,实际教学中,发现式的例证—规则法有利于培养学生学会学习、学会思维、学会创造和解决新问题的能力;而接受式规则—例证法则有利于培养学生熟练、规范、标准化的实验操作能力。

目前中药化学课程教学普遍存在重视接受式原理学习,忽略发现式原理学习的现象。教师教学思路以呈现规则,通过实验例证为主,学生也是机械地接受规则,完成实验,少见热爱中药化学思维,并充分体验到学习乐趣的学生,这种现象并不利于中药化学创造性人才的培养。优秀本科生和研究生肩负着探索新知识的学科使命。所以,应以发现式的原理学习为主,并且善于从典型例证中概括和发现原理,同时利用规则—例证法去检验和证明对原理的理解和掌握。学生只有掌握原理,才能很快发现问题、灵活解决问题。因此,中药化学教学中,要重视学生对原理的学习和掌握。可能由于教学时数与内容之间的冲突,或者习惯教学模式使得我们无暇花更多时间用在发现式的原理学习模式上,但是,即使是接受式的原理学习模式,教学重点也应放在原理的概括、总结和强化理解、接受上,训练学生逻辑思维,提高学生对专业知识理解能力。

2原理学习的教学策略

从原理学习的心理过程分析教学中可能影响原理学习的因素,并在原理学习时根据这些因素采取合适的教学策略。原理学习首先涉及学生对原理所涉及概念的掌握,如果学生对构成原理的概念不清晰,就无法对原理进行理解。因此,原理学习的教学策略首先是概念学习策略的运用。

对于概念的学习,根据具体内容和学生理解水平,可以采取例证—规则法帮助学生的概念形成,采取规则—例证法对学生的概念进行同化学习,有经验的教师会采用例证—规则—例证的教学策略,既训练学生形成抽象概念的逻辑思维,又扩展学生的学科知识,强调学生在概念理解基础上的运用。例如,我们在学习生物碱物理性质的旋光性时,“生物碱结构中如有手性碳原子或本身为手性分子即有旋光性。生物碱的生理活性与旋光性密切相关,通常左旋体的生理活性比右旋体强”。需先理解“旋光性”、“手性碳原子”“、生理活性”、“左旋体”、“右旋体”等概念,然后才能理解这些概念之间的关系分别为:“手性碳原子”与“旋光性”是因果关系,因为生物碱结构中“具有手性碳原子”,“故有旋光性”;“生理活性”与“旋光性”在刺激强度上是整体与部分的关系,通常“左旋体的生理活性比右旋体强”。教学中,在概念学习基础上,原理学习主要是学生对事物概念与概念之间关系的理解和应用。

对概念与概念之间关系的准确理解,需要学生具有一定认知水平,要求学生具有从现象中概括出规律的抽象思维能力,越是抽象的原理,要求概括水平越高。因此,在原理学习教学中,要特别注重对学生抽象思维训练,提高学生从现象中概括事物本质的能力。在中药化学课程教学处理上,由于学时限制,不可能在课堂教学上面面俱到,那么应抓住教学大纲中每一章节教学重点,以对教学重点的原理学习为线索,向上扩展对原理涉及概念的理解,向下扩展对原理应用问题解决的学习,把对知识的理解、巩固与应用贯穿到中药化学学习整个过程中。中药化学中的原理多数通过各类化合物理化性质来表征,每一类化合物的理化性质,向上连结着各种化合物的基本概念、结构特征,向下连结到化合物的提取、分离、检识、结构鉴定等。因此,中药化学教学中,可以把每一类化合物理化性质的理解和应用为原理学习重点,既有意识地训练学生概括化合物理化性质的思维能力,又注重培养学生应用理化性质到化合物提取、分离、结构鉴定的实践能力,从而提高学生学科认知能力。例如,我们在学习“胆酸类化合物”这个内容时,可以这样设计具体的教学策略:先给学生呈现各种胆酸类化合物的实物(图片),让学生概括出胆酸类化合物的性状之一为“白色结晶形或非结晶形粉末”,性状之二为“味苦”;用提问的方式调动出学生已有知识结构中关于“有机溶剂”这个概念的认识,概括推广出胆酸类化合物的性状之三为“可溶于甲醇、乙醇、丙酮、乙酸乙酯、氯仿、乙醚等有机溶剂,不溶于水,溶于碱水,它们的盐则溶于水”。给学生呈现各胆酸类化合物的分子结构(图式),让学生概括出“胆酸类化合物结构中具有羧基”;用提问的方式调动出学生已有知识结构中“酯化”概念的认识,概括出“浓盐酸或浓硫酸催化”与“胆酸类化合物酯化”的关系为“在浓盐酸或浓硫酸催化下可与醇类进行酯化”;然后,再把“胆酸类化合物结构中具有羧基,在浓盐酸或浓硫酸催化下可与醇类进行酯化”这条原理应用到胆酸类化合物检识的实验设计中。教学中,原理的学习要强调对学生抽象认知能力的训练,才能达成知识学习目的:学以致用,并在知识体系的继承中发展、补充新知识。

在线咨询